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Abstract

Dense random fields are models in which
all pairs of variables are directly connected
by pairwise potentials. It has recently been
shown that mean field inference in dense ran-
dom fields can be performed efficiently and
that these models enable significant accuracy
gains in computer vision applications. How-
ever, parameter estimation for dense ran-
dom fields is still poorly understood. In this
paper, we present an efficient algorithm for
learning parameters in dense random fields.
All parameters are estimated jointly, thus
capturing dependencies between them. We
show that gradients of a variety of loss func-
tions over the mean field marginals can be
computed efficiently. The resulting algorithm
learns parameters that directly optimize the
performance of mean field inference in the
model. As a supporting result, we present
an efficient inference algorithm for dense ran-
dom fields that is guaranteed to converge.

1. Introduction

Random field models are often used to express im-
age coherence priors in computer vision applications,
such as segmentation and reconstruction (Blake et al.,
2011). Most random field models explored in the lit-
erature are sparsely connected, with the most com-
mon structure being a grid. Such models can lead to
excessive smoothing of object boundaries and to in-
consistencies over longer ranges in the image. Mod-
els with hierarchical structure and higher-order poten-
tials have been proposed to reduce these artifacts (He
et al., 2004; Roth & Black, 2009; Kohli et al., 2009).
Nevertheless, the connectivity of the models remained
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relatively sparse due to the limitations of available in-
ference algorithms.

Recently, Krähenbühl and Koltun (2011) introduced
an efficient algorithm for performing mean field in-
ference in fully connected random fields. Such dense
random fields support explicit modeling of long-range
correlations in the image and have enabled substantial
accuracy gains in pixel-level labeling problems. The
algorithm of Krähenbühl and Koltun handles pairwise
potentials that can be expressed in terms of Gaussian
kernels in feature space, and inference is performed by
means of rapid approximate Gaussian convolutions.
Vineet et al. (2012a; 2012b) have extended convolu-
tional inference to more general Gaussian kernels and
to models with higher-order terms.

Despite the development of efficient inference algo-
rithms, parameter estimation in dense random fields
is still poorly understood. Prior works use piecewise
training, in which different types of parameters are
learned separately. For example, parameters for the
unary potentials and for the pairwise potentials are
separately estimated (Krähenbühl & Koltun, 2011; Vi-
neet et al., 2012a;b). Krähenbühl and Koltun esti-
mate some parameters using grid search, and Vineet
et al. use a simplified generative model with additional
independence assumptions.

In this paper, we present a general algorithm for pa-
rameter estimation in dense random fields. All pa-
rameters are learned jointly, thus capturing dependen-
cies between them. The algorithm supports a vari-
ety of loss functions formulated over the mean field
marginals. The learning algorithm thus estimates pa-
rameters that optimize the performance of mean field
inference.

Algorithms for parameter estimation in random field
models minimize a loss function, such as the nega-
tive log-likelihood (LeCun et al., 2006; Koller & Fried-
man, 2009; Tappen, 2011). This is commonly done
using gradient-based optimization. Computing the ex-
act gradient is computationally intractable in general
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because it requires performing exact inference in the
model. One way to deal with this is to approximate
the gradient by substituting approximate inference in
place of exact inference (Wainwright et al., 2003; Sut-
ton & McCallum, 2005; Kumar et al., 2005; Vish-
wanathan et al., 2006; Levin & Weiss, 2009; Pal et al.,
2012). While it can be shown that the approximate
gradient obtained in this way corresponds to a well-
defined surrogate objective (Wainwright, 2006), it may
not optimize the performance of the learned model on
the data (Kulesza & Pereira, 2007).

We take a different approach and directly minimize a
loss function on the approximate distribution that is
used by the inference algorithm (Tappen, 2007; Samuel
& Tappen, 2009). This is known as marginal-based
loss (Domke, 2013). The advantage is that the perfor-
mance of the inference algorithm is optimized directly:
parameters are learned so as to maximize the accuracy
of the mean field approximation.

To optimize the marginal-based loss function we need
to compute its gradient. This is challenging because
there is no closed-form expression for the mean field
marginals. However, the marginals can be defined re-
cursively, as the product of iterative message passing.
Using this definition, we derive an efficient algorithm
for computing the gradient of the marginal-based loss
function over the parameters of the model.

As a supporting result, we develop an efficient mean
field inference algorithm for dense random fields that
is guaranteed to converge. Mean field inference is
known to converge if message passing is performed se-
quentially (Wainwright & Jordan, 2008). However, for
dense random fields, sequential message passing is im-
practical due to the huge number of pairwise connec-
tions. The convolutional inference of Krähenbühl and
Koltun performs all message passing in the model in
parallel. This is the key to its efficiency, but it also in-
validates the traditional convergence guarantees. We
present a different convolutional inference algorithm
that is guaranteed to converge.

2. Preliminaries

Model. The dense conditional random field is de-
fined over a set X = {X1, . . . , XN} of variables con-
ditioned on the image I and the model parame-
ters θ. The domain of each variable is a set
L = {l1, l2, . . . , lM} of labels. The Gibbs energy of a
label assignment x ∈ LN is

E(x|I,θ) =
∑
i

ψi(xi|θ) +
∑
i<j

ψij(xi, xj |θ), (1)

where i and j range from 1 to N . The unary potentials
ψi(xi|θ) and the pairwise potentials ψij(xi, xj |θ) are
implicitly conditioned on the image I. Each variable
Xi is associated with a fixed feature vector fi, deter-
mined by the image I. The pairwise potentials are
modeled as mixtures of kernels in feature space:

ψij(xi, xj |θ) =

C∑
m=1

µ(m)(xi, xj |θ)k(m)(fi − fj). (2)

Here µ(m) is a label compatibility function that mea-
sures how likely two classes are to occur near each
other. The simplest such label compatibility is the
Potts model: µ(m)(xi, xj |θ) = 1[xi 6=xj ].

Inference. Mean field inference computes a distri-
bution Q(X) that best approximates the probability
distribution P (X|I,θ) = 1

Z(I,θ) exp(−E(X|I,θ)) of the

model. Q(X) =
∏

iQi(Xi) is a product of indepen-
dent marginals over each of the variables. Each of the
marginals is constrained to be a proper probability dis-
tribution:

∑
xi
Qi(xi) = 1, Qi(Xi) ≥ 0. The mean

field approximation minimizes the KL divergence

D(Q‖P ) =∑
i,xi

Qi(xi) logQi(xi) +
∑
i,xi

ψi(xi|θ)Qi(xi)+∑
i<j

∑
xi,xj

ψij(xi, xj |θ)Qi(xi)Qj(xj) + logZ(I,θ). (3)

Traditional mean field inference performs the following
message passing update on each marginal Qi in turn
until convergence:

Qi(xi)=
1

Zi
exp
(
−ψi(xi|θ)−

∑
j 6=i

∑
xj

ψij(xi, xj |θ)Qj(xj)
)
,

where Zi is the marginal partition function. Each up-
date is guaranteed to decrease the KL divergence and
this inference algorithm is guaranteed to converge to
a local optimum (Wainwright & Jordan, 2008; Koller
& Friedman, 2009).

In dense random fields the computational
bottleneck is the evaluation of the sum∑

j 6=i

∑
xj
ψij(xi, xj |θ)Qj(xj). The computational

complexity of a single update of a marginal Qi(Xi)
is O(N) and the complexity of updating all the
marginals is O(N2).

Krähenbühl and Koltun (2011) observed that a high
dimensional Gaussian filter can be used to update all
the mean field marginals concurrently in time O(N).
This makes inference tractable. Unfortunately, the
convergence guarantees traditionally associated with
mean field inference break down when message pass-
ing is performed in parallel. In the next section, we
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present two variants of a new efficient inference al-
gorithm in dense random fields that is guaranteed to
converge for a broad class of kernels and label compat-
ibility functions.

3. Convergent convolutional inference

We begin with two sufficient conditions under which
we can perform parallel message passing and still guar-
antee convergence. The first condition is that all ker-
nels k(m) must be positive definite. A kernel k is
defined to be positive definite if and only if for an
arbitrary set of feature vectors {f1, . . . , fN} the ker-
nel matrix K with entries Kij = k(fi − fj) is pos-
itive definite. Bochner’s theorem implies that any
kernel k(m) with a non-negative Fourier spectrum is
positive definite. Positive definite kernels are also
known as Mercer kernels and K is their Gram ma-
trix. The Gaussian kernel k(x) = e−

1
2x

2

, the tent
filter k(x) = max(1 − ‖x‖1, 0), and the sinc filter

k(x) = sin(x)
x are examples of positive definite kernels.

Note that conventional grid-structured random field
models are a special case of the tent filter; in this case
k(fi − fj) = max(1 − 1

2‖fi − fj‖1, 0), where fi is the
two-dimensional coordinate vector of pixel Xi.

The second convergence condition is that each label
compatibility function µ(m) is negative semidefinite.
A label compatibility function µ is defined to be nega-
tive semidefinite if and only if there exists a constant c
for which the matrix µ with entries µij = µ(li, lj) + c
is negative semidefinite. Note that adding the con-
stant c to all label compatibility values simply repa-
rameterizes the Gibbs energy of the random field and
does not change the modeled probability distribution.
The Potts model µ(li, lj) = 1[li 6=lj ] is negative semidef-
inite with c = −1. Other negative semidefinite la-
bel compatibility functions include negative diagonal
models µ(l, l) = −αl, negative diagonally dominant
models µ(li, li) < −

∑
lj 6=li

|µ(li, lj)|, and the L1 norm

µ(li, lj) = |li − lj |.

We now present an efficient parallel mean field infer-
ence algorithm for dense random fields that is guar-
anteed to converge for models with positive definite
kernels and negative semidefinite label compatibility
functions.

3.1. Convergent parallel mean field

We begin by rewriting the KL divergence (3) in vector
notation:

D(Q‖P ) = q> log q︸ ︷︷ ︸
entropy

+ q>u +
1

2
q>Ψq + logZ(I,θ)︸ ︷︷ ︸
cross entropy

, (4)

where q and u are vectors of length N ×M with el-
ements q(i,l) = Qi(Xi = l) and u(i,l) = ψi(Xi = l),
respectively. We use the tuple (i, l) to refer to variable
Xi and label l. For notational convenience we use qi to
denote a vector of the M elements in q associated with
variable Xi. The vector ui is defined analogously. The
pairwise potentials make up the symmetric matrix Ψ
with entries Ψ(i,l),(j,k) = ψij(Xi = l,Xj = k). Since
there is no pairwise term between a random variable
Xi and itself, Ψ has a zero block diagonal. Equiva-
lently, we can express Ψ as the Kronecker product of
the kernel matrix K and the label compatibility matrix
µ:

Ψ =

C∑
m=1

(
K(m) − IN

)
⊗ µ(m). (5)

For notational simplicity we assume that the kernel

matrix K(m) has a unit diagonal: K
(m)
ii = k(m)(0) = 1.

Subtracting the identity matrix IN from K(m) in the
above equation yields a zero block diagonal in Ψ.

For a negative semidefinite label compatibility func-
tion µ(m) and a positive definite kernel k(m) the Kro-
necker product K(m) ⊗ µ(m) is negative semidefi-
nite and hence concave. The block diagonal matrix
−IN ⊗ µ(m) is positive definite and convex. This al-
lows us to write the KL divergence as the sum of a
convex function f(q) and a concave function g(q):

f(q)=q> log q− 1

2
q>

(
C∑

m=1

IN ⊗ µ(m)

)
q

g(q)=q>u+
1

2
q>

(
C∑

m=1

K(m)⊗µ(m)

)
q+logZ(I,θ).

Note that the concave function g(q) includes all the
pairwise interactions between different marginals qi

and qj , while f(q) only involves local terms over indi-
vidual marginals qi.

We use the concave-convex procedure (CCCP) to
minimize the KL divergence (Yuille & Rangarajan,
2001). CCCP iteratively minimizes a series of energy
functions f(q(t))+q(t)>∇g

(
q(t−1)

)
until convergence,

where q(t) and q(t−1) are the mean field marginals at
iteration t and t − 1, respectively. CCCP is guaran-
teed to converge to a local minimum (Sriperumbudur
& Lanckriet, 2009).

CCCP leads to the following optimization problem:

minimize
q

q> log q + q>e(t) − 1

2

C∑
m=1

q>IN ⊗ µ(m)q

subject to 1>qi = 1 for i = 1, . . . , N (6)
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where e(t) = ∇g(q(t−1)). The entropy term q> log q
restricts the domain of q to non-negative values. This
makes an explicit constraint q ≥ 0 redundant.

For each variable Xi, the gradient is defined as

e
(t)
i = ui +

C∑
m=1

∑
j

k(m)(fi − fj)µ
(m)q

(t−1)
j . (7)

This is almost identical to message passing in
Krähenbühl and Koltun’s algorithm (2011). It is the

combination of a matrix multiplication µ(m)q
(t−1)
j and

a convolution with a kernel k(m), both of which can be
evaluated in linear time.

In the mean field optimization problem (6), each
marginal qi is independent of every other marginal
qj . We minimize each marginal qi independently. The
Karush-Kuhn-Tucker (KKT) conditions are

log q
(t)
i −

(
C∑

m=1

µ(m)

)
q

(t)
i + λ1 + e

(t)
i = 0

1>q
(t)
i = 1. (8)

Strong duality holds since the objective in (6) is convex
and continuously differentiable, and the constraints
are affine. This means that a solution to the KKT
conditions (8) minimizes the objective (6). We solve
the KKT conditions using Newton’s method.

This algorithm is somewhat slower than the algorithm
of Krähenbühl and Koltun since we need to solve
a nonlinear system of equations rather than simply
exponentiating and normalizing the marginals after
each parallel message passing step. In Section 3.2 we
present a slight modification of the mean field objec-
tive that leads to a faster and simpler convergent infer-
ence algorithm that produces almost identical results
in practice.

3.2. Concave cross-entropy approximation

The cross-entropy term of the KL divergence in Equa-
tion 4 is close to concave, especially for large kernels
k(m). The only source of non-concavity is the block di-
agonal matrix IN ⊗µ, which contributes very little to
the pairwise term Ψ. For example, a two-dimensional
Gaussian kernel of standard deviation ≥ 3px contains
less than 1% of its mass at the center. In practice,
the error introduced by simply ignoring the presence
of the extraneous block diagonal is negligible, as we
will verify in Section 5. This motivates the concave
approximation of the cross entropy:

D(Q‖P )= q> log q︸ ︷︷ ︸
entropy

+ q>u+
1

2
q>Ψ̂q+logZ(I,θ)︸ ︷︷ ︸

approximate cross entropy

, (9)

where Ψ̂ =
∑C

m=1 K(m) ⊗ µ(m).

Equation 9 is the sum of a convex function, the en-
tropy, and a concave function, the approximate cross
entropy. We again use the concave-convex procedure.
The gradient of the approximate cross entropy yields
the same message passing step as Equation 7 and is
again evaluated efficiently using high-dimensional fil-
tering.

The CCCP algorithm then minimizes the convex en-
tropy q> log q plus a linear term q>e(t) under the
constraint that q is a proper probability distribution.
We minimize the convex objective by solving the KKT
conditions for each mean field marginal:

log q
(t)
i + λ1 + e

(t)
i = 0

1>q
(t)
i = 1. (10)

The solution is the standard mean field update

q
(t)
i = 1

Zi
exp

(
−e

(t)
i

)
.

The resulting algorithm is almost identical to the algo-
rithm of Krähenbühl and Koltun. Like the algorithm
in Section 3.1, it is guaranteed to converge. However,
since the KKT conditions have a closed-form solution,
this algorithm is more than three times faster in prac-
tice than the algorithm in Section 3.1 and has analo-
gous performance to the algorithm of Krähenbühl and
Koltun, as shown in Section 5.

4. Parameter learning

We now derive the main result of this paper: a pa-
rameter learning algorithm for dense random fields.
The algorithm minimizes a differentiable loss function
L(q) over the mean field marginals q. A number of
loss functions are described in Section 4.3.

It is easy to see that the marginals q depend on the
model parameters θ. For example, changing the pa-
rameters of the unary potentials ψi can move the
mode of the variational approximation and change the
marginal distributions q obtained by the inference pro-
cedure. Let’s make this functional dependence ex-
plicit: q = q(θ). As shown in supplementary ma-
terial, q(θ) is continuously differentiable. Differentia-
bility implies that for any pair of sufficiently similar
model parameter vectors, the mean field approxima-
tions are also similar: no pair of sufficiently close pa-
rameter vectors can lead the mean field inference into
different local optima.

We use gradient-based optimization to minimize
L(q(θ)). For the remainder of this section we as-
sume that inference is performed using the algorithm



Parameter Learning and Convergent Inference for Dense Random Fields

described in Section 3.2. The algorithm described in
Section 3.1 and the original algorithm of Krähenbühl
and Koltun can be handled analogously.

4.1. Mean field gradient

The gradient of the marginal-based loss is

∂L

∂θ
=
∂L

∂q

∂q

∂θ

>
. (11)

We use implicit differentiation of the KKT conditions
(10) to derive the gradient ∂q

∂θ of the mean field ap-

proximation. The gradient ∂L
∂q of the loss function will

be treated in Section 4.3.

The derivative of the KKT conditions with respect to
the model parameters yields a set of linear constraints
on the gradient of each marginal:

diag

(
1

q
(t)
i

)
∂q

(t)
i

∂θ
= −∂λ

∂θ
1− ∂e

(t)
i

∂θ

1>
∂q

(t)
i

∂θ
= 0. (12)

As shown in supplementary material, the linear system

(12) is full rank and invertible. The gradient
∂q

(t)
i

∂θ is
thus always well-defined and is given by

∂q
(t)
i

∂θ
= A

(t)
i

∂e
(t)
i

∂θ
, (13)

where A
(t)
i = q

(t)
i q

(t)>
i − diag

(
q

(t)
i

)
. For notational

convenience let A(t) be the block diagonal matrix with

blocks A
(t)
i , for i = 1, . . . , N .

We compute the gradient of the message passing term
e(t) using the product rule:

∂e(t)

∂θ
= Ψ̂

∂q(t−1)

∂θ
+
∂u

∂θ
+ q(t−1) ∂Ψ̂

∂θ
. (14)

The gradient ∂e(t)

∂θ is recursively defined in terms of

the gradient ∂q(t−1)

∂θ of the marginals from the previ-

ous iteration, the unary gradient ∂u
∂θ , and the pairwise

gradient tensor ∂Ψ̂
∂θ . Unary and pairwise gradients with

respect to various model parameters are derived in Sec-
tion 4.2.

Evaluating equations 13 and 14 directly involves n
message passing steps per parameter. Computation-
ally this is as expensive as computing the numeric gra-
dient using finite differencing. For models with more
than a few parameters this is infeasible.

While a direct evaluation of the gradient
∂q

(t)
i

∂θ is im-

practical, we can still evaluate the gradient ∂L
∂θ effi-

ciently. We recursively substitute the gradient of the

mean field marginals (13) and the gradient of the mes-
sage passing term (14) back into Equation 11. The
resulting gradient expression is

∂L(q(n)(θ))

∂θ
=

n∑
t=1

b(t)>

(
∂u

∂θ
+q(t−1) ∂Ψ̂

∂θ

)
, (15)

where b(t) = A(t)Ψ̂b(t+1) is the normalized loss gradi-

ent at iteration t and b(n) = A(n)
(
∇L(q(n))

)>
. Un-

like a direct evaluation, this back substitution leads
to an algorithm that requires only n parallel message
passing steps in total, independent of the number of
parameters. The gradient computation is summarized
in Algorithm 1.

Algorithm 1 Mean field gradient

1: for t = 1 to n do
2: Run inference to compute q(t)

3: end for
4: b(n) ← A(n)

(
∇L(q(n))

)>
5: for t = n− 1 to 1 do
6: b(t) ← A(t)Ψ̂b(t+1) . Message passing
7: end for
8: g← 0
9: for t = 1 to n do

10: g← g + ∂b(t)>u
∂θ . Unary gradient

11: g← g + ∂b(t)>Ψ̂q(t)

∂θ . Pairwise gradient
12: end for
13:

∂L(q(n))
∂θ ← g

This algorithm is closely related to back belief prop-
agation (Eaton & Ghahramani, 2009) and back tree-
reweighted belief propagation (Domke, 2013).

Algorithm 1 begins by performing inference to com-
pute the mean field marginals q(t) for every iteration
t (lines 1 - 3). Next, message passing is used to com-
pute the normalized loss gradient b(t) (lines 4 - 7).
This message passing step is similar to inference, but
instead of exponentiating and normalizing we simply
multiply by the matrix A(t). Finally, the gradient of
the objective is computed as the sum of unary and
pairwise gradients (lines 10 and 11). We will now show
how to evaluate these gradients efficiently.

4.2. Unary and pairwise gradients

In this section, we describe how to efficiently evaluate
the gradient terms in lines 10 and 11 of Algorithm 1
with respect to various model parameters. Let b(t)

and q(t) be given. For notational simplicity we drop
the superscript for the remainder of this section.
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Logistic parameters. We assume that the unary
term is a logistic regression model with ui = Λhi for
a parameter matrix Λ and features hi for variable Xi.
(In our experiments, hi is the result of a TextonBoost
classifier at pixel i (Shotton et al., 2009).) The unary
gradient with respect to the logistic parameters Λ is
given by

∂b>u

∂Λ
=
∑
i

bih
>
i .

Label compatibility. Recall the definition of the
pairwise term Ψ̂ =

∑C
m=1 K(m) ⊗ µ(m). The pair-

wise gradient with respect to the label compatibility
parameters is given by

∂b>Ψ̂q

∂µ(m)
=
∑
i

bi

∑
j

K
(m)
ij q>j

.
The second summation is simply a convolution of the
marginals q with kernel k(m). As with message pass-
ing, this convolution can be performed efficiently and
the gradient can be computed in linear time. Note that
we usually require µ to be symmetric; this is enforced
by setting µ(a, b) = µ(b, a) to be a single variable and
adapting the gradient expression accordingly.

Kernel shape. Consider a Gaussian kernel of the
form k(fi − fj) = e−

1
2 (fi−fj)Σ−1(fi−fj). The gradient of

this function with respect to its parameters is

∂k(fi − fj)

∂Σ
=

1

2
Σ−1(fi − fj)(fi − fj)

>Σ−1k(fi − fj).

This expression is no longer Gaussian. However, we
can express it as a weighted sum of Gaussians and
evaluate it efficiently. Define f̃i = Σ−1fi. The pairwise
gradient with respect to the kernel parameters Σ is

∂b>Ψ̂q

∂Σ(m)
=

1

2

∑
i

f̃i

b>i
∑
j

K
(m)
ij qj + q>i

∑
j

K
(m)
ji bj

f̃i
>
−

1

2

∑
i

f̃i

b>i
∑
j

K
(m)
ij qj f̃j

>
+ q>i

∑
j

K
(m)
ji bj f̃j

>

 .

Each of the four summations over j is a high-
dimensional Gaussian convolution and can be per-
formed efficiently. In order to compute this gradient
we perform a total of 2M(D + 1) convolutions, where
M is the number of labels and D is the dimensionality
of the feature vector. The total running time is linear
in the number of variables N .

4.3. Loss functions

We now consider a number of loss functions L(q) de-
fined over the mean field marginals q and derive their
analytic gradient ∇L(q). Each of the loss functions is
formulated in terms of a ground truth labeling T ∈ LN

for an individual training image.

Log-likelihood. The commonly used log-likelihood
loss is defined as

L`(q) = −
∑
i

wTi log(q(i,Ti)),

where wTi is a label-dependent weight that can nor-
malize out imbalances in the available training data.
The gradient of the log-likelihood loss is given by

∂L`

∂q(i,l)
= −

wTi1[Ti=l]

q(i,l)
.

The log-likelihood objective does not cope well with
outliers or mislabeled variables. For example, improv-
ing the likelihood of a hopeless outlier from 10−5 to
10−4 reduces the loss more than improving the likeli-
hood of a different data point from 1

10 to 1
2 . To ame-

liorate this sensitivity to outliers, we can use a robust
version of the log-likelihood.

Robust log-likelihood. The robust log-likelihood
loss is defined as

Lr(q) = −
∑
i

wTi log(q(i,Ti) + ε).

This objective can be interpreted as a softmax of the
log-likelihood loss with a threshold − log(ε). In this
formulation, the penalty incurred by outliers with ex-
tremely low likelihoods is fixed. The gradient of the
robust log likelihood objective is

∂Lr

∂q(i,l)
= −

wTi1[Ti=xi]

q(i,l) + ε
.

Hamming loss. The log-likelihood and robust log-
likelihood objectives may not reflect performance mea-
sures that can be relevant for particular computer vi-
sion tasks. For example, for a per-pixel labeling task,
we may want to maximize global labeling accuracy,
class-average accuracy, or another measure of label-
ing performance such as intersection over union. Our
approach can incorporate such performance measures
directly, by explicitly casting them as marginal-based
loss objectives that should be optimized by the learn-
ing algorithm.

We first consider global and class-average accuracy.
These can both be cast as weighted versions of the
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Hamming loss h(x) =
∑

i wTi1[xi 6=Ti], which counts
the number of incorrect labels in a label assignment x.
For wl = 1, the Hamming loss corresponds to global
labeling accuracy. Setting wl = 1∑

i[l=Ti]
leads to the

class-average accuracy measure. We can also use a
weighted geometric mean to interpolate between the
two objectives.

The Hamming loss is not continuous and is not imme-
diately amenable to gradient-based optimization. We
use the expected Hamming loss instead:

Lh(q) = C −
∑
i

wTiq(i,Ti),

where C =
∑

i wTi is a constant. The corresponding
gradient is given by

∂Lh

∂q(i,l)
= −wTi1[Ti=l].

Intersection over union. The intersection-over-
union objective can be used to correct for imbalances
in the training data. The discrete intersection-over-
union score is defined as

iu(x) =
∑
l

il(x)

ul(x)
=
∑
l

∑
i 1[Ti=xi=l]

nl +
∑

i 1[Ti 6=l,xi=l]
,

where nl =
∑

i 1[Ti=l] is the number of variables with
label l in the training data. The intersection-over-
union score is evaluated over the complete dataset,
which sets it apart from the preceding objectives. We
formulate a relaxed marginal-based intersection-over-
union loss:

Liu(q)=−
∑
l

il(q)

ul(q)
=−

∑
l

∑
i 1[Ti=l]q(i,l)

nl+
∑

i 1[Ti 6=l]q(i,l)
.

Liu(q) ties together all the marginals for all the images
in the training set, not just a single image. Despite this
global interdependence, the gradient is simple:

∂Liu

∂q(i,l)
=

{
− 1

ul(q) if Ti = l
il(q)
ul(q)2 otherwise

.

In fact, once the intersection and union values il and
ul are known the partial derivative of the intersection-
over-union loss is independent for every variable Xi.

5. Experiments

We build on the publicly available implementa-
tion of Krähenbühl and Koltun (2011). The orig-
inal implementation uses normalized filter kernels

k̃(fi, fj) =
k(fi,fj)∑
j k(fi,fj) . This normalization greatly in-

creases the accuracy of the approximate filtering,

but it breaks the symmetry assumptions of the
model since k̃(fi, fj) and k̃(fj , fi) are normalized dif-
ferently. We use a symmetric normalization instead:

k̃(fi, fj) =
k(fi,fj)√∑

j k(fi,fj)
∑

i k(fi,fj)
. This ensures that the

kernel is symmetric and positive definite while keeping
the approximation error of the filtering data structure
low.

We evaluated the learning algorithm on the Pascal
VOC 2010 dataset with the publicly available unary
potentials and the training/validation/test split of
Krähenbühl and Koltun. All parameters are learned
on the validation set. We use the non-linear conju-
gate gradient algorithm for gradient-based optimiza-
tion. We found that it performs better than L-BFGS
for non-convex learning objectives.

We use a class weight wl = n−0.25
l for all loss functions,

where nl is the number of pixels with label l in the
training set. To prevent overfitting, we use a weak L2
regularizer. All experiments are performed on a single
core of a 3.2GHz Intel Core i7 CPU.

5.1. Inference

We begin by comparing the performance of the con-
vergent inference algorithm presented in Section 3.1,
the faster convergent algorithm of Section 3.2, and
the original inference algorithm of Krähenbühl and
Koltun. For this experiment we use a Potts model with
a single Gaussian kernel with spatial standard devia-
tion 40px, color standard deviation 15, and interaction
penalty 5. This is consistent with the settings used by
Krähenbühl and Koltun on the Pascal VOC dataset.
All inference algorithms were run for five iterations.

The three algorithms produce almost identical results.
The difference in the inferred marginal probabilities,
averaged over all images, pixels and labels is less than
2×10−5 between each pair of algorithms. On average,
for a given pair of algorithms, less than 0.013% of the
pixels in an image have a different MAP assignment.
On the other hand, the running times differ signifi-
cantly. The convergent parallel mean field algorithm
of Section 3.1 takes 2.49s per image, while the conver-
gent approximate algorithm of Section 3.2 takes 0.69s
on average, which is slightly faster than the algorithm
of Krähenbühl and Koltun (0.72s).

5.2. Learning

We now evaluate the parameter learning algorithm.

Label compatibility learning. In the first experi-
ment, we focus on learning the label compatibility pa-
rameters. An approximate MLE algorithm for learn-
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Unary potentials (no learning) 27.65%
Approximate gradient 30.16%

Our approach, log-likelihood loss 29.51%
Our approach, robust log-likelihood, ε = 0.1 30.35%
Our approach, Hamming loss 30.70%
Our approach, intersection-over-union loss 30.80%

Table 1. Label compatibility learning. Comparison of the
learning algorithm of Krähenbühl and Koltun, which fol-
lows an approximate log-likelihood gradient, and our ap-
proach, which evaluates an analytic gradient and admits a
variety of learning objectives.

ing these parameters was described by Krähenbühl and
Koltun. We compare their approach to our algorithm
using a single-kernel model. For this experiment, we
trained the kernel parameters using grid search and
kept them fixed, to match the setting of the prior work.
Our algorithm converged in 20-30 iterations. The run-
time of each iteration is equivalent to two inference
passes over the dataset.

The results are shown in Table 1. We observe signif-
icant differences between the various objectives sup-
ported by our algorithm. The straightforward log-
likelihood loss is very sensitive to outliers: while the
log-likelihood objective improved by several orders of
magnitude during the optimization, this improvement
is not reflected in the accuracy of the model. The ro-
bust log-likelihood reduces this sensitivity and signif-
icantly improves the results. It also outperforms the
approximate MLE approach. Nevertheless, the log-
likelihood in general does not correspond to the eval-
uation metric by which performance on the dataset
is measured. The Hamming loss and the intersection-
over-union loss better model the evaluation metric and
offer additional performance improvements.

Kernel parameter learning. In the next experi-
ment, we learn the kernel parameters, specifically the
spatial and color standard deviations of the kernel.
Krähenbühl and Koltun (2011) used grid search to es-
timate the kernel parameters and Vineet et al. (2012a)
described a generative approach for this estimation
task. To evaluate the different approaches, we train
a Potts model with a single interaction penalty and
five parameters for the Gaussian kernel: the standard
deviations in the image coordinates and the color chan-
nels.

In evaluating grid search, we estimate only three
parameters due to the exponential computational
complexity of this approach: the Potts penalty, an
isotropic spatial standard deviation, and an isotropic
color deviation. (This mirrors the setup of Krähenbühl
and Koltun.) Both grid search and our algorithm are

Unary potentials No learning 27.65%

Potts model
Generative learning 28.01%
Grid search 29.02%
Our algorithm 29.26%

With label compatibility Our algorithm 31.13%

Table 2. Kernel parameter learning. Comparative evalua-
tion of the generative learning of Vineet et al., the brute
force search of Krähenbühl and Koltun, and our algorithm.

able to learn the kernel parameters jointly with the
weight of the Potts model. They also take the unary
terms into account during learning and find jointly
optimal parameters. The generative approach learns
the five kernel parameters independently; we then es-
timate an optimal weight for the Potts model using
grid search.

The results are shown in Table 2. Our algorithm
and grid search significantly outperform the generative
learning framework. As further shown in the table, our
algorithm is also able to learn the label compatibility
parameters jointly with the kernel parameters, which
increases the performance of the model by 2%.

Full model. In the final experiment we learn the
parameters of the unary potentials jointly with the
parameters of the pairwise potentials. These include
the logistic regression parameters in the unary poten-
tials, the label compatibility parameters, and the ker-
nel parameters. The total number of learned param-
eters in the model is close to 700. To prevent overfit-
ting, we use strong ridge regularization on the logistic
regression parameters and on the off-diagonal entries
of the label compatibility matrix. The accuracy of the
learned model is 31.65%, which is a 1.5% increase over
the model of Krähenbühl and Koltun, a 4% increase
over the unary potentials with a simple logistic regres-
sion model, and almost 10% over the raw TextonBoost
features. Note that we did not include any additional
information, such as dense SiftFlow initialization or
bounding box detection (Vineet et al., 2012a;b).

6. Conclusion

We presented efficient convergent inference and learn-
ing algorithms for dense random fields. The learn-
ing algorithm jointly optimizes all parameters in the
model and significantly outperforms alternative algo-
rithms. Implementation of the presented algorithms
will be made freely available.
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