
Fast algorithms for sparse principal component analysis
based on Rayleigh quotient iteration

Volodymyr Kuleshov kuleshov@stanford.edu

Department of Computer Science, Stanford University, Stanford, CA

Abstract

We introduce new algorithms for sparse prin-
cipal component analysis (sPCA), a varia-
tion of PCA which aims to represent data
in a sparse low-dimensional basis. Our al-
gorithms possess a cubic rate of convergence
and can compute principal components with
k non-zero elements at a cost of O(nk + k3)
flops per iteration. We observe in numeri-
cal experiments that these components are
of equal or greater quality than ones obtained
from current state-of-the-art techniques, but
require between one and two orders of magni-
tude fewer flops to be computed. Conceptu-
ally, our approach generalizes the Rayleigh
quotient iteration algorithm for computing
eigenvectors, and can be viewed as a second-
order optimization method. We demonstrate
the applicability of our algorithms on several
datasets, including the STL-10 machine vi-
sion dataset and gene expression data.

1. Introduction

A fundamental problem in statistics is to find simpler,
low-dimensional representations for data. Such rep-
resentations can help uncover previously unobserved
patterns and often improve the performance of ma-
chine learning algorithms.

A basic technique for finding low-dimensional rep-
resentations is principal component analysis (PCA).
PCA produces a new K-dimensional coordinate sys-
tem along which data exhibits the most variability.
Although this technique can significantly reduce the
dimensionality of the data, the new coordinate sys-
tem it introduces is not easily interpretable. In other
words, whereas initially, each coordinate xi of a data

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

point x ∈ Rn corresponds to a well-understood pa-
rameter (such as the expression level of a gene), in the
PCA basis, the new coordinates x′i are weighted com-
binations

∑
i wixi of every original parameter xi, and

it is no longer easy to assign a meaning to different
values of x′i.

An effective way of ensuring that the new coordinates
are interpretable is to require that each of them be
a weighted combination of only a small subset of the
original dimensions. In other words, we may require
that the basis vectors for our new coordinate system
be sparse. This technique is referred to in the litera-
ture as sparse principal component analysis (sPCA),
and has been successfully applied in areas as diverse as
bioinformatics (Lee et al., 2010), natural language pro-
cessing (Richtárik et al., 2012), and signal processing
(D’Aspremont et al., 2008).

Formally, an instance of sPCA is defined in terms of
the cardinality-constrained optimization problem (1),
in which Σ ∈ Rn×n is a symmetric matrix (normally a
positive semidefinite covariance matrix), and k > 0 is
a sparsity parameter.

max
1

2
xTΣx (1)

s.t. ||x||2 ≤ 1

||x||0 ≤ k

Problem (1) yields a single sparse component x∗ and
for k = n, reduces to finding the leading eigenvector
of Σ (i.e. to the standard formulation of PCA).

Although there exists a vast literature on sPCA, most
popular algorithms are essentially variations of the
same technique called the generalized power method
(GPM, see Journée et al. (2010)). This technique has
been shown to match or outperform most other al-
gorithms, including ones based on SDP formulations
(D’Aspremont et al., 2007), bilinear programming
(Witten et al., 2009), and greedy search (Moghaddam
et al., 2006). The GPM is a straightforward exten-
sion of the power method for computing the largest

Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration

eigenvector of a matrix (Parlett, 1998) and can also
be interpreted as projected gradient ascent on a vari-
ation of problem (1).

Although the GPM is a very simple and intuitive al-
gorithm, it can be slow to converge when the covari-
ance matrix Σ is large. This should not come as un-
expected, as the GPM generalizes two rather unso-
phisticated algorithms. In practice, eigenvectors are
computed using a technique called Rayleigh quotient
iteration (normally implemented as part of the QR
algorithm). Similarly, in unconstrained optimization,
Newton’s method converges orders of magnitude faster
than gradient descent.

Here, we introduce a new algorithm for problem (1)
that generalizes Rayleigh quotient iteration, and that
can also be interpreted as a second-order optimization
technique similar to Newton’s method. It converges
to a local solution of (1) in about eight iterations or
less on most problem instances, and generally requires
between one and two orders of magnitude fewer float-
ing point operations (flops) than the GPM. Moreover,
the solutions it finds tend to be of as good or of bet-
ter quality than those found by the GPM. Conceptu-
ally, our algorithm fills a gap in the family of eigen-
value algorithms and their generalizations that is left
by the lack of second-order optimization methods in
the sparse setting (Table 1).

2. Algorithm

We refer to our technique as generalized Rayleigh quo-
tient iteration (GRQI). GRQI is an iterative algorithm
that converges to local optima of (1) in a small num-
ber of iterations; see Algorithm 1 for a pseudocode
definition.

Briefly, GRQI performs up to two updates at every
iteration j: a Rayeligh quotient iteration update, fol-
lowed by an optional power method update. The next
iterate x(j+1) is set to the Euclidean projection Pk(·)
on the set {||x||0 ≤ k} ∩ {||x||2 ≤ 1} of the result xnew
of these steps.

The first update is an iteration of the standard
Rayleigh quotient iteration algorithm on the set of

working indicesW = {i|x(j)i 6= 0} of the current iterate
x(j). The indices which equal zero are left unchanged.

Rayleigh quotient iteration is a method that com-
putes eigenvectors by iteratively performing the up-
date x+ = (Σ − µI)−1x for µ = xTΣx/xTx. To get
an understanding of why this technique works, observe
that when µ is close to an eigenvalue λi of Σ, the i-th
eigenvalue of (Σ−µI)−1 tends to infinity, and after the

Algorithm 1 GRQI(Σ, x0, k, J , ε)

j ← 0
repeat

// Compute Rayleigh quotient and working set:
µ← (x(j))TΣx(j)/(x(j))Tx(j)

W ← {i|x(j)i 6= 0}

// Rayleigh quotient iteration update:

x
(j)
W ← (ΣW − µI)−1x

(j)
W

xnew ← x(j)/||x(j)||2

// Power method update:
if j < J then
xnew ← Σxnew/||Σxnew||2

end if

x(j+1) ← Pk (xnew)
j ← j + 1

until ||x(j) − x(j−1)|| < ε
return x(j)

Algorithm 2 SPCA-GRQI(Σ, κ, J , ε, K, δ)

for k = 1 to K do
x0 ← largest column of Σ
x(k) ← GRQI (Σ, x0, κ, J, ε)
Σ← Σ− δ((x(k))TΣx(k))x(k)(x(k))T // Deflation

end for

Algorithm 3 GPower0(D, x0, γ, ε)

Let S0 : Rn × R→ Rn be defined as
(S0(a), γ)i := ai[sgn(a2i − γ)]+.

j ← 0
repeat
y ← S0(DTx(j), γ)/||S0(DTx(j), γ)||2
x(j) ← Dy/||Dy||2
j ← j + 1

until ||x(j) − x(j−1)|| < ε

return S0(DT x(j),γ)
||S0(DT x(j),γ)||2

Algorithm 4 GPower1(D, x0, γ, ε)

Let S1 : Rn × R→ Rn be defined as
(S1(a, γ))i := sgn(ai)(|ai| − γ)+.

j ← 0
repeat
y ← S1(DTx(j), γ)/||S1(DTx(j), γ)||2
x(j) ← Dy/||Dy||2
j ← j + 1

until ||x(j) − x(j−1)|| < ε

return S1(DT x(j),γ)
||S1(DT x(j),γ)||2

Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration

Eigenvalue algorithm Power method Rayleigh quotient iteration
Equivalent optimization method Gradient descent Newton’s method

Sparse generalization Generalized power method Generalized Rayleigh quotient iteration
Convergence rate Linear Cubic

Table 1. Conceptual map of eigenvalue algorithms and their generalizations. The light gray box indicates the previously
unoccupied spot where our method can be placed.

multiplication x+ = (Σ− µI)−1x, x+ becomes almost
parallel to the i-th eigenvector. Since µ is typically a
very good estimate of an eigenvalue of Σ, this happens
after only a few multiplications in practice.

The second update is simply a power method step
along all indices. This step starts from where the
Rayleigh quotient update ended. In addition to im-
proving the current iterate, it can introduce large
changes to the working set at every iteration, which
helps the algorithm to find a good sparsity pattern
quickly.

Finally, the projection Pk(x) on the intersection of the
l0 and l2 balls ensures that x(j+1) is sparse. Note that
this projection can be done by setting all but the k
largest components of x (in absolute value) to zero
and normalizing the resulting vector to a norm of one.

For the sake of simplicity, we defined Algorithm 1 to
perform power method updates only at the first J
iterations, with J ∈ [0,∞] being a parameter. We
also implemented more sophisticated ways of combin-
ing Rayleigh quotient and power method updates, but
they offered only modest performance improvements
over Algorithm 1, and so we focus here on a very sim-
ple but effective method.

2.1. Convergence

In all our experiments, we simply set J = ∞, and we
recommend this choice of parameter for most appli-
cations. However, to formally guarantee convergence,
J must take on a finite value, in which case we can
establish the following proposition.

Proposition. Let Σ ∈ Rn×n such that Σ = ΣT , x0 ∈
Rn, k > 0, J <∞ be input parameters to Algorithm 1.
There exists an x∗ such that ||x∗||0 ≤ k and such that
the iterates (xj)

∞
j=1 generated by Algorithm 1 converge

to x∗ at a cubic rate:

||xj+1 − x∗|| = O
(
||xj − x∗||3

)
.

This proposition follows from the fact that when j ≥
J , Algorithm 1 reduces to Rayleigh quotient iteration
on a fixed set of k non-zero indices, and from the fact
that standard Rayleigh quotient iteration converges at
a cubic rate (Parlett, 1998).

2.2. Starting point

We recommend setting x0 to the largest column of
Σ, as previously suggested in Journée et al. (2010).
Interestingly, we also observed that we could initialize
Algorithm 1 randomly, as long as the first Rayleigh
quotient µ(0) was close the largest eigenvalue λ1 of Σ.
In practice, an accurate estimate of λ1 can be obtained
very quickly by performing only a few steps of Power
iteration (O’Leary et al., 1979).

2.3. Multiple sparse principal components

Most often, one wants to compute more than one
sparse principal component of Σ. Algorithm 1 eas-
ily lends itself to this setting; the key extra step that
must be added is the deflation of Σ. In order to avoid
describing variation in the data that has already been
explained by an earlier principal component x, we re-
place Σ at the next iteration by Σ+ = Σ−(xTΣx)xxT .
Thus, if a new principal component x+ explains any
variance in the direction of x (i.e. if xTx+ 6= 0), that
variance will not count towards the new objective func-
tion xT+Σ+x+.

In practice, there are settings where one may not want
to perform a full deflation of Σ, but instead only give
variance explained in the direction of x less weight.
This can be done by changing the deflation step to
Σ+ = Σ− δ(xTΣx)xxT , where 0 ≤ δ ≤ 1 is a parame-
ter. For example, this partial deflation turns out to be
useful when analyzing image features, as we show in
Section 5. In addition, there exist several other defla-
tion schemes which could be used with our algorithm;
we refer the reader to the survey by Mackey (2009) for
details. The full version of our method for computing
K principal components can be found in Algorithm 2.

Finally, we would like to point out that block algo-
rithms that compute several components at once, like
the ones in Journée et al. (2010), can also be derived
from our work.

3. Discussion

Essentially, the GRQI algorithm modifies the power
method by replacing the power iteration step by

Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration

Rayleigh quotient iteration, followed by an optional
step of the power method. Rayleigh quotient iteration
is a simple technique that converges to an eigenvector
much faster than power iteration, and is responsible
for the high speed of modern eigenvalue algorithms.
Perhaps our most interesting observation is that this
technique dramatically improves the performance of
algorithms in the sparse setting as well.

Existing algorithms for solving (1) essentially do two
tasks at once: (a) identifying a good sparsity pattern,
and (b) computing a good eigenvector within that pat-
tern. Intuitively, our algorithm works well because
Rayleigh quotient iteration converges to high-variance
eigenvectors within the current working set of indices
W much faster than the power method. Therefore, it
solves task (b) much more quickly than the GPM, at
the cost of some extra computation.

3.1. Rayleigh quotient iteration as Newton’s
method

Interestingly, the effectiveness of Rayleigh quotient it-
eration can also be explained by the fact that it is
equivalent to a slight variation of Newton’s method
(Tapia & Whitley, 1988). By the same logic, one can
view GRQI as a second-order projected optimization
method on the objective (1).

In fact, Algorithm 1 resembles in some ways the pro-
jected Newton methods of Gafni & Bertsekas (1984).
Both approaches take at every iteration a gradient step
and a Newton step; in both cases, Newton steps are
restricted to a subspace to avoid getting stuck at bad
local optima (see Bertsekas (1982) for an example).
Unfortunately, projected Newton methods can only be
used with very simple constraints, unlike those in (1).

3.2. Computational complexity

Perhaps the chief concern with second order methods
is their per-step cost. Algorithm 1 performs at every
iteration only O(k3 +nk) flops, where k is the number
of non-zero components. For comparison, the GPM
requires O(n2 + nk) flops (see next section and Algo-
rithms 3 and 4). Thus, our algorithm has an advan-
tage when k � n, which is precisely when the principal
components are truly sparse.

3.3. Comparison to the generalized power
method and to other sPCA algorithms

The generalized power method is a straightforward ex-
tension of the power method for computing eigenval-
ues; in its simplest formulation, it alternates between
power iteration and projection steps until convergence.

According to Journée et al. (2010), its most effective
formulations are two algorithms called GPower0 and
GPower1 (Algorithms 3 and 4). Both algorithms are
equivalent to subgradient ascent on the objective func-
tion

max
x:||x||2≤1

1

2
xTDTDx− γ||x||, (2)

where D is the data matrix, γ > 0 is a sparsity pa-
rameter and || · || can be the l0 norm (in the case of
GPower0), or the l1 norm (in the case of GPower1).

Our method has several immediate advantages over
Algorithms 3 and 4. For one, the user can directly
specify the desired cardinality of the solution, instead
of having to search for a penalty parameter γ. In fact,
we found that varying γ by < 1% in equation (2) some-
times led to changes in the cardinality of the solution
of more than 10%. Moreover, the desired cardinality is
kept constant at every iteration of our algorithm; thus
one can stop iterating when a desired level of variance
has been attained.

Other algorithms for sPCA are often variants of the
generalized power method, including some highly cited
ones, such as Zou et al. (2006) or Witten et al. (2009).
Methods that are not equivalent to the GPM include
the SDP relaxation approach of D’Aspremont et al.
(2007); since it cannot scale to more than a few hun-
dred variables, we do not consider it in this study.
Another class of algorithms includes greedy methods
that search the exponential space of sparsity patterns
directly (Moghaddam et al., 2006); such algorithms
have been shown to be much slower than the GPM
(Journée et al., 2010), and we don’t consider them ei-
ther.

4. Evaluation

We now proceed to compare the performance of gen-
eralized Rayleigh quotient iteration to that of Algo-
rithms 3 and 4. We evaluate the algorithms on a series
of standard tasks that are modeled after the ones of
Journée et al. (2010). The experiments in this sec-
tion are performed on random positive semidefinite
matrices Σ ∈ Rn×n of the form Σ = ATA for some
A ∼ N (0, 1)n×n. Although we show results only for
n = 1000, our observations carry over to other matrix
dimensions.

Throughout this section, we use as our convergence cri-
terion the condition ||x−xprev|| < 10−6. Note that we
cannot use criteria based on the objective functions (1)
and (2), as they are not comparable: one measures car-
dinality and one doesn’t. Furthermore, we set J =∞
in all experiments, in which case Algorithm 1 performs

Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration

1 2 3 4 5 6
0

0.2

0.4

0.6

Convergence rate (GRQI)

Iterations

||
 x

 −
 x

p
re

v |
|

0 50 100 150
0

0.5

1
Convergence rate (GPower1)

Iterations

||
 x

 −
 x

p
re

v |
|

1 2 3 4 5 6
1080

1100

1120

1140

1160
Variance (GRQI)

Iterations

V
a

ri
a

n
c
e

0 50 100 150
600

800

1000

Variance (GPower1)

Iterations

V
a

ri
a

n
c
e

1 2 3 4 5 6
43

43.5

44

44.5

45
Sparsity (GRQI)

IterationsN
u

m
b

e
r

o
f

n
o

n
−

z
e

ro
 e

n
tr

ie
s

0 50 100 150
35

40

45

50

55

60
Sparsity (GPower1)

IterationsN
u

m
b

e
r

o
f

n
o

n
−

z
e

ro
 e

n
tr

ie
s

Figure 1. Comparison of generalized Rayleigh quotient it-
eration and the generalized power method on a random
1000 × 1000 matrix.

at every iteration a Rayleigh quotient step, followed by
a full power method step.

4.1. Convergence rates

As a demonstration of the rapid convergence of gen-
eralized Rayleigh quotient iteration, we start by plot-
ting in Figure 1 the variance, sparsity, and precision
at every iteration of GRQI and GPower1. We set the
sparsity parameter γ of GPower1 to 5, and set the pa-
rameter k to match the sparsity of the final solution
returned by that algorithm, which was k = 44 (4.4%
sparsity). We found that this setting was representa-
tive of what happens at other sparsities.

We observe that GRQI converges in six iterations,
which is quite typical for the problem instances we con-
sidered. This observation is consistent with the speed
of regular Rayleigh quotient iteration and appears to
support empirically the cubic convergence guarantees
of our algorithm. Interestingly, the rapid convergence
in Figure 1 was achieved without setting J < ∞, as
the convergence argument formally requires.

4.2. Time complexity analysis

To further evaluate the speed of GRQI, we counted
the number of flops that were required to compute

0 50 100 150 200 250
0

2

4

6

8

10

12
x 10

7

Number of non−zero components

F
lo

p
s

GPower0

GPower1

GRQI

Figure 2. Number of total flops versus sparsity of the fi-
nal solution. Each curve is an average of ten 1000 × 1000
random matrices.

a sparse component on a number of random matri-
ces. We chose to measure algorithm speed in flops be-
cause unlike time measurements, they do not depend
on various implementation details. In fact, when im-
plemented in a popular high-level language like MAT-
LAB, GRQI would have an unfair advantage over the
GPM, as it spends relatively more time in low-level
subroutines.

To measure flops, we counted the number of matrix
operations performed by each algorithm. For every
k × n matrix-vector multiplication, we counted kn
flops, whereas for k× k matrix inversions, we counted
1
3k

3 + 2k2. The latter is the complexity of inverting
a Hermitian matrix through an LDLT factorization.
Operations taking o(n2) time were ignored, as their
flop count was negligible.

Results of this experiment appear in Figure 2. GRQI
uses between one and two orders of magnitude fewer
flops at sparsities below 20%; at sparsities below 5%,
it used a hundred times fewer flops. However, for large
values of k, the complexity of GRQI outgrows that of
the GPM. In this case, we found that we could bring
down the number of GRQI flops to at least the level
of the GPM by letting J be small; however at those
levels of k the problem is not truly sparse, and so we
do not give details.

In practice, the computational requirements of the
GPM would appear somewhat smaller if we used a
loose convergence criterion, such as ||x − xprev|| <
10−2. However, even in that case, GRQI required at
least an order of magnitude fewer flops. On the other
hand, the GPM in our experiments needed about 3-
4 restarts before we could find a penalty term that
yielded the desired number of non-zero entires in the
principal component. We did not count these restarts
in our flop measurements.

Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration

0 100 200 300 400 500 600 700
1500

2000

2500

3000

3500

4000

Number of non−zero components

V
a

ri
a

n
c
e

GPower0

GPower1

GRQI

Figure 3. Variance explained versus sparsity of the leading
principal component. Each curve represents an average of
ten 1000 × 1000 random matrices.

4.3. Variance

Finally, we demonstrate that the quality of the solu-
tions to which our algorithm quickly arrives matches
that of the solutions obtained by the GPM. In Figure
3, we plot the tradeoff between the sparsity and the
variance of a solution for both algorithms. The two
curves are essentially identical, and this observation
could be also made for other matrix dimensions.

5. Sparse SVD

Thus far, our methods have been presented only in the
context of positive semidefinite covariance matrices.
However, they can be easily extended to handle an
arbitrary rectangular m×n matrix R. In that setting,
the problem we solve becomes a generalization of the
singular value decomposition (SVD); hence, we refer to
it as the sparse singular value decomposition (sSVD).

Sparse SVD generalizes objective (1) as follows.

max uTRv (3)

s.t. ||u||2 ≤ 1 ||v||2 ≤ 1

||u||1 ≤ ku ||v||1 ≤ kv

Problem (3) can be reduced to problem (1) by exploit-
ing the well-known observation that

uTRv =
1

2

(
v
u

)T (
0 RT

R 0

)(
v
u

)
=:

1

2

(
v
u

)T
Σ

(
v
u

)
.

Thus we can solve (3) by running Algorithm 1 on the
(m+ n)× (m+ n) matrix Σ. Fortunately, this can be
done without ever explicitly forming (m+n)×(m+n)
matrices. Using blockwise inversion, we compute the

inverse of Σ− µI as follows.(
−µI RT

R −µI

)−1
=

(1
µ2R

TS−1R− 1
µI

1
µR

TS−1

1
µS
−1R S−1

)
,

where S = RRT − µI is the Schur complement of µI.
When R is a k1 × k2 submatrix with k1 ≤ k2, Σ −
µI can be inverted using O(k21k2 + k31) floating point
operations. Note that when the matrix R is square,
this complexity reduces to that of Algorithm 1. Details
may be found in Algorithm 5.

Algorithm 5 SSVD(R, u0, v0, ku, kv, J , ε)

j ← 0
repeat

// Compute Rayleigh quotient and working sets
µ← (u(j))TRv(j)/(||u||2||v||2)

Wu ← {i|u(j)i 6= 0}
Wv ← {i|v(j)i 6= 0}

// Rayleigh quotient step
A← RWu,Wv(

v
(j)
Wv

u
(j)
Wu

)
←
(
−µI AT

A −µI

)−1(
v
(j)
Wv

u
(j)
Wu

)
(
vnew
unew

)
←
(
v(j)

u(j)

)
/

∣∣∣∣∣∣∣∣(v(j)

u(j)

)∣∣∣∣∣∣∣∣
2

// Power step
if j < J then
unew ← Rvnew
vnew ← RTunew

end if

u(j+1) ← Pku (unew)
v(j+1) ← Pkv (vnew)
j ← j + 1

until max(||u(j) − u(j−1)||, ||v(j) − v(j−1)||) < ε
return u(j), v(j)

5.1. Gene expression data

We test the performance of Algorithm 5 on gene ex-
pression data collected in the prostate cancer study
by Singh et al. (2002). The study measured expres-
sion profiles for 52 tumor and 50 normal samples over
12,600 genes, resulting in a 102× 12, 600 data matrix.

Figure 4 shows the variance-sparsity tradeoffs of GRQI
and GPower for the first principal component of the
data matrix, as well the number of flops they use.
Both algorithms explain roughly the same variance (in
fact, GRQI explains 2.35% more for small sparsities),
whereas time complexity is again significantly smaller
for Algorithm 1. Although the relative advantage is

Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.21

0.215

0.22

0.225

0.23

Number of non−zero components

V
a

ri
a

n
c
e

GPower0

GPower1

GRQI

(a) Variance/sparsity tradeoff

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5
x 10

9

Number of non−zero components

F
lo

p
s

GPower0

GPower1

GRQI

(b) Total flops required at different sparsity levels

Figure 4. Computing the leading sparse principal compo-
nent on the Singh et al. (2002) gene expression dataset.

not as large as in Figure 2, GRQI still uses about an
order of magnitude fewer flops at small sparsity levels.

Yao et al. (2012) have shown that the principal com-
ponents of the above data matrix map to known path-
ways associated with cancer. Our algorithms can iden-
tify these pathways at a fraction of the computational
cost of existing methods.

5.2. Application in deep learning/machine
vision

As a further example of how our methods can be ap-
plied in practice, we use Algorithm 5 to perform un-
supervised feature learning on the STL-10 dataset of
images.

Briefly, we sampled 100,000 random 3 × 8 × 8 RGB
image patches and computed sparse principal compo-
nents on the resulting 196 × 100, 000 matrix using a
deflation parameter δ = 0.2. This partial deflation al-
lowed us to recover 400 principal components, which
is more than twice the rank of the data matrix.

Curiously, we observe that when visualized as 8 × 8
color matrices, these principal components take on the
shape of little “edges”, as shown in Figure 5. We found

(a) sSVD (b) Autoencoder

Figure 5. Sparse components learned by sSVD on image
patches (a) compared to features learned by an autoen-
coder neural net (b).

it challenging to reproduce the above results using the
GPower algorithms because of the difficulties in tuning
the sparsity parameter γ; therefore we do not report a
speed comparison on this data.

In the vision literature, the edges shown in Figure 5 are
known as Gabor filters, and are used as a basis for rep-
resenting images in many machine vision algorithms.
Their use considerably improves these algorithms’ per-
formance.

In the past several years, learning such features auto-
matically from data has been a major research topic
in artificial intelligence. The fact that sparse principal
component analysis can be used as a technique for un-
supervised feature extraction may lead to new feature
learning algorithms that are simple, fast, and that use
matrix multiplications that can be parallelized over
many machines.

More generally, sparse principal component analysis
addresses a key challenge in statistics and thus has
applications in many other areas besides bioinformat-
ics and machine vision. We believe that developing
fast, simple algorithms for this problem will spread its
use to an even wider range of interesting application
domains.

Acknowledgements

We wish to thank Stephen Boyd for helpful discussions
and advice, as well as Ben Poole for reviewing an early
draft of the paper.

References

Bertsekas, D. P. Projected Newton Methods for Opti-
mization Problems with Simple Constraints. SIAM
Journal on Control and Optimization, 20(2):221–
246+, 1982.

Fast algorithms for sparse principal component analysis based on Rayleigh quotient iteration

D’Aspremont, Alexandre, El Ghaoui, Laurent, Jordan,
Michael I., and Lanckriet, Gert R. G. A Direct For-
mulation for Sparse PCA Using Semidefinite Pro-
gramming. SIAM Rev., 49(3):434–448, 2007.

D’Aspremont, Alexandre, Bach, Francis, and Ghaoui,
Laurent El. Optimal Solutions for Sparse Principal
Component Analysis. J. Mach. Learn. Res., 9:1269–
1294, 2008.

Gafni, Eli M. and Bertsekas, Dimitri P. Two-Metric
Projection Methods for Constrained Optimization.
SIAM Journal on Control and Optimization, 22(6):
936–964, 1984.

Journée, Michel, Nesterov, Yurii, Richt a rik, Pe-
ter, and Sepulchre, Rodolphe. Generalized Power
Method for Sparse Principal Component Analysis.
J. Mach. Learn. Res., 11:517–553, 2010.

Lee, Donghwan, Lee, Woojoo, Lee, Youngjo, and Paw-
itan, Yudi. Super-sparse principal component analy-
ses for high-throughput genomic data. BMC Bioin-
formatics, 11(1):296, 2010.

Mackey, Lester. Deflation Methods for Sparse PCA.
In Advances in Neural Information Processing Sys-
tems, pp. 1017–2024. MIT Press, 2009.

Moghaddam, Baback, Weiss, Yair, and Avidan, Shai.
Spectral Bounds for Sparse PCA: Exact and Greedy
Algorithms. In Advances in Neural Information Pro-
cessing Systems, pp. 915–922. MIT Press, 2006.

O’Leary, Dianne P., Stewart, G. W., and Vandergraft,
James S. Estimating the Largest Eigenvalue of a
Positive Definite Matrix. Mathematics of Computa-
tion, 33(148):pp. 1289–1292, 1979.

Parlett, Beresford N. The symmetric eigenvalue prob-
lem. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1998.

Richtárik, Peter, Takác, Martin, and Ahipasaoglu,
Selin Damla. Alternating Maximization: Unifying
Framework for 8 Sparse PCA Formulations and Ef-
ficient Parallel Codes. CoRR, abs/1212.4137, 2012.

Singh, Dinesh, Febbo, Phillip G, Ross, Kenneth, Jack-
son, Donald G, Manola, Judith, Ladd, Christine,
Tamayo, Pablo, Renshaw, Andrew A, D’Amico, An-
thony V, Richie, Jerome P, Lander, Eric S, Loda,
Massimo, Kantoff, Philip W, Golub, Todd R, and
Sellers, William R. Gene expression correlates of
clinical prostate cancer behavior. Cancer Cell, 1(2):
203–209, 2002.

Tapia, R. A. and Whitley, David L. The Projected
Newton Method has Order 1 + 2 for the Symmetric
Eigenvalue Problem. SIAM Journal on Numerical
Analysis, 25(6):pp. 1376–1382, 1988.

Witten, D M, Tibshirani, R, and Hastie, T. A pe-
nalized matrix decomposition, with applications to
sparse principal components and canonical correla-
tion analysis. Biostatistics, 10(3):515–534, jun 2009.

Yao, Fangzhou, Coquery, Jeff, and Le Cao, Kim-Anh.
Independent Principal Component Analysis for bi-
ologically meaningful dimension reduction of large
biological data sets. BMC Bioinformatics, 13(1):24,
2012.

Zou, Hui, Hastie, Trevor, and Tibshirani, Robert.
Sparse Principal Component Analysis. Journal of
Computational and Graphical Statistics, 15(2):265–
286, jun 2006.

