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Abstract

We consider the transfer learning scenario,
where the learner does not have access to the
source domain directly, but rather operates
on the basis of hypotheses induced from it
– the Hypothesis Transfer Learning (HTL)
problem. Particularly, we conduct a theoret-
ical analysis of HTL by considering the algo-
rithmic stability of a class of HTL algorithms
based on Regularized Least Squares with bi-
ased regularization. We show that the re-
latedness of source and target domains ac-
celerates the convergence of the Leave-One-
Out error to the generalization error, thus en-
abling the use of the Leave-One-Out error to
find the optimal transfer parameters, even in
the presence of a small training set. In case
of unrelated domains we also suggest a the-
oretically principled way to prevent negative
transfer, so that in the limit we recover the
performance of the algorithm not using any
knowledge from the source domain.

1. Introduction

The standard assumption in supervised machine learn-
ing algorithms is to have models trained and tested on
samples drawn from the same probability distribution.
However, this assumption is often violated in practical
applications.

A more general setting is the one in which the marginal
distributions over training and testing domains are dif-
ferent but related. This is the problem of Domain
Adaptation (DA), where a successful scheme typically
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utilizes large unlabeled samples from both domains to
adapt a source hypothesis to the target domain. Previ-
ous work has addressed in detail the theory of DA and
proposed algorithms that critically depend on optimal
weighting parameters given by the theoretical analy-
sis (Ben-David et al., 2010a;b; Mansour et al., 2009b;
Cortes et al., 2008). However, in practice, the learner
needs access to sufficient unlabeled samples from both
domains to estimate these parameters. Even if unla-
beled data are abundant, the estimation of these pa-
rameters can be computationally prohibitive in some
scenarios. A hypothetical example is a large number of
domains involved or, for instance, when one acquires
new domains incrementally. Here, keeping unlabeled
data from all the domains and reestimating parame-
ters is a necessity.

To overcome this practical limitation, a new frame-
work has been analyzed by a number of works (Fei-
Fei et al., 2006; Yang et al., 2007; Orabona et al.,
2009; Mansour et al., 2009a; Tommasi et al., 2010;
Kuzborskij et al., 2013). In this framework, that we
will call Hypothesis Transfer Learning (HTL), unlike
DA, only source hypotheses trained on a source domain
are utilized. The attractive quality of HTL is the fact,
that it assumes no explicit access to the source do-
main, nor any knowledge about the relatedness of the
source and target distributions. Although, this setting
has been explored empirically with success, a formal
theory of HTL is mostly missing. Hence it is unclear
how to recover optimal transfer parameters and what
properties of the source hypothesis affect generaliza-
tion.

In this paper, we take a step towards a theory of HTL.
In particular, we analyze the generalization ability of
a class of HTL algorithms stemming from Regular-
ized Least Squares (RLS) with biased regularization.
We assume access to a given number of source hy-
potheses and a small set of training samples from tar-
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get domain. Rather than relying on oracle inequal-
ities for tuning the optimal parameters, we use the
Leave-One-Out (LOO) risk. The LOO risk is known
to have low bias compared to empirical risk or cross-
validation (Elisseeff & Pontil, 2003), thus making it
preferrable in a small sample regime.

In the following, we will show that the variance of the
LOO estimator for the considered algorithms decreases
with the increasing quality of the source hypothesis
over the target domain. We do so by employing the
notion of hypothesis stability (Bousquet & Elisseeff,
2002), and upper bounding the second-order moment
of the difference between the expected risk and the
LOO risk. In addition, we propose how a hypothetical
algorithm could avoid negative transfer in the case of
unrelated domains, while in worst case scenario recov-
ering the generalization guarantees of RLS. As a side
effect, we improve polynomial generalization bounds of
Bousquet & Elisseeff (2002) for RLS. Finally, from the
stability theory point of view, this work also tries to
address an open question by Elisseeff & Pontil (2003):
“Is there a way to incorporate prior knowledge via sta-
bility?”, thus exposing a connection between stability
and the Hypothesis Transfer Learning.

The rest of the paper is organized as follows. We for-
mally state the HTL problem in Section 2 and intro-
duce analyzed algorithms in Section 4. The main re-
sult comes in Section 5, particularly in Theorem 2,
with implications discussed in Section 5.1. The proof
of the main result can be found in Section 5.2, while
related work on DA and HTL is covered in Section 3.
Finally we draw some conclusions and discuss future
work in Section 6.

2. Definitions and Problem Setting

In the following, we denote with small and capital bold
letters respectively column vectors and matrices, e.g.
α = [α1, α2, . . . , αd]

T ∈ Rd and A ∈ Rd1×d2 . The ex-
pected value of a random variable distributed accord-
ing to p is denoted by Ez∼p[·], and multiple random
variables as Ez∼p,z′∼p[·].

Denoting by X and Y respectively the input and out-
put space of the learning problem, the training set S
is defined as {(xi, yi) : 1 ≤ i ≤ m}, drawn i.i.d. from
X ×Y according to the probability distribution µ. We
also define a supervised learning algorithm as follows.

Definition 1 (Supervised learning algorithm). A su-
pervised learning algorithm is a map

A : (X × Y)m 7→ F ⊆ YX

that maps the training set S onto a hypothesis fS ∈ F .

The LOO training set is defined as S\i =
{(xj , yj) : 1 ≤ j ≤ i − 1 and i + 1 ≤ j ≤ m} and
hypothesis fS\i is produced by an algorithm A given
training set S\i.

To measure the accuracy of a learning algorithm, we
introduce the non-negative loss function `(f, (x, y)),
which measures the cost incurred predicting f(x) in-
stead of y. In the following we will focus on the square
loss, `(f, (x, y)) = (f(x) − y)2, for its appealing com-
putational properties.

The expected risk of a hypothesis fS , with respect to
the probability distribution p, is then defined as

Rp(A,S) = Rp(fS) := E(x,y)∼p[`(fS , (x, y))],

while the empirical risk is

R̂(A,S) :=
1

m

m∑
i=1

`(fS , (xi, yi)).

We also define the LOO risk as

R̂ loo(A,S) :=
1

m

m∑
i=1

`(fS\i , (xi, yi)).

2.1. Hypothesis Transfer Learning Problem

In addition to the training set S for the target domain,
drawn according to µ, we now introduce a source do-
main. Let X ′ and Y ′ be respectively the input and
output space of a source domain. The source training
set S′ = {(x′i, y′i) : 1 ≤ i ≤ m′} is drawn i.i.d. from
X ′ × Y ′ according to the probability distribution µ′.
Denote by f ′ the hypothesis generated by any learn-
ing algorithm over the source training set S′. The aim
of an HTL algorithm is to use the source hypothesis
f ′ to improve the performance of a supervised learn-
ing algorithm over S. More formally, we define HTL
algorithm as follows

Definition 2 (HTL algorithm). An HTL algorithm is
a map

Ahtl : (X × Y)m ×F ′ 7→ F ⊆ YX (1)

that maps S and the source hypothesis f ′ ∈ F ′ onto a
target hypothesis fhtlS ∈ F .

The aim of the HTL algorithm is to satisfy the Im-
provement Condition (IC):

Rµ(Ahtl, (S, f ′)) ≤ Rµ(Ahtl, (S,0)) . (2)

We define a failure to satisfy IC as a negative transfer.
Note that we do not assume any relationship between
µ and µ′. We are only interested in the observable
improvement of the generalization error on the target
domain.
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3. Related Work

We start by introducing related work from DA field,
closely related to the HTL problem. Most DA algo-
rithms can de described by the general map

ADA : (X×Y)m×Xmu×(X ′×Y ′)m
′
7→ F ⊆ YX , (3)

where in addition to previous notation, mu is the size
of unlabeled set. Typically it is assumed that m� m′,
m� mu and µ, µ′ are different.

A theoretical analysis of (3) has been proposed by Ben-
David et al. (2010a), considering case m = 0, and al-
ternatively m > 0, but m � m′. The work proves
a VC-bound on the expected risk of a target hypoth-
esis, when the target hypothesis minimizes a convex
combination of the empirical source and target risks.
Hence the optimal DA algorithm critically depends
on weight parameters that control the importance of
source and target distributions. However, these opti-
mal parameters depend on a divergence term between
unlabeled training samples drawn from source and tar-
get marginal distributions, that appears additively in
their bound. The nature of this divergence term was
later explained by Ben-David et al. (2010b): the addi-
tive divergence term is inevitable unless an algorithm
has access to labeled training data from the target do-
main. A similar setting was also examined by Mansour
et al. (2009b), who instead derived Rademacher com-
plexity bounds, but in practice proposed a very similar
sample reweighting scheme. Once again, an additive
divergence term appears in the bounds. Although re-
lated, problem (1) is not directly reducible to (3), since
it depends on the properties of the learning algorithm
that generates the source hypothesis. Apart from that,
the source domain is inaccessible. These facts render
the mentioned DA bounds inapplicable for analysis of
the Hypothesis Transfer Learning.

As pointed out by Mansour et al. (2009a), the source
training set (or multiple sets) might not be available
due to the prohibitive size. With this motivation for
HTL they attack a multiple source type of problem (1).
They pose an assumption that the target distribution
µmix is a mixture of n source distributions. With n
source hypotheses, it was shown, that if Rµ′

i
(f ′i) ≤

ε ∀i ∈ {1, . . . , n}, then Rµmix
(
∑n
i=1 βif

′
i(x)) ≤ ε +

δ, δ ≥ 0. The result is insightful, since it relates the
risk of target and source hypotheses. However, again,
the optimal weights depend on unknown quantities
that are estimated from unlabeled samples, partially
defeating the original purpose of the algorithm.

HTL have been also considered from Bayesian perspec-
tive. Li & Bilmes (2007) have analyzed a Bayesian ap-
proch to solving (1) via PAC-Bayes bounds and arrived

at an additive KL-divergence term. It was shown that
for logistic regression, the divergence term is upper
bounded by ‖f − f ′‖, leading to biased regularization
in the learning algorithms. Indeed, Bayesian linear
regression with f ′-mean Gaussian prior over f leads
to exact recovery of ‖f − f ′‖ in optimization prob-
lem (Bishop, 2006). Another example of the Bayesian
HTL approach was proposed by Fei-Fei et al. (2006) for
visual object detection task. Results of Li & Bilmes
(2007) hint that generative methods like the one in
Fei-Fei et al. (2006) could also be related to biased
regularization.

A number of empirical attempts have tried to justify
HTL. An SVM-like algorithm with regularizer ‖f−f ′‖
was proposed by Yang et al. (2007) for video con-
cept detection task. Orabona et al. (2009) suggested
a parametrized variant ‖f − βf ′‖ for Least-Squares
SVM, then extended to multiple sources by Tommasi
et al. (2010). Leveraging on this idea, a recent HTL
multiclass formulation explored a class-incremental
transfer setting (Kuzborskij et al., 2013). While some
of these methods demonstrated impressive practical
potential, their theoretical nature remains unclear.

We also briefly mention that variance bounds on the
LOO risk were derived by Zhang (2003). In our work
we are more interested in the generalization ability of
the algorithm, that is estimated through the concept
of algorithmic stability (Bousquet & Elisseeff, 2002)
and the LOO risk.

4. Hypothesis Transfer Learning
through Regularized Least Squares

Without loss of generality, in the following we will
assume that Y,Y ′ = [−B;B], where B ∈ R and
‖x‖ ≤ 1, x ∈ X = Rd.

We will consider linear algorithms, extended to non-
linear ones through the use of kernels. Hence f(x)
will be expressed as the inner product of a vector w,
learned from the training data, and the sample x.

We assume, that only the target training set S and
source hypothesis f ′ are given, so that the source train-
ing set S′ is not required. The main objective of this
analysis is to identify the effect of f ′ on the general-
ization properties of Ahtl. For this reason, we would
like to bound the expected risk of Ahtl with terms de-
pending on the characteristics of f ′. In particular,
we expect that a smaller risk Rµ(f ′) should improve
the generalization of Ahtl, compared to the case when
f ′ ≡ 0.

As said above, we proceed by specializing Ahtl to a
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particular class of algorithms, the RLS with biased
regularization. This will allow us to arrive at a gen-
eralization bound where all the relevant quantities are
computable in a closed form.

4.1. Biased Regularized Least Squares

The RLS algorithm consists in solving the following
optimization problem

min
u

1

m

m∑
i=1

(u>xi − yi)2 + λ‖u‖2 . (4)

The interest of RLS lies in its strong theoretical guar-
antees and in the fact that solution can be expressed
in a closed form (Rifkin et al., 2003). As a useful con-
sequence, its LOO prediction function is expressed in
closed form as well, allowing a very efficient model se-
lection (Cawley & Talbot, 2007). It is also possible to
arrive at (4) from a Bayesian perspective by putting
a 0-mean Gaussian prior over the parameters of a lin-
ear regression model (Bishop, 2006). Note that the
same formulation can be used for both classification
and regression problems (Rifkin et al., 2003).

Assuming that the source hypothesis f ′(x) is ex-
pressed as x>w′, and w′ belongs to the same space
of w, Orabona et al. (2009) proposed the use of a bi-
ased regularization to solve hypothesis transfer learn-
ing problems efficiently. More formally they defined
the following algorithm.

Algorithm 1. The Hypothesis Transfer Learning Al-
gorithm based on Regularized Least Squares produces a
hypothesis fhtlS (x) = x>wS, where

wS = argmin
u

1

m

m∑
i=1

(u>xi − yi)2 + λ‖u−w′‖2. (5)

Analogously, one can see the formulation of an Algo-
rithm 1 as a Bayesian linear regression with w′-mean
Gaussian prior distribution. The solution of an Algo-
rithm 1 can be expressed in closed form, in fact from
the first order optimality condition we get

wS = argmin
u

1

m
‖X>u− y‖2 + λ‖u−w′‖2

⇒X(X>wS − y) +mλ(wS −w′) = 0 (6)

⇒X(X>ŵS +X>w′ − y) +mλŵS = 0

⇒ (XX> +mλI)ŵS = Xy −XX>w′

⇒ ŵS = (XX> +mλI)−1X(y −X>w′)
⇒ ŵS = X(X>X +mλI)−1(y −X>w′)

where in (6) we used ŵS := wS − w′ and in the
last step we used the identity (XX> + mλI)−1X =

X(X>X + mλI)−1 to express the solution in dual
variables. So, the solution to the problem is given by
wS = X(X>X +mλI)−1(y −X>w′) +w′, due the
definition of ŵS .

Using the fact that the LOO risk of Algorithm 1 can
be written in closed form, Orabona et al. (2009) pro-
posed to weight the source hypothesis w′ by a scalar
β, optimized in order to minimize the LOO risk.

In the following we show how to generalize this ap-
proach to the generic source hypotheses f ′ and how to
obtain a generalization guarantee for it.

5. Analysis by Hypothesis Stability

We now propose a more general version of Algorithm 1.

Algorithm 2. RLS transfer algorithm by altering
training set as {(xi, yi − f ′(xi)) : 1 ≤ i ≤ m} pro-
duces a hypothesis

fhtl
′

S (x) = TC(x>ŵS) + f ′(x),

where

ŵS := argmin
u

1

m

m∑
i=1

(u>xi − yi + f ′(xi))
2 + λ‖u‖2,

and the truncation function TC(ŷ) is defined as
TC(ŷ) = min(max(ŷ,−C), C).

If f ′(x) is equal x>w′, where w′ belongs to the same
space of wS , and C = ∞, Algorithms 1 and 2 are
completely equivalent, because they have exactly the
same solution. However, Algorithm 2 is more general
because it allows w′ to belong to a different space.
Hence it captures the notion of biased regularization,
and generalizes it to any type of source hypothesis f ′.
This algorithm also captures and generalizes many of
the ideas present in the previous works on HTL (Fei-
Fei et al., 2006; Yang et al., 2007; Orabona et al., 2009;
Mansour et al., 2009a; Tommasi et al., 2010). Still the
use of a specific loss, the square loss, will allow us
to have an efficient computation as well. Also, this
formulation allows to truncate the prediction within
the range [−C;C], that helps to greatly improve the
theoretical guarantees and the practical performance
too. In fact it is easy to see that if C ≥ B + ‖f ′‖∞,
then (TC(x>ŵS)+f ′(x)−y)2 ≤ (x>ŵS+f ′(x)−y)2.

Our goal is to upper bound the expected risk of Algo-
rithm 2, keeping in mind the effect of f ′. To this end,
we propose to employ the stability framework of Bous-
quet & Elisseeff (2002). Our choice is motivated by the
fact that bounds arising from the stability analysis are
free from complexity measures. Hence, the generaliza-
tion bound of interest will be composed mostly from
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computable quantities, thus making it more practical,
e.g. for finding the optimal transfer parameters.

In particular, we can upper bound the moments of the
random variableRµ(A,S)−R̂ loo(A,S) with a quantity
that captures the stability of the learning algorithm.
The second order moment can then be used to obtain
polynomial bounds, through the Chebyshev’s inequal-
ity (Bousquet & Elisseeff, 2002).

There exist various definitions of stability (Bousquet
& Elisseeff, 2002), but the one we will use is the hy-
pothesis stability.

Definition 3 (Hypothesis Stability (Bousquet & Elis-
seeff, 2002)). An algorithm A has a hypothesis stability
γ with respect to the loss function ` if ∀i ∈ {1, . . . ,m}
the following holds

ES,(x,y) [|`(fS , (x, y))− `(fS\i , (x, y))|] ≤ γ .

We will use a slight variation of the polynomial bound
of Bousquet & Elisseeff (2002). The reason is, that
the Theorem 11 of Bousquet & Elisseeff (2002) has

the term M2

2 , that is not affected by Rµ(f ′). Instead,

we exchange M2

2 for the term ES [`(fS\i , zi)].

Theorem 1. For a supervised learning algorithm
A with hypothesis stability γ, and M such that
`(fS\i , (x, y)) ≤M , for any i ∈ {1, . . . ,m}, we have

ES [(Rµ(A,S)− R̂ loo(A,S))2]

≤ M ES [`(fS\i , (xi, yi))]

m
+ 3Mγ .

Proof (Sketch). We trace the occurrence of M2

2m to the
proof of Lemma 9 (Bousquet & Elisseeff, 2002). At
the beginning of the proof they suggest the following
inequality

ES [(Rµ(f)− R̂ loo(f))2]

≤ 1

m
ES [`(fS\i , zi)(M − `(fS\i , zj))]

+ ES,z,z′ [`(fS\i , z)`(fS\i , z′)− `(fS\i , z)`(fS\i , zi)]

+ ES,z,z′ [`(fS\i , zi)`(fS\i , zj)− `(fS\i , z)`(fS\i , zi)] .

Here we are only interested in first term, since it

is the origin of the term M2

2m . Using the fact that
`(fS\i , zj) ≥ 0, we have

1

m
ES [`(fS\i , zi)(M − `(fS\i , zj))]

=
1

m
ES [`(fS\i , zi)(M − `(fS\i , zj))]

≤ M

m
ES [`(fS\i , zi)] .

Note that our bound in the worst case loses only a
constant multiplicative factor with respect to the one
of Bousquet & Elisseeff (2002).

With this theorem we can prove the following result.

Theorem 2. Set λ ≥ 1
m . If C ≥ B + ‖f ′‖∞, then for

Algorithm 2 we have

ES [(Rµ(fhtl
′

S )− R̂ loo(fhtl
′

S ))2]

= O

C2
TC2

(
Rµ(f

′)
λ

)
+Rµ(f ′)

mλ

 .

If C =∞, then for Algorithm 2 we have

ES [(Rµ(fhtl
′

S )− R̂ loo(fhtl
′

S ))2]

= O
(
Rµ(f ′)(‖f ′‖∞ +B)2

mλ3

)
.

The proof can be found in Section 5.2, while in the next
Section we discuss the implications of this theorem.

5.1. Implications

First consider the case of f ′ ≡ 0. This case cor-
responds to learning without any source hypothesis,
without transfer learning. If we set C = ∞, we
have that the second-order moment is bounded by

O
(
B4

mλ3

)
, which is exactly the bound that can be ob-

tained using the results in Bousquet & Elisseeff (2002)
for RLS. We see this by combining Theorem 11 with
Lemma 23 and obtaining a polynomial generalization

bound1 O
(

B2

λ1.5
√
m

)
. Considering the second moment,

the bound matches ours.

However, if we know the range [−B;B], we can set
C accordingly and obtain that the second moment is

bounded by O
(
B2

mλ

)
. Thanks to the truncation, the

bound is greatly improved over the polynomial bound
with square loss in Bousquet & Elisseeff (2002).

We now turn our attention to the case where f ′ 6≡ 0.
In this case, the key quantity is Rµ(f ′), an indirect
measure of how the source and target domains are re-
lated. This term takes the role of the divergence be-
tween source and target distribution (Ben-David et al.,
2010a;b; Mansour et al., 2009b), however, this is a
more intuitive measure which is directly linked to the
loss: how the source hypothesis is going to perform on
the target domain, the new task? In addition, it is mul-
tiplicative to all bound terms, while mentioned diver-
gence terms are additive, even if the bounds are gener-
ally incomparable. Based on its value, we have various

1The same bound also appears in (De Vito et al., 2005)
(p17, footnote 2).
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regimes of interest. If
Rµ(f

′)
λ → 0, we have the sur-

prising result that ES [(Rµ(fhtl
′

S )− R̂ loo(fhtl
′

S ))2]→ 0.
This implies that the expected risk approaches the
LOO risk, with probability 1. In other words, the
transfer learning decreases the variance of the LOO
in case when the source and target domains are re-
lated. This also implies that we can expect the tuning
of any parameter of the algorithm (e.g. the type of
kernel) through the minimization of the LOO risk, to
have optimal performance, even with a small training
set. This is the first theoretical explanation of why the
algorithms of Orabona et al. (2009); Tommasi et al.
(2010) showed reliable performance despite a small
training set. Note that Rµ(f ′) has to be small with
respect to λ. In other words, the better the source hy-
pothesis on the target domain, the more stable an HTL
algorithm must be according to Theorem 3. Looking
at Algorithm 1, this makes sense, since a very stable
algorithm will generate a hypothesis that does not de-
viate much from the source w′.

So far we have outlined the benefits of Rµ(f ′), but it
is reasonable to ask what happens when this quantity
is high, that is when the two domains are unrelated.
From the bound, we see that Algorithm 2 is also robust
against a mispecified source hypothesis f ′. In fact, due
to truncation, the rate is exactly the same as obtained
in the non-transfer case. If we supply the algorithm
with a “bad” source hypothesis, in the limit it will have
the performance of an algorithm that learns just using
the training set. Again, this robustness is achieved
also thanks to the truncation, which avoids excessive
growth of the loss. In other words, Algorithm 2 is
resistant to negative trasfer. We actually suspect that
the truncation is necessary only for the proof, and in
fact, Tommasi et al. (2010) already noticed this robust
behaviour for Algorithm 1.

We now consider the case when the source hypothesis
f ′ is a weighted combination of n source hypotheses
f ′i , that is f ′ =

∑n
i=1 βif

′
i . This weighting strategy is

equivalent to the ones used in the works on DA, but
with the important difference that now these weights
can be efficiently estimated from the target training
set. In particular, one interpretation of the Theorem 2
yields

min
β
Rµ(fhtl

′

S ) ≤ min
β
R̂ loo(fhtl

′

S ) +O
(
‖β‖2√
λm

)
.

Hence the bound suggests an efficient and principled
way to find β = [β1, . . . , βn]>. In other words, it
is enough to minimize the LOO risk with respect to
β, taking into account the regularization term, thus
turning β into a parameter of an optimization prob-
lem. Note that Orabona et al. (2009); Tommasi et al.

(2010) already realized the empirical need to constrain
β, but here we demonstrate a principled form of the
regularization. Note that the O(·) notation used in
the bound above hides the confidence variable δ, which
should be tuned. Yet, here we are mainly interested
in the correct form of the objective function for find-
ing the transfer parameters, as a way of using theory
to guide practice. Moreover, regardless of the specific
procedure used to estimate the optimal value of β, as
noted above we expect the algorithm to be robust to
negative transfer, at least in the asymptotic limit.

5.2. Proof of Theorem 2

To prove the bound of Theorem 2 we need to upper
bound the quantities M , γ, and ES [`(fS\i , zi)] of The-
orem 1. To do so, we proceed by stating and proving
additional lemmas. Particularly, M and ES [`(fS\i , zi)]
are considered in Lemma 4, while γ is bounded in The-
orem 3.

We first present two technical lemmas. The first one
is needed to bound the effect of the truncation, the
second one is a closed-form formula for calculating the
change in truncated predictions of RLS when a new
sample point is added. This result is related to the
well-known closed-form formula for LOO risk for RLS,
e.g. see Cawley & Talbot (2007).

Lemma 1. Let α ≥ 1, and C ≥ |y|, then

(TC(∆)− y)
2 ≤ (TC(y + α(∆− y))− y)

2

≤ α2 (TC(∆)− y)
2
.

Proof. We only prove the upper bound, noting that
the proof of the lower bound is similar. The proof fol-
lows from an analysis of all the possible cases. The
lemma trivially holds when |y + α(∆ − y)| ≤ C. For
∆ > C, the bound holds because y + α(∆ − y) >
C; the same reasoning applies for ∆ < −C. The
last case is when C−y

α + y < ∆ < C. We have

(TC(y + α(∆− y))− y)
2

= (C−y)2. Note that C ≥ y
implies that C−y

α + y > y, so ∆ > y and this implies
the stated bound. The case is analogous −C < ∆ <
−C+y

α + y: we have that TC(y+ α(∆− y)) = −C and

−C+y
α + y ≤ y because C + y ≥ 0, hence ∆ < y.

Lemma 2. Let wS be the hypothesis produced by the
RLS algorithm given training set S. For any i-th sam-
ple (x̂, ŷ) ∈ S, we have that the hypothesis wS\i pro-
duced by the same RLS algorithm on a training set S\i

satisfies

(TC(x̂>wS)− ŷ)2 ≤ (TC(x̂>wS\i)− ŷ)2

≤
(

1 +
1

mλ

)2

(TC(x̂>wS)− ŷ)2 .
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Proof. The wS\i is given by

wS\i = argmin
u

1

m
‖X>u− y‖22 + λ‖u‖2,

where X is a matrix d×(m−1) and y an m−1 dimen-
sional vector, respectively the matrix of the training
samples and vector of the training labels without the
sample i. Let M := X>X +mλI, then

x̂>wS\i = x̂>XM−1y.

It is straightforward to see that x̂>wS is equal to

[
x̂>X ‖x̂‖2

] [ M X>x̂

x̂>X ‖x̂‖2 +mλ

]−1 [
y
ŷ

]
.

(7)
Expanding the middle term and using the block-wise
matrix inversion property (Petersen & Pedersen, 2008)
we get[

M X>x̂

x̂>X ‖x̂‖2 +mλ

]−1
=

[
M−1 0
0> 0

]
+

1

a

[
M−1X>x̂
−1

] [
x̂>XM−1 −1

]
,

where a := ‖x̂‖2 + mλ − x̂>XM−1X>x̂. Plugging
this result into (7) yields

x̂>wS = x̂>wS\i −
a−mλ

a
(x̂>wS\i − ŷ) .

So we have

(TC(x̂>wS\i)− ŷ)2

=
(
TC

( a

mλ
(x̂>wS − ŷ) + ŷ

)
− ŷ
)2

.
(8)

Observing that 0 ≤ x̂>XM−1X>x̂ ≤ ‖x̂‖2, we have

that 1 ≤ a
mλ ≤ 1 + ‖x̂‖2

mλ , hence we use the upper
bound in Lemma 1 to derive the stated upper bound.
Analogously, the lower bound follows from (8) and the
lower bound in Lemma 1.

We proceed by bounding ES [`(wS\i , (xi, yi))], and M
in Lemma 4.

Lemma 3. The following bounds hold for the hypoth-
esis ŵS produced by the Algorithm 2

ES‖ŵS‖2 ≤
1

λ
Rµ(f ′) ,

and

‖ŵS‖2 ≤
1

λ
(B + ‖f ′‖∞)2 .

Proof. We define

Q(u) :=
1

m

m∑
i=1

(x>i u− yi + f ′(xi))
2 + λ‖u‖2 .

Using the definition of ŵS in Algorithm 2, we have
that

Q(ŵS) ≤ Q(0) = R̂(f ′) . (9)

Hence we get ‖ŵS‖2 ≤ R̂(f ′)
λ . Now

ES‖ŵS‖2 ≤
1

λ
ESR̂(f ′) =

1

λ
Rµ(f ′) .

For the second upper bound, from (9) it also follows

‖ŵS‖2 ≤
1

mλ

m∑
i=1

(f ′(xi)−yi)2 ≤
1

λ
(B+‖f ′‖∞)2 .

Lemma 4. Assume (x, y) drawn according to µ. For
Algorithm 2 the following bounds hold ∀i ∈ {1, . . . ,m}

sup
x,y

(TC(x>ŵS\i)− y + f ′(x))2

≤
(

1 +
1

mλ

)2(
TC

(
B + ‖f ′‖∞√

λ

)
+B + ‖f ′‖∞

)2

,

and

ES [(TC(x>ŵS)− y + f ′(xi))
2]

≤ 2

(
TC2

(
Rµ(f ′)

λ

)
+Rµ(f ′)

)
.

Proof. We use Lemma 2, and the Cauchy-Schwarz in-
equality to derive

sup
x,y

(TC(x>ŵS\i)− y + f ′(x))2

≤
(

1 +
1

mλ

)2

sup
x,y

(TC(x>ŵS)− y + f ′(x))2

≤
(

1 +
1

mλ

)2

sup
x,y

(
|TC(x>ŵS)|+B + ‖f ′‖∞

)2
.

The term |TC(x>ŵS)| can be simultaneosly upper
bounded using C and, using Cauchy-Schwarz inequal-
ity, by ‖ŵS‖. Hence using the second result of
Lemma 3 we obtain the first result.

For the second upper bound, using the elementary in-
equality (a+ b)2 ≤ 2(a2 + b2), in an analogous way we
have

ES [(TC(x>ŵS)− y + f ′(x))2]

≤ 2ES [(TC(x>ŵS))2 + (f ′(x)− y)2]

= 2
(
ES(TC(x>ŵS))2 +Rµ(f ′)

)
.
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Again, the first term in the left hand side of the last
inequality can be simultaneosly upper bounded using
C2 and, using Cauchy-Schwarz inequality, by ‖ŵ‖2.
Hence the first result of Lemma 3 concludes the proof.

Now, we are ready to upper-bound the hypothesis sta-
bility for Algorithm 2.

Theorem 3. The hypothesis stability of Algorithm 2
is upper bounded as

γ ≤ 4

mλ

(
2 +

1

mλ

)(
TC2

(
Rµ(f ′)

λ

)
+Rµ(f ′)

)
.

Proof. We start by upper bounding the | · | term
in the hypothesis stability from Definition 3. Using
Lemma 2, with ŷ = y − f ′(x) and x̂ = x, we have∣∣∣(fhtl′S (x)− y)2 − (fhtl

′

S\i (x)− y)2
∣∣∣

= (fhtl
′

S\i (x)− y)2 − (fhtl
′

S (x)− y)2

= (TC(x>ŵS\i)− y + f ′(x))2−
(TC(x>ŵS)− y + f ′(x))2

≤

((
1 +

1

mλ

)2

− 1

)
(TC(x>ŵS)− y + f ′(x))2 .

Taking now the expectation with respect to S and us-
ing the second result of Lemma 4 we have the stated
bound.

With the results above is now easy to prove Theorem 2.

Proof of Theorem 2. Using the upper bound in
Lemma 2 and the second result in Lemma 4, we have

ES [`(fS\i , (xi, yi))]

≤ 2

(
1 +

1

mλ

)2(
TC2

(
Rµ(f ′)

λ

)
+Rµ(f ′)

)
.

It is now enough to introduce the upper bounds on M
(first result of Lemma 4), γ, and ES [`(fS\i , zi)] into
Theorem 1.

6. Conclusions and Future Work

In this paper we have formally introduced the HTL
problem and analyzed a class of RLS algorithms with
biased regularization that can be used to solve this
problem. Our main result is a generalization bound
in terms of the Leave-One-Out (LOO) risk, obtained
through the notion of hypothesis stability. We point
out the key quantity Rµ(f ′) and expose its theoretical

and practical advantages over analogues in the theory
of DA. In particular, we showed that if source and
target domains are related, hence Rµ(f ′) is small, the
LOO risk converges faster to the expected risk and
the HTL decreases the variance of the LOO. In the
case of unrelated domains, we still match the theoret-
ical guarantees of Regularized Least Squares trained
solely on the target domain. As a side effect of our
analysis, thanks to the truncation we have improved
the polynomial generalization bounds of Bousquet &
Elisseeff (2002) for RLS2.

In future work, we will focus on the theoretical exten-
sion to a more general class of algorithms. Since it
is possible to express the LOO predictions in a closed
form for Algorithm 2, we intend to analyze its stability
with respect to any positive loss function, decoupling
the loss used in the algorithm from the one used in the
analysis, in a similar way as in, e.g., Orabona et al.
(2012). Accomplishing that suggests the possiblity for
analysis of intriguing HTL scenarios through different
loss functions, such as multiclass and hierarchical clas-
sification.

Another direction lies in improving the results by ob-
taining high probability bounds. We note that Bous-
quet & Elisseeff (2002) have also proved high probabil-
ity bounds for another notion of stability, the uniform
stability, but the assumption is too strong in our case,
since it relates stability to the infinity norm of the
losses which cannot be linked to the definition of the
source risk Rµ(f ′). The rigid assumption on uniform
stability was also noted by Kutin & Niyogi (2002), who
proved exponential PAC-style bounds for weaker no-
tions of stability. However we forecast two problems
with applying their framework. First, the bound on
the loss is additive in the generalization bound and
cannot be linked to the source risk. In our case we
managed to avoid this by modifying the proof of Bous-
quet & Elisseeff (2002) in Theorem 1 and an analogous
and non-trivial change of Kutin & Niyogi (2002) re-
sults would be needed. Second, the alternative frame-
work only bounds the discrepancy of expected and
empirical risks. Instead we prefer to study the use
the LOO risk, since it is empirically more robust with
small training set.
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