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Abstract

We consider the problem of learning the
structure of undirected graphical models with
bounded treewidth, within the maximum
likelihood framework. This is an NP-hard
problem and most approaches consider local
search techniques. In this paper, we pose
it as a combinatorial optimization problem,
which is then relaxed to a convex optimiza-
tion problem that involves searching over the
forest and hyperforest polytopes with special
structures. A supergradient method is used
to solve the dual problem, with a run-time
complexity of O(k3nk+2 log n) for each itera-
tion, where n is the number of variables and
k is a bound on the treewidth. We compare
our approach to state-of-the-art methods on
synthetic datasets and classical benchmarks,
showing the gains of the novel convex ap-
proach.

1. Introduction

Graphical models provide a versatile set of tools for
probabilistic modeling of large collections of inter-
dependent variables. They are defined by graphs
that encode the conditional independences among
the random variables, together with potential func-
tions or conditional probability distributions that
encode the specific local interactions leading to
globally well-defined probability distributions (see,
e.g., Bishop et al., 2006; Wainwright & Jordan, 2008;
Koller & Friedman, 2009).

In many domains such as computer vision, natu-
ral language processing or bioinformatics, the struc-
ture of the graph follows naturally from the con-
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straints of the problem at hand. In other situa-
tions, it might be desirable to estimate this struc-
ture from a set of observations. It allows (a) a sta-
tistical fit of rich probability distributions that can
be considered for further use, and (b) discovery of
structural relationships between different variables.
In the former case, distributions with tractable in-
ference are often desirable, i.e., inference with run-
time complexity that does not scale exponentially in
the number of variables in the model. The sim-
plest constraint to ensure tractability is to impose
tree-structured graphs (Chow & Liu, 1968). However,
these distributions are not rich enough, and following
earlier work (Malvestuto, 1991; Bach & Jordan, 2002;
Narasimhan & Bilmes, 2004; Chechetka & Guestrin,
2007; Gogate et al., 2010; Szántai & Kovács, 2011), we
consider models with bounded treewidth, not simply by
one (i.e., trees), but by a small constant k.

Beyond the possibility of fitting tractable distribu-
tions (for which probabilistic inference has linear
complexity in the number of variables), learn-
ing bounded-treewidth graphical models is key
to designing approximate inference algorithms for
graphs with higher treewidth. Indeed, as shown
by Saul & Jordan (1995); Wainwright & Jordan
(2008); Kolmogorov & Schoenemann (2012), approxi-
mating general distributions by tractable distributions
is a common tool in variational inference. However,
in practice, the complexity of variational distributions
is often limited to trees (i.e., k = 1), since these are
the only ones with exact polynomial-time structure
learning algorithms. The convex relaxation designed
in this paper enables us to augment the applicability
of variational inference, by allowing a finer trade-off
between run-time complexity and approximation
quality.

Apart from trees, learning the structure of a di-
rected or undirected graphical model, with or
without constraints on the treewidth, remains a hard
problem. Two types of algorithms have emerged,
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based on the two equivalent definitions of graphical
models: (a) by testing conditional independence
relationships (see, e.g., Spirtes et al., 2001) or (b)
by maximizing the log-likelihood of the data using
the factorized form of the distribution (see, e.g.,
Friedman & Koller, 2003). In the specific context of
learning bounded-treewidth graphical models, the lat-
ter approach has been shown to be NP-hard (Srebro,
2002) and led to various approximate algorithms
based on local search techniques (Malvestuto,
1991; Deshpande et al., 2001; Karger & Srebro,
2001; Bach & Jordan, 2002; Shahaf et al., 2009;
Gogate et al., 2010; Szántai & Kovács, 2011), while
the former approach led to algorithms based on
independence tests (Narasimhan & Bilmes, 2004;
Chechetka & Guestrin, 2007), which have recovery
guarantees when the data-generating distribution has
low treewidth.

In this paper, we make the following contributions:
– We provide a novel convex relaxation for learning
bounded-treewidth decomposable graphical models
from data in polynomial time. This is achieved by
posing the problem as a combinatorial optimization
problem in Section 2, which is relaxed to a convex
optimization problem that involves the graphic and
hypergraphic matroids, as shown in Section 3.

– We show in Section 4 how a supergradient ascent
method may be used to solve the dual optimization
problem, using greedy algorithms as inner loops on
the two matroids. Each iteration has a run-time
complexity of O(k3nk+2 log n), where n is the num-
ber of variables. We also show how to round the
obtained fractional solution.

– We compare our approach to state-of-the-art meth-
ods on both synthetic datasets and classical bench-
marks in Section 5, showing the gains of the novel
convex approach.

2. Maximum Likelihood Decomposable

Graphical Models

In this section, we first review the relevant concepts
of decomposable graphs and junction trees; for more
details, see Bishop et al. (2006); Wainwright & Jordan
(2008); Koller & Friedman (2009). We then cast the
problem of learning the maximum likelihood bounded
treewidth graph as a combinatorial optimization prob-
lem.

2.1. Decomposable graphs and junction trees

We assume we are given an undirected graph G defined
on the set of vertices V = {1, 2, . . . , n}. Let C(G)
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Figure 1. (a) A decomposable graph on the set of vertices
V = {1, 2, 3, 4, 5, 6, 7, 8, 9} having treewidth 2 with an em-
bedded junction tree representing the maximal cliques by
blue dots. (b) The corresponding junction tree represen-
tation of the decomposable graph with ovals representing
the maximal cliques and the rectangles representing the
corresponding separator set.

denote the set of maximal cliques of G (which we will
refer to as cliques). We consider n random variables
X1, . . . , Xn (referred to as X), associated with each
vertex indexed by V . For simplicity, they are assumed
to be discrete, but this is not a restriction as maximum
likelihood will use only entropies that can be extended
to differentiable entropies (Cover & Thomas, 2006).

The distribution p(x) of X is said to factorize in the
graph G, if and only if it factorizes as a product of
potentials that depend only on the variables within
maximal cliques.

A graph is said to be decomposable if it has a junction
tree, i.e., a spanning tree whose vertices are maximal
cliques of G (i.e., C(G) is the vertex set) such that:

– the junction tree connects only cliques that have a
common element (clique tree property),

– for any vertex i ∈ V , the subgraph of cliques con-
taining i is a tree (running intersection property).

Let T (G) denote the edges of the junction tree
over the set of cliques C(G). When the graph G
is decomposable, the distribution p(x) of X fac-
torizes in G if and only if it may be written as
p(x) =

∏

C∈C(G) pC(xC)/
∏

(C,D)∈T (G) pC∩D(xC∩D),

where pC(xC) denotes the marginal distribution of
random variables belonging to C ∈ C(G) and
pC∩D(xC∩D) denotes the marginal distribution of ran-
dom variables belonging to the separator set C ∩ D,
with (C,D) ∈ T (G). See Figure 1. The treewidth of G
is the maximal size of the cliques in G, minus one.

An alternative representation of decomposable graphs
may be obtained by considering hypergraphs. Hyper-
graphs are defined by a base set V and a set of hyper-
edges, i.e., subsets of V . A hypergraph is said to be
acyclic if and only if the resulting graph obtained by
connecting all elements within an hyperedge is decom-
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posable. Unfortunately, the nice properties of acyclic
graphs do not transfer to acyclic hypergraphs. Partic-
ularly, the matroid property, which allows exact greedy
algorithms, does not hold. In Section 3.2, we will use
a lesser known more general notion of acyclicity that
will lead to exact greedy algorithms.

2.2. Maximum likelihood estimation

Given N observations x1, . . . , xN of X, we denote the
corresponding empirical distribution of X by p̂(x) =
1
N

∑N
i=1 δ(x = xi). Given the structure of a decom-

posable graph G, the maximum likelihood distribution
that factorizes in G may be obtained by combining the
marginal empirical distributions on all maximal cliques
and their separators. The goal of structure learning
is to maximize the log-likelihood with respect to the
graph as well. As shown by Malvestuto (1991) and
Srebro (2002), this corresponds to minimizing the fol-
lowing combination of entropies with respect to the
graph (see a proof in the supplementary material):

∑

C∈C(G)

H(C)−
∑

(C,D)∈T (G)

H(C ∩D) , (1)

where H(S) is the empirical entropy of the random
variables indexed by the set S ⊆ V , defined by
H(S) =

∑

xS
{−p̂S(xS) log p̂S(xS)}, and where the

sum is taken over all possible values of xS .

Note that in this paper, we will not be us-
ing a traditional model selection term (see, e.g.,
Friedman & Koller, 2003) as we will only consider
models of low tree-width (thus with a bounded number
of parameters).

2.3. Combinatorial optimization problem

We now consider the problem of learning a decompos-
able graph of treewidth less than k. We assume that
we are given all entropies H(S) for subsets S of V of
cardinality less than k + 1.

Since we do not add any model selection term, without
loss of generality (Szántai & Kovács, 2012), we restrict
the search space to the space ofmaximal junction trees,
i.e., junction trees with n − k maximal cliques of size
k + 1 and n − k − 1 separator sets of size k between
two cliques of size k+1. Our natural search spaces are
thus characterized by D, the set of all subsets of size
k + 1 of V , of cardinality

(

n
k+1

)

, and E , the set of all
potential edges in a junction tree, i.e., E = {(C,D) ∈
D × D, C ∩ D 6= ∅, |C ∩ D| = k}. The cardinality of
E is

(

n
k+2

)

.
(

k+2
2

)

(number of subsets of size k+2 times
the number of possibility of excluding two elements to
obtain a separator).

A decomposable graph will be represented by a clique
selection function τ : D → {0, 1} and an edge selection
function ρ : E → {0, 1} so that τ(C) = 1 if C is a
maximal clique of the graph and ρ(C,D) = 1 if (C,D)
is an edge in the junction tree. Both ρ and τ will be
referred to as incidence functions or incidence vectors,
when seen as elements of {0, 1}D and {0, 1}E .
Thus, minimizing the problem defined in Eq. (1) is
equivalent to minimizing,

P(τ, ρ)=
∑

C∈D
H(C)τ(C)−

∑

(C,D)∈E
H(C∩D)ρ(C,D), (2)

with the constraint that (τ, ρ) forms a decomposable
graph.

At this time, we have merely reparameterized the
problem with the clique and edge selection functions.
We now consider a set of necessary and sufficient con-
ditions for the pair to form a decomposable graph.
Some are convex in (τ, ρ), while some are not. The
latter ones will be relaxed in Section 3. From now on,
we denote by 1i∈C the indicator function for i ∈ C
(i.e., it is equal to 1 if i ∈ C and zero otherwise).

– Covering V : all vertices, must be covered,

∀i ∈ V,
∑

C∈D
1i∈Cτ(C) ≥ 1. (3)

– Number of edges: exactly n−k−1 edges are selected,
∑

(C,D)∈E
ρ(C,D) = n− k − 1. (4)

– Number of cliques: exactly n−k cliques are selected,
∑

C∈D
τ(C) = n− k. (5)

– Running intersection property: the subtree of
cliques containing any vertex i ∈ V must be span-
ning, i.e., the number of edges has to be equal to
the number of nodes minus one, i.e., ∀i ∈ V ,
∑

(C,D)∈E
1i∈(C∩D)ρ(C,D)−

∑

C∈D
1i∈Cτ(C)+1 = 0. (6)

– Edges between selected cliques: we must have the
following link between τ and ρ,

∀C ∈ D, τ(C) = max
D∈D, (C,D)∈E

ρ(C,D). (7)

– Acyclicity of ρ: ρ has to be the incidence vector of
a forest, i.e.,

ρ represents a subforest of the graph (D, E). (8)
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Figure 2. Space of cliques D denoted by ovals and the space
of feasible edges E denoted by lines for V = {1, 2, 3, 4, 5}
and treewidth 2 (in black). Clique and edge selections in
blue represent decomposable graphs while those in red de-
note graphs that are not decomposable (best seen in color).

– Acyclicity of τ : τ has to be the incidence vector of
an acyclic hypergraph, i.e.,

τ represents an acyclic hypergraph of (V,D). (9)

The above constraints encode the classical definition
of junction trees. Thus our combinatorial problem
is exactly equivalent to minimizing P (τ, ρ) defined in
Eq. (2), subject to the constraints in in Eq. (3), Eq. (4),
Eq. (5), Eq. (6), Eq. (7), Eq. (8) and Eq. (9). Note that
the constraint in Eq. (9) that τ represents an acyclic
hypergraph is implied by the other constraints.

Figure 2 shows clique and edge selections in blue which
satisfy all these constraints and hence represent a de-
composable graph. The clique and edge selections in
red violate at least one of these constraints.

3. Convex Relaxation

We now provide a convex relaxation of the combina-
torial problem defined in Section 2.3. The covering
constraint in Eq. (3), the number of edges and the
number of cliques constraints in Eq. (4) and Eq. (5)
respectively, and the running intersection property in
Eq. (6) are already convex in (τ, ρ).

The non-convex constraint in Eq. (7) that ∀C ∈
D, τ(C) = maxD∈D, (C,D)∈E ρ(C,D) may be relaxed
into:

– Edge constraint: selection of edges only if the both
the incident cliques are selected, i.e.,

∀C ∈ D, ∀(C,D) ∈ E , ρ(C,D) ≤ τ(C). (10)

– Clique constraint: selection of a clique if at least an

edge incident on it is selected, i.e.,

∀C ∈ D, τ(C) ≤
∑

(C,D)∈E
ρ(C,D). (11)

We now consider the two acyclicity constraints in
Eq. (8) and Eq. (9).

3.1. Forest polytope

Given the graph (D, E), the forest polytope is the
convex hull of all incidence vectors ρ of subforests
of (D, E). Thus, it is exactly the convex hull of all
ρ : E → {0, 1} such that ρ satisfies the constraint in
Eq. (8). We may thus relax it into:

– Tree constraint:

ρ is in the forest polytope of (D, E). (12)

While the new constraint in Eq. (12) forms a convex
constraint, it is crucial that it may be dealt with em-
pirically in polynomial time. This is made possible by
the fact that one may maximize any linear function
over that polytope. Indeed, for a weight function w :
E × E → R, maximizing

∑

(C,D)∈E w(C,D)ρ(C,D) is
exactly a maximum weight forest problem, and its so-
lution may be obtained by Kruskal’s algorithm, i.e., (a)
order all (potentially negative) weights w(C,D) and
(b) greedily select edges (C,D), i.e., set ρ(C,D) = 1,
with higher weights first, as long as they form a forest
and as long as the weights are positive. When we add
the restriction that the number of edges is fixed (in our
case n−k−1), then the algorithm is stopped when ex-
actly the desired number of edges is selected (whether
the corresponding weights are positive or not). See,
e.g., Schrijver (2004).

The polytope defined above may also be defined as the
independence polytope of the graphic matroid, which
is the traditional reason why the greedy algorithm is
exact (see, e.g., Schrijver, 2004). In the next section,
we show how this can be extended to hypergraphs.

3.2. Hypergraphic matroid

Given the set of potential cliques D over V , we con-
sider functions τ : D → {0, 1} that are equal to one
when a clique is selected, and zero otherwise. Ideally,
we would like to treat the acyclicity of the associated
hypergraph in a similar way than for a regular graph.
However, the set of acyclic subgraphs of the hyper-
graph defined from D does not form a matroid, and
thus the polytope defined as the convex hull of all inci-
dence vectors/functions of acyclic hypergraphs may be
defined, but the greedy algorithm is not applicable. In
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order to define what is referred to as the hypergraphic
matroid, one needs to relax the notion of acyclicity.

We now follow Lorea (1975); Frank et al. (2003);
Fukunaga (2010) and define a different notion of
acyclicity for hypergraphs. An hypergraph (V,F) is
an hyperforest if and only if for all A ⊂ V , the number
of hyperedges in F contained in A is less than |A| − 1.
A non-trivially equivalent definition is that we can se-
lect two elements in each hyperedege so that the graph
with vertex set V and with edge set composed of these
pairs is a forest.

Given an hypergraph with hyperedge set D, the set of
sub-hypergraphs which are hyperforests forms a ma-
troid. This implies that given a weight function on D,
one may find the maximum weight hyperforest with a
greedy algorithm that ranks all hyperedges and select
them as long as they do not violate acyclicity (with
the notion of acyclicity just defined and for which we
exhibit a test below).

Testing acyclicity. Checking acyclicity of an hyper-
graph (V,F) (which is needed for the greedy algorithm
above) may be done by minimizing with respect to
A ⊂ V

|A| −
∑

G∈F
1G⊂A.

The hypergraph is an hyperforest if and only if the
minimum is greater or equal to one. The minimiza-
tion of this function may be cast a min-cut/max-flow
problem as follows (Fukunaga, 2010):

– single source, single sink, one node per hyperedge
in F , one node per vertex in V ,

– the source points towards each hyperedge with unit
capacity,

– each hyperedge points towards the vertices it con-
tains, with infinite capacity,

– each vertex points towards the sink, with unit ca-
pacity.

Link with decomposability. The hypergraph ob-
tained from the maximal cliques of a decomposable
graph can easily be seen to be an hyperforest. But the
converse is not true.

Hyperforest polytope. We can now naturally de-
fine the hyperforest polytope as the convex hull of all
incidence vectors of hyperforests. Thus the constraint
in Eq. (9) may be relaxed into:

– Hyperforest constraint:

τ is in the hyperforest polytope of (V,D). (13)

3.3. Relaxed optimization problem

We can now formulate our combinatorial problem as
follows:

minP(τ, ρ) subject to
τ ∈ {0, 1}D, ρ ∈ {0, 1}E ,
Eq. (3), Eq. (4), Eq. (5), Eq. (6),
Eq. (10), Eq. (11), Eq. (12) and Eq. (13).

(14)

All constraints except the integrality constraints are
convex. Let τ -relaxed primal be the partially relaxed
primal optimization problem formed by relaxing only
the integral constraint on τ in Eq. (14), i.e., replacing
τ ∈ {0, 1}D by τ ∈ [0, 1]D. Note that this is not a con-
vex problem due to the remaining integral constraint
on ρ, but it remains equivalent to the original problem
as the following proposition shows (see proof in the
supplementary material):

Proposition 1 The combinatorial problem in
Eq. (14) and the τ -relaxed primal problem are
equivalent.

The convex relaxation for the primal optimization
problem formed by relaxing the integral constraint on
both τ and ρ can now be defined as

minP(τ, ρ) subject to
τ ∈ [0, 1]D, ρ ∈ [0, 1]E ,
Eq. (3), Eq. (4), Eq. (5), Eq. (6),
Eq. (10), Eq. (11), Eq. (12) and Eq. (13).

(15)

It is not tight anymore in general, i.e., the minimum
value of the convex problem may be smaller than the
minimal value of the non-convex problem. However,
when k = 1 (i.e., trees), our relaxation is tight and
we recover the results of the Chow-Liu algorithm (see
proof in supplementary material):

Proposition 2 If k = 1, the convex relaxation in
Eq. (15) is equivalent to Eq. (14).

4. Solving the dual problem

We now show how the convex problem may be mini-
mized in polynomial time. Among the constraints of
our convex problem in Eq. (14), some are simple lin-
ear constraints, some are complex constraints depend-
ing on the forest and hyperforest polytopes defined in
Section 3. We will define a dual optimization problem
by introducing the least possible number of Lagrange
multipliers (i.e., dual variables) (see, e.g., Bertsekas,
1999) so that the dual function (and a supergradient)
may be computed and maximized efficiently. We in-
troduce the following dual variables:

– Set cover constraints in Eq. (3): γ ∈ R
V
+.
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q1(γ, µ, λ, η) = inf
τ∈[0,1]D∑

C∈D
τ(C)=n−k

τ∈ hyperforest polytope of (V,D)

∑

C∈D

(

H(C)−
∑

i∈C

(µi + γi)−
∑

(C,D)∈E
λCD + ηC

)

τ(C). (16)

q2(γ, µ, λ, η) = − sup
ρ∈[0,1]E∑

(C,D)∈E
ρ(C,D)=n−k−1

ρ∈ forest polytope of (D,E)

∑

(C,D)∈E

(

H(C ∩D)−
∑

i∈(C∩D)

µi − λCD − λDC + ηC + ηD

)

ρ(C,D). (17)

q3(γ, µ, λ, η) =
∑

i∈V

(µi + γi). (18)

Figure 3. Components of the dual cost function, Q(γ, µ, λ, η)

– Running intersection property in Eq. (6): µ ∈ R
V .

– Edge constraints in Eq. (10): λ ∈ R
E
+ × R

E
+.

– Clique constraints in Eq. (11): η ∈ R
D
+.

Therefore, the dual variables are (γ, µ, λ, η). We may
then compute the dual function Q(γ, µ, λ, η) by intro-
ducing the Lagrange multipliers defined above.

As shown in the supplementary material, it is decom-
posed in three parts defined in Eq. (16), Eq. (17) and
Eq. (18) respectively (see Figure 3):

Q(γ, µ, λ, η) = q1(γ, µ, λ, η)+q2(γ, µ, λ, η)+q3(γ, µ, λ, η).

The dual functions q1(γ, µ, λ, η) and q2(γ, µ, λ, η) may
be computed using the greedy algorithms defined in
Section 3.1 and Section 3.2; q1 can be evaluated in
O(r log(r)), where r is the cardinality of the space
of cliques, D, i.e.,

(

n
k+1

)

and q2 can be evaluated
in O(m log(m)), where m is the cardinality of fea-
sible edges, E , i.e.,

(

n
k+2

)

.
(

k+2
2

)

. This complexity is
due to sorting the edges and hyperedges based on
their weights (the costliest operation in each iteration).
This leads to an overall complexity of O(k3nk+2 log n)
per iteration of the projected supergradient method
which we now present.

Projected supergradient ascent. The dual opti-
mization problem defined by maximizing Q(γ, µ, λ, η)
can be solved using the projected supergradient
method. In each iteration t of the algorithm, the dual
cost function, Q(γt, µt, λt, ηt), is evaluated through es-
timation of q1 and q2 by solving Eq. (16) and Eq. (17)
respectively. In the process of solving these equations,
the corresponding primal variables (τ t, ρt) are also es-
timated and allows the computations of the supergra-
dients of Q (i.e., opposites of subgradients of −Q) (see,
e.g., Bertsekas, 1999). As shown in Algorithm 1, a
step is made toward the direction of the supergradient
and projection onto the positive orthant is performed

for dual variables that are constrained to be nonneg-
ative. With step sizes αt proportional to 1/

√
t, this

algorithm is known to converge to a dual optimal so-
lution (Nedić & Ozdaglar, 2009) at rate 1/

√
t. More-

over, the average of all visited primal variables, i.e.,
after t steps, (τ̂t, ρ̂t) = 1

t

∑t
u=0(τ

u, ρu) is known to
be approximately primal-feasible (i.e., it satisfies all
the linear constraints that were dualized up to a small
constant that is also going to zero at rate 1/

√
t). The

convergence to primal feasibility is illustrated in Fig-
ure 6(a), where, on one of the synthetic examples from
Section 5, the different constraint violations. Note that
these are not the number of each of these constraints
violated but the maximum value by which they are
violated. It can be observed that the constraint viola-
tions reduce to zero over iterations.

Approximate greedy primal solution. Given an
(approximate) primal-feasible but fractional solution
(τ̂t, ρ̂t) of our convex optimization problem, we pro-
pose to find an integral candidate by discarding ρ̂t, and
(a) ordering the components of τ̂t in decreasing order
and (b) selecting the cliques C greedily with higher
values of τ̂t(C) first, while maintaining decomposabil-
ity of the resulting graph. The time complexity of
the rounding algorithm is O(nk+2). This is due to de-
composability test with run time complexity O(nk+1),
that is performed while adding O(n) cliques. See more
details in the supplementary material.

5. Experiments and Results

In this section, we show the performance of the pro-
posed algorithm on synthetic datasets and classical
benchmarks.

Decomposable covariance matrices. In order to
easily generate controllable distributions with en-
tropies which are easy to compute, we use several de-
composable graphs and we consider a Gaussian vec-
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Algorithm 1 Projected Supergradient

Input: clique and edge entropies H, step-size constant a and number of iterations T
Output: sequence of clique and edge selections over iterations (τ t, ρt)
Initialize γ0 = 0, µ0 = 0, λ0 = 0, η0 = 0
for t = 0 to T do

solve Eq. (16) and evaluate q1(γ
t, µt, λt, ηt) to obtain τ t

solve Eq. (17) and evaluate q2(γ
t, µt, λt, ηt) to obtain ρt

update dual variables, (γt+1, µt+1, λt+1, ηt+1) using supergradients and stepsize: αt =
a√
t

γt+1
i =

[

γt
i + αt

(

1−∑

C∈D 1i∈Cτ
t(C)

)]+

µt+1
i = µt

i + αt

(

∑

(C,D)∈E 1i∈(C∩D)ρ
t(C,D)−∑

C∈D 1i∈Cτ
t(C) + 1

)

λt+1
CD =

[

λt
CD + αt

(

τ t(C)− ρt(C,D)
)]+

ηt+1
C =

[

ηtC + αt

(

∑

(C,D)∈E ρ
t(C,D)− τ t(C)

)]+

end for

tor with covariance matrix Σ, generated as follows:
(a) sample a matrix Z of dimensions n × d′ with en-
tries uniform in [0, 1] and consider the matrix Σ′ =
d
d′ZZ⊤ + (1− d

d′ )I, (b) normalize Σ′ to unit diagonal,
and (c) find the projection of Σ′ onto the graph G,
i.e., find the covariance matrix that factorizes in G
and which is closest to Σ′ in Kullback-Leibler diver-
gence. The last operation may be performed in closed
form (Lauritzen, 1996), while the first operation leads
to strong correlations when d is large, and small cor-
relations when d is small.

We use the graph structures representing a chain junc-
tion tree as in Figure 4 and a star junction tree as in
Figure 5 to analyze the performance of our algorithm
for decomposable covariance matrices generated with
different correlations.

Table 1 and Table 2 show the performance of our algo-
rithm on these two graphs. Decomposable covariance
matrices are generated as above with different values
of the correlation parameter d (all averaged over ten
different random covariance matrices). We show the
difference between the cost function in Eq. (2) and the
optimal entropy, i.e., the one of the actual structure
represented by the covariance matrices. The differ-
ences in the table are multiplied by 103 for brevity.

The first column ∆Dual represents the optimal value
of our convex relaxation (obtained from the dual func-
tion), while the second column ∆Dualr represents the
optimal value by replacing the hyperforest constraint
by the simply τ ∈ [0, 1]D. We can see from the two
tables, that the two values are strictly negative (i.e.,
we indeed have a relaxation) and that the hyperforest
constraint is key to obtaining tighter relaxations. Note
that the associated solutions are only fractional.
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Figure 4. Graph representing a chain junction tree with an
embedded junction tree in green and its junction tree rep-
resentation in blue.

The third column ∆Primal represents the cost function
after the rounding step; it is compared in the fourth
column with a simple greedy algorithm that sorts all
mutual information and keep adding the cliques with
largest mutual information as long as decomposability
is maintained. Although the relaxation is not tight,
our rounding scheme leads empirically to the optimal
solution when the correlations are strong enough (i.e.,
large values of d) and outperforms the simple greedy
algorithm.

Table 1. Performance on chain junction trees.

d ∆Dual ∆Dualr ∆Primal ∆Greedy
1 -0.7±0.1 -32.7±16.4 0.2±0.1 0.2±0.1
2 -0.4±0.1 -23.4±9.6 0 0.5±0.2
4 -1.1±0.1 -31.2±9.7 0 1.9±0.3
8 -0.6±0.1 -23.9±9.8 0 7.9±0.3

16 -1.9±0.2 -3.4±2.7 0 25.6±1.2
32 -2.9±0.5 -3.2±0.3 0 57.3±1.5
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Figure 6. Left: (a) Upper bound of constraint violations for d=2 and a chain junction tree. Right: Log likelihood of
the structures learnt using various algorithms on (b) TRAFFIC and (c) ALARM datasets with k = 3 except Chow-Liu
(k = 1). Note that the performance is better with higher values as we compare log-likelihoods.
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Figure 5. Graph representing a star junction tree with an
embedded junction tree in green and its junction tree rep-
resentation in blue.

Table 2. Performance on star junction trees.

d ∆Dual ∆Dualr ∆Primal ∆Greedy
1 -0.8±0.1 -31.4±13.4 0.2±0.1 0.9±0.1
2 -0.5±0.2 -26.6±13.3 0 0.4±0.3
4 -0.3±0.0 -16.6±4.1 0 1.7±0.2
8 -0.4±0.0 -16.0±9.6 0 6.9±0.3

16 -1.2±0.5 -3.1±0.3 0 26.3±1.5
32 -6.8±0.4 -8.5±1.2 0 58.3±1.9

Performance Comparison. We compare the qual-
ity of the graph structures learned by the proposed
algorithm with the ones produced by Ordering Based
Search (OBS) (Teyssier & Koller, 2005), the combina-
torial optimization algorithm proposed by Karger and
Srebro (Karger+Srebro) (Karger & Srebro, 2001), the
Chow-Liu trees (Chow-Liu) (Chow & Liu, 1968) and
different variations of PAC-learning based algorithms
(PAC-JT, PAC-JT+local) (Chechetka & Guestrin,
2007). We use a real-world dataset, TRAF-
FIC (Krause & Guestrin, 2005) and an artificial
dataset, ALARM (Beinlich et al., 1989) to compare
the performances of these algorithms.

This ALARM dataset was sampled from a known
Bayesian network (Beinlich et al., 1989) of 37 nodes,
which has a treewidth equal to 4. We learn an ap-
proximate decomposable graph of treewidth 3. The
TRAFFIC dataset is the traffic flow information ev-
ery 5 minutes for a month at 8000 locations in Cal-
ifornia (Krause & Guestrin, 2005). The traffic flow
information is collected at 32 locations in San Fran-
cisco Bay area and the values are discretized into 4
bins. We learn an approximate decomposable graph of
treewidth 3 using our approach. Empirical entropies
are computed from the generated samples of each data
set and we infer the underlying structure from them
using our algorithm. Figure 6(b) and Figure 6(c) show
the log-likelihoods of structures learnt using various al-
gorithms on Traffic and Alarm datasets respectively.
These figures illustrate the gains of the convex ap-
proach over the earlier non-convex approaches.

6. Conclusion and Future Work

In this paper, we have provided a convex relaxation
for learning the maximum likelihood decomposable
graph with bounded treewidth, in polynomial-time,
which empirically outperforms previously proposed al-
gorithms. We are currently exploring two avenues
for improvements: (a) design sufficient conditions for
tightness of our relaxation, following the recent litera-
ture on relaxation of variable selection problems (see,
e.g., Candès & Tao, 2005), and (b) use heuristics to
speed-up the algorithms to allow application to larger
graphs.
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