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Abstract

We present a novel approach to learning an
HMM whose outputs are distributed accord-
ing to a parametric family. This is done by
decoupling the learning task into two steps:
first estimating the output parameters, and
then estimating the hidden state transition
probabilities. The first step is accomplished
by fitting a mixture model to the output sta-
tionary distribution. Given the parameters
of this mixture model, the second step is for-
mulated as the solution of an easily solvable
convex quadratic program. We provide an er-
ror analysis for the estimated transition prob-
abilities and show they are robust to small
perturbations in the estimates of the mixture
parameters. Finally, we support our analysis
with some encouraging empirical results.

1. Introduction

Hidden Markov Models (HMM) are a standard tool in
the modeling and analysis of time series with a wide
variety of applications. When the number of hidden
states is known, the standard method for estimating
the HMM parameters from observed data is the Baum-
Welch algorithm (Baum et al., 1970). The latter is
known to suffer from two serious drawbacks: it tends
to converge (i) very slowly and (ii) only to a local max-
imum. Indeed, the problem of recovering the param-
eters of a general HMM is provably hard, in several
distinct senses (Abe & Warmuth, 1992; Lyngsø & Ped-
ersen, 2001; Terwijn, 2002).
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In this paper we consider learning parametric-output
HMMs with a finite and known number of hidden
states, where the output from each hidden state fol-
lows a parametric distribution from a given family. A
notable example is a Gaussian HMM, where from each
state x, the output is a (possibly multivariate) Gaus-
sian, N (µx,Σx), typically with unknown µx,Σx.

Main results. We propose a novel approach to
learning parametric output HMMs, based on the fol-
lowing two insights: (i) in an ergodic HMM, the sta-
tionary output is a mixture of distributions from the
parametric family, and (ii) given the output parame-
ters, or their approximate values, one can efficiently
recover the corresponding transition probabilities up
to small additive errors.

Combining these two insights leads to our proposed
decoupling approach to learning parametric HMMs.
Rather than attempting, as in the Baum-Welch algo-
rithm, to jointly estimate both the transition prob-
abilities and the output density parameters, we in-
stead learn each of them separately. First, given one
or several long observed sequences, the HMM out-
put parameters are estimated by a general purpose
parametric mixture learner, such as the Expectation-
Maximization (EM) algorithm. Next, once these pa-
rameters are approximately known, we learn the hid-
den state transition probabilities by solving a compu-
tationally efficient convex quadratic program (QP).

The key idea behind our approach is to treat the un-
derlying hidden process as if it were sampled indepen-
dently from the Markov chain’s stationary distribu-
tion, and operate only on the empirical distribution
of singletons and consecutive pairs. Thus we avoid
computing the exact likelihood, which depends on the
full sequence, and obtain considerable gains in com-
putational efficiency. Under standard assumptions on
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the Markov chain and on its output probabilities, we
prove in Theorem 1 that given the exact output prob-
abilities, our estimator for the hidden state transition
matrix is asymptotically consistent. Additionally, this
estimator is robust to small perturbations in the out-
put probabilities (Theorems 2-6).

Beyond its practical prospects, our proposed approach
also sheds light on the theoretical difficulty of the full
HMM learning problem: It shows that for parametric-
output HMMs the key difficulty is fitting a mixture
model, since once its parameters have been accurately
estimated, learning the transition matrix can be cast
as a convex program. While learning a general mixture
is considered a hard problem, recently much progress
has been made under various separation conditions on
the mixture components, see e.g. Moitra & Valiant
(2010); Belkin & Sinha (2010) and references therein.

Related work. The problem of estimating HMM
parameters from observations has been actively stud-
ied since the 1970’s, see Cappé et al. (2005); Rabiner
(1990); Roweis & Ghahramani (1999). While comput-
ing the maximum-likelihood estimator for an HMM
is in general computationally intractable, under mild
conditions, such an estimator is asymptotically consis-
tent and normally distributed, see Bickel et al. (1998);
Chang (1996); Douc & Matias (2001).

In recent years, there has been a renewed interest in
learning HMMs, in particular under assumptions that
render the learning problem tractable (Faragó & Lu-
gosi, 1989; Hsu et al., 2009; Mossel & Roch, 2006; Sid-
diqi et al., 2010; Song et al., 2010; Bailly, 2011; Anand-
kumar et al., 2012; Balle et al., 2012).

Additionally, Lakshminarayanan & Raich (2010);
Cybenko & Crespi (2011) recently suggested Non-
negative Matrix Factorization (NNMF) approaches for
learning HMMs. These are related to our approach,
since with known output probabilities, NNMF reduces
to a convex program similar to the one considered here.
Hence, our stability and consistency analysis may be
relevant to NNMF-based approaches as well.

Paper outline. In Section 2 we present our problem
setup. The HMM learning algorithm appears in Sec-
tion 3, and its statistical analysis in Section 4. Section
5 contains some simulation results. Technical details
are given in the full version (Kontorovich et al., 2013).

2. Problem Setup

Notation. When X ∈ X and Y ∈ Y take values
in a discrete set we abbreviate P (x) for Pr(X = x)

and P (y |x) for Pr(Y = y |X = x). When Y ∈ Y is
continuous-valued, we denote by P (y |x) the probabil-
ity density function of Y given X.

For x,w ∈ Rn, diag(x) is the n × n diagonal matrix
with entries xi on its diagonal, x/w is the vector with

entries xi/wi, and ‖x‖2w =
∑
i wix

2
i is a w-weighted `2

norm (for wi > 0). The shorthand x . y means x ≤
(1+o(1))y. Similarly, x .P y means x ≤ (1+oP (1))y.
Finally, for n ∈ N, we write [n] = {1, 2, . . . , n}.

Hidden Markov Model. We consider a discrete-
time, discrete-space HMMs with n hidden states. The
HMM output alphabet, denoted Y, may be either dis-
crete or continuous. A parametric-output HMM is
characterized by a tuple (A,Fθn, P0) where A is an n×n
column stochastic matrix, P0 is the distribution of the
initial state and Fθn = (fθ1 , . . . , fθn) is an ordered tu-
ple of parametrized probability density functions. In
the sequel we sometimes write fi instead of fθi .

To generate the output sequence of the HMM, first
an unobserved Markov sequence of hidden states x =
(xt)

T−1
t=0 is generated with the following distribution.

P (x) = P0(x0)

T−1∏
t=1

Axt,xt−1
,

where Aij = P (Xt = i |Xt−1 = j) are the transition
probabilities. Then, each hidden state Xt indepen-
dently emits an observation Yt ∈ Y according to the
distribution P (yt |xt) ≡ fxt(yt). Hence the output se-
quence y = (yt)

T−1
t=0 has the conditional probability

P (y |x) =

T−1∏
t=0

P (yt |xt) =

T−1∏
t=0

fxt(yt).

The HMM Learning Problem. Given one or sev-
eral HMM output sequences (Yt)

T−1
t=0 , the HMM learn-

ing problem is to estimate both the transition matrix
A and the parameters of the output distributions Fθn.

3. Learning Parametric-Output HMMs

The standard approach to learning the parameters of
an HMM is to maximize the likelihood∑

x∈[n]T
P0(x0)P (y0 |x0)

T−1∏
t=1

Axt,xt−1
P (yt |xt).

As discussed in the Introduction, this problem is in
general computationally hard. In practice, neglecting
the small effect of the initial distribution P0(x0) on
the likelihood, A and Fθn are usually estimated via the
Baum-Welch algorithm, which is computationally slow
and only guaranteed to converge to a local maximum.
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3.1. A Decoupling Approach

In what follows we show that when the output dis-
tributions are parametric, we can decouple the HMM
learning task into two steps: first learning the output
parameters θ1, . . . , θn, followed by learning the tran-
sition probabilities of the HMM. Under some struc-
tural assumptions on the HMM, this decoupling im-
plies that the difficulty of learning a parametric-output
HMM can be reduced to that of learning a paramet-
ric mixture model. Indeed, given (an approximation
to) Fθn’s parameters, we propose an efficient, single-
pass, statistically-consistent algorithm for estimating
the transition matrix A.

As an example, consider learning a Gaussian HMM
with univariate outputs. While the Baum-Welch ap-
proach jointly estimates n2 + 2n parameters (the ma-
trix A and the parameters µi, σ

2
i ), our decoupling ap-

proach first fits a mixture model with only 3n param-
eters (πi, µi, σ

2
i ), and then solves a convex problem for

the remaining n2 entries of the matrix A. While both
problems are in general computationally hard, ours has
a significantly lower dimensionality for large n.

Assumptions. To recover the matrix A and the out-
put parameters θj we make the following assumptions:

(1a) The Markov chain has a unique stationary distri-
bution π over the n hidden states. Moreover, each hid-
den state is recurrent with a frequency bounded away
from zero: mink πk ≥ a0 for some constant a0 > 0.

(1b) The n × n transition matrix A is geometrically
ergodic1: there exists parameters G < ∞ and ψ ∈
[0, 1) such that from any initial distribution P0∥∥AtP0 − π

∥∥
1
≤ 2Gψt, ∀t ∈ N. (1)

(1c) The output parameters of the n states are all dis-
tinct: θi 6= θj for i 6= j and the parametric family
is identifiable. In addition we assume ”observability”
which will be cast as a full rank condition on specially
defined matrices.

Remarks: Assumption (1a) rules out transient
states, whose presence makes it generally impossible
to estimate all entries in A from one or a few long
observed sequences. Assumption (1b) implies mixing
and is used later on to bound the error and the number
of samples needed to learn the matrix A. Assumption
(1c) is crucial to our approach, which uses the distri-
bution of only single and pairs of consecutive observa-
tions. If two states i, j had same output parameters,

1Any finite-state ergodic Markov chain is geometrically
ergodic.

it would be impossible to distinguish between them
based on single outputs.

3.2. Learning the output parameters.

Assumptions (1a,1b) imply that the Markov chain over
the hidden states is mixing, and so after only a few
time steps, the distribution of Xt is nearly stationary.
Assuming for simplicity that already X0 is sampled
from the stationary distribution, or alternatively ne-
glecting the first few outputs, this implies that each
observable Yt is a random realization from the follow-
ing parametric mixture model,

Y ∼
n∑
i=1

πifθi(y). (2)

Hence, given an output sequence (Yt)
T−1
t=0 the output

parameters θi and the stationary distribution πi can
be estimated by fitting the mixture model (2) to the
observations, typically via the EM algorithm.

Like its more sophisticated cousin Baum-Welch, the
mixture-learning EM algorithm also suffers from lo-
cal maxima. Indeed, from a theoretical viewpoint,
learning such a mixture model (i.e. the parameters
of Fθn) is a non-trivial task considered in general to
be computationally hard. Nonetheless, under vari-
ous separation assumptions, efficient algorithms with
rigorous guarantees have been recently proposed (see
e.g. Belkin & Sinha (2010)).2 Note that while these
algorithms have polynomial complexity in sample size
and output dimension, they are still exponential in the
number of mixture components (i.e., in the number
of hidden states of the HMM). Hence, these methods
do not imply polynomial learnability of parametric-
output HMMs.

In what follows we assume that using some mixture-
learning procedure, the output parameters θj have
been estimated with a relatively small error (say

|θ̂j − θj | = O(1/
√
T )). Furthermore, to allow for cases

where θj were estimated from separate observed se-
quences of perhaps other HMMs with same output pa-
rameters but potentially different stationary distribu-
tions, we do not assume that πi have been estimated.

3.3. Learning the transition matrix A

Next, we describe how to recover the matrix A given
either exact or approximate knowledge of the HMM
output probabilities. For clarity and completeness, we

2 Note that the techniques for learning mixtures assume
iid data. However, if these are algorithmically stable — as
such methods typically are — the iid assumption can be
replaced by strong mixing (Mohri & Rostamizadeh, 2010).
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first give an estimation procedure for the stationary
distribution π.

Discrete observations. As a warm-up to the case
of continuous outputs, we first consider HMMs with
a discrete observation space of size |Y| = m. In this
case we can replace Fθn by an m×n column-stochastic
matrix B where Bki ≡ P (k | i) is the probability of
observing an output k given that the Markov chain
hidden state is i. In what follows, we assume that the
size of the output set is larger or equal to the number
of hidden states, m ≥ n, and that the m×n matrix B
has full rank n. The latter is the discrete analogue of
assumption (1c) mentioned above.

First note that since the matrix A has a stationary
distribution π, the process Yt also has a stationary
distribution ρ, which by analogy to Eq. (2), is

ρ = Bπ. (3)

Similarly, the pair (Yt, Yt+1) has a unique stationary
distribution σ, given by

σk,k′ =
∑

`,`′∈[n]

π`A`′,`Bk,`Bk′,`′ . (4)

As we shall see below, with a known matrix B, knowl-
edge of ρ and σ suffices to estimate π and A. Although
ρ and σ are themselves unknown, they are easily esti-
mated from a single pass on the data (yt)

T−1
t=0 :

ρ̂k =
1

T

T−1∑
t=0

1{yt=k},

σ̂k,k′ =
1

T − 1

T−1∑
t=1

1{yt−1=k}1{yt=k′}. (5)

Estimating the stationary distribution π. The
key idea in our approach is to replace the exact,
but complicated and non-convex likelihood function
by a “pseudo-likelihood”, which treats the hidden
state sequence (Xt) as if they were iid draws from
the unknown stationary distribution π. The pseudo-
likelihood has the advantage of having an easily com-
puted global maximum, which, as we show in in Sec-
tion 4, yields an asymptotically consistent estimator.
Approximating the (Xt) as iid draws from π means
that the (Yt) are treated as iid draws from ρ = Bπ.
Thus, given a sequence (Yt)

T−1
t=0 the pseudo-likelihood

for a vector π is

L(y0, . . . , yT−1 |π) =

T−1∏
i=0

(Bπ)yi =

m∏
k=1

(Bπ)nkk

where nk =
∑T−1
i=0 1{yt=k} = T ρ̂k. Its maximizer is

π̂ML = arg min
xi≥0, ‖x‖1=1

−
m∑
k=1

ρ̂k log(Bx)k. (6)

Since − log(x) is convex, and both (Bx)k and the con-
straints are linear in the unknown variables xj , (6) is a
convex program, easily solved via standard optimiza-
tion methods (Nesterov & Nemirovskii, 1994).

However, to facilitate the analysis and to increase the
computational efficiency, we consider the asymptotic
behavior of the pseudo-likelihood in (6), for T suffi-
ciently large so that ρ̂ is close to ρ. First, we write

(Bx)k = ρ̂k

(
1 +

(Bx)k − ρ̂k
ρ̂k

)
.

Next, assuming that T � 1 is sufficiently large to en-
sure |(Bx)k− ρ̂k| � ρ̂k, we take a second order Taylor
expansion of log(Bx)k in (6). This gives

−
n∑
k=1

ρ̂k log ρ̂k −
n∑
k=1

((Bx)k − ρ̂k) +

+

n∑
k=1

ρ̂k

(
(Bx)k − ρ̂k

ρ̂k

)2

+O

(
‖Bx− ρ̂‖3∞

minj ρ2j

)
.

The first term is independent of x, whereas the second
term vanishes. Thus, we may approximate (6) by the
quadratic program

argmin
xi≥0, ‖x‖1=1

‖ρ̂−Bx‖2(1/ρ̂) (7)

where ‖x‖2w =
∑
k wkx

2
k is a weighted `2 norm w.r.t.

the weight vector w. Eq. (7) is also a convex problem,
easily solved via standard optimization techniques.
However, let us temporarily ignore the non-negativity
constraints xi ≥ 0 and add a Lagrange multiplier for
the equality constraint

∑
xi = 1:

min
1

2

m∑
k=1

1

ρ̂k

(
ρ̂k −

n∑
j=1

Bkjxj

)2
− λ
(∑

j

xj − 1
)
. (8)

Differentiating with respect to xi yields

Wx = (1 + λ)1, (9)

where W = Bᵀdiag(1/ρ̂)B. Enforcing the normaliza-
tion constraint is equivalent to solving for x∗ = W−11
and normalizing π̂ = x∗/ ‖x∗‖1. Note that if all entries
of x∗ are positive, π̂ is the solution of the optimization
problem in (7), and we need not invoke a QP solver.
Assumptions (1a,1b) that πk is bounded away from
zero and that the chain is mixing imply that for suf-
ficiently large T , all entries of π̂ will be positive with
high probability, see Section 4.
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Estimating the transition matrix A. To estimate
A, we consider pairs (Yt, Yt+1) of consecutive observa-
tions. By definition we have that for a single pair,

P (Yt = k, Yt+1 = k′) =
∑
i,j

Bk′iBkjAijP (Xt = j).

As above, we treat the T − 1 consecutive pairs
(Yt, Yt+1) as independent of each other, with the hid-
den state Xt sampled from the stationary distribution
π. When the output probability matrix B and the
stationary distribution π are both known, the pseudo-
likelihood is given by

L(y |A) =
∏

(k,k′)

(∑
ij

Bk′iBkjAijπj

)nkk′
,

where nkk′ =
∑T−1
t=1 1{yt−1=k}1{yt=k′} = (T − 1)σ̂kk′ .

The resulting estimator is

argmin
Aij≥0,

∑
i Aij=1,Aπ=π

−
∑

σ̂kk′ log
(∑

ij

Ckk
′

ij Aij

)
(10)

where Ckk
′

ij = πjBkjBk′i. In practice, since π is not

known, we use Ĉkk
′

ij = π̂jBkjBk′i, with π̂ instead of
π. Again, (10) is a convex program in A and may be
solved by standard constrained convex optimization
methods. To obtain a more computationally efficient
formulation, let us assume that mink,k′ σk,k′ ≥ a2 > 0
(this assumption is removed later, see sec. 4), and that
mink,k′ T σ̂kk′ � 1, so that |(ĈA)kk′ − σ̂kk′ | � σ̂kk′ ,

where (ĈA)kk′ =
∑
ij Ĉ

kk′

ij Aij . Then, as above, the
approximate minimization problem is

argmin
Aij≥0,

∑
i Aij=1,Aπ̂=π̂

∥∥∥σ̂ − ĈA∥∥∥2
1/σ̂

. (11)

In contrast to the estimation of π, where we could
ignore the non-negativity constraints, here the con-
straints Aij ≥ 0 are essential, since for realistic HMMs,
some entries in A might be strictly zero. Note that if
π̂ = π and σ̂ = σ, the true matrix A satisfies σ = CA
and is the minimizer of (10).

Finally, note that (11) with the standard `2 norm and
an unknown matrix B is precisely the NNMF func-
tional proposed by Lakshminarayanan & Raich (2010).

In summary, given one or more output sequences
(yt)

T−1
t=0 and an estimate of B, we first make a sin-

gle pass over the data and construct the estimators ρ̂
and σ̂, with complexity O(T ). Then, the stationary
distribution π is estimated via (9), and its transition
matrix A via (11). To estimate A, we first compute the
matrix product ĈᵀĈ, with O(n4m2) operations. The
resulting QP has size n2, and is thus solvable (den
Hertog, 1994) in time O(n6) — which is dominated by
O(n4m2) since m ≥ n by assumption. Hence, the over-
all time complexity of estimating A is O(T + n4m2).

Extension to continuous observations. We now
extend the above results to the case of continuous out-
puts distributed according to a known parametric fam-
ily. Recall that in this case, each hidden state i ∈ [n]
has an associated output probability density fθi(y). As
with discrete observations, we assume that an approx-
imation (θ̂1, . . . , θ̂n) to fi’s parameters is given and use
it to construct estimates of π and A.

To this end, we seek analogues of (3) and (4), which
relate the observable quantities to the latent ones.
This will enable us to construct the appropriate em-
pirical estimates and the corresponding quadratic pro-
grams, whose solutions will be our estimators π̂ and
Â. To handle infinite output alphabets, we map
each observation y to an n-dimensional vector ϕ(y) =
(fθ1(y), . . . , fθn(y)), whose entries are the likelihood of
y from each of the underlying hidden states. As shown
below, this allows us to reduce the problem to a dis-
crete “observation” space which can be solved by the
methods introduced in the previous subsection.

Estimating the stationary distribution π. To
obtain an analogue of (3), we define the following vec-
tor ξ = E[ϕ(Y )] ∈ Rn, and matrix K ∈ Rn×n, which
play the roles of ρ and B for discrete output alphabets,

ξk ≡ E[ϕk(Y )] =

n∑
j=1

πj

∫
Y
fk(y)P (y | j)dy.

Kij ≡ E[ϕi(Y ) |X = j] =

∫
Y
fi(y)P (y | j)dy. (12)

With these definitions we have, as in Eq. (3),

ξ = Kπ. (13)

Thus, given an observed sequence (yt)
T−1
t=0 we construct

the empirical estimate

ξ̂k =
1

T

T−1∑
t=0

fk(yt), (14)

and consequently solve the QP

π̂ = argmin
‖x‖1=1,x≥0

∥∥∥ξ̂ −Kx∥∥∥2
1/ξ̂

. (15)

In analogy to the discrete case, we assume rank(K) =
n so (15) has a unique solution. Its asymptotic consis-
tency and accuracy are discussed in Section 4.

Estimating the transition matrix A. Next, fol-
lowing the same paradigm we derive an analogue of
(4). Bayes rule implies that for stationary chains,

P (k |Y ) =
fk(Y )πk∑n
l=1 fl(Y )πl

. (16)



On learning parametric-output HMMs

We define the matrices η ∈ Rn×n and F ∈ Rn×n (ana-
logues of σ and B) as follows. Let Y and Y ′ be two
consecutive observations of the HMM, then

ηkk′ ≡ E [P (k |Y )P (k′ |Y ′)]

Fkj ≡ E[P (k |Y ) | j]=
∫
Y
P (k | y)P (y | j)dy. (17)

A simple calculation shows that, as in (4),

ηkk′ =

n∑
i,j=1

πjAijFkjFk′i. (18)

Since here F plays the role of B, we may call it an
effective observation matrix. This suggests estimating
A with the same tools used in the discrete case. Thus,
given an observed sequence (yt)

T−1
t=0 we construct an

empirical estimate η̂ by

η̂kk′ =
1

T − 1

T−1∑
t=1

P̂ (k | yt−1)P̂ (k′ | yt), (19)

where P̂ is given by (16) but with π replaced by π̂.
Consequently we solve the following QP

Â = argmin
Aij≥0,

∑
i Aij=1,Aπ̂=π̂

∥∥∥η̂ − (ĈA)
∥∥∥2
1/η̂

, (20)

where Ĉkk
′

ij = π̂jFkjFk′i and (ĈA)kk′ =
∑
ij Ĉ

kk′

ij Aij .
As for the matrix B in the discrete case, to ensure a
unique solution to Eq. (20) we assume rank(F ) = n.

Remark 1. Instead of (18), we could estimate η′k,k′ ≡
E[fk(Y )fk′(Y

′)], and recover A from the relation

η′k,k′ =

n∑
i,j=1

Kk′iKkjAijπj .

This has the advantage that for many distributions the
matrix K can be cast in a closed analytic form. For
example, in the Gaussian case, we have

Kij =
1√
2π

1√
σ2
i + σ2

j

exp

(
−1

2

(µi − µj)2
σ2
i + σ2

j

)
,

whereas F needs to be calculated numerically. Addi-
tionally, K does not depend on the stationary distri-
bution. The drawback is that in principle, and as sim-
ulations suggest, accurately estimating η′ may require
many more samples, see Kontorovich et al. (2013).

In summary, given approximate output parameters
(θ̂1, . . . , θ̂n), we first calculate the n × n matrix K.

Next, we construct the vector ξ̂ by a single pass over
the data (Yt)

T−1
t=0 . Then the stationary distribution π

is estimated via (15). Given π̂, we calculate the n× n
matrix F , construct the empirical estimate η̂, and es-
timate A via (20). As in the discrete observation case,
the time complexity of this scheme is O(T + n6) with
additional terms for calculating K and F .

4. Error analysis

First, we study the statistical properties of our esti-
mators under the assumption that the output param-
eters, (θ1, . . . , θn) in the continuous case, or the matrix
B in the discrete case, are known exactly. Later on we
show that our estimators are stable to perturbations in
these parameters. For simplicity, throughout this sec-
tion we assume that the initial hidden state X0 is sam-
pled from the stationary distribution π. This assump-
tion is not essential and omitting it would not quali-
tatively change our results. Due to space constraints,
the proofs appear in Kontorovich et al. (2013).

To provide bounds on the error and required sample
size we make the following additional assumptions:

(2a) In the discrete case, there exists an a1 > 0 such
that minj ρj ≥ a1.

(2b) In the continuous case, all fθi are bounded:

max
i∈[n]

sup
y∈R

fθi(y) ≤ L <∞.

Finally, for ease of notation we define gψ ≡ 2G
1−ψ .

Asymptotic Strong Consistency. Our first result
shows that with perfectly known output probabilities,
as T →∞, our estimates π̂, Â are strongly consistent.

Theorem 1. Let (Yt)
T−1
t=0 be an observed sequence of

an HMM, whose Markov chain satisfies Assumptions
(1a,1b). Assume rank(B) = n in the discrete case,
or rank(F ) = rank(K) = n in the continuous case.
Then, both estimators, π̂ of (9) and Â of (11) in
the discrete case, or (15) and (20) in the continuous
case, are asymptotically strongly consistent. Namely,
as T →∞, with probability one, π̂ → π and Â→ A.

Error analysis for the stationary distribution
π. Recall that to estimate π in the discrete case, we
argued that for sufficiently large sample size T , the
positivity constraints can be ignored, which amounts
to solving an n×n system of linear equations, Eq. (9).
The following theorem provides a lower bound on the
required sample size T for this condition to hold with
high probability, and a bound on the error π̂ − π.

Theorem 2. Discrete case: Let ρ̂ be given by (5),
and π̂ be the solution of (9). Let B̃ = diag(1/

√
ρ)B,
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and σ1(B̃) be its smallest singular value. Under As-
sumption (2a), a sequence of length

T &
gψ
√

log n

a0a1σ1(B̃)
, (21)

suffices to ensure that with high probability, all entries
in π̂ are strictly positive. Furthermore, as T →∞,

‖π̂ − π‖2 .P

√
g2ψ

Ta21σ
2
1(B̃)

. (22)

Next we consider the errors in the estimate π̂ for the
continuous observations case. For simplicity, instead of
analyzing the quadratic program (15) with a weighted
`2 norm, we consider the following quadratic program,
whose solution is also asymptotically consistent:

min
x≥0,

∑
i xi=1

‖ξ̂ −Kx‖22. (23)

This allows for a cleaner analysis, without changing
the qualitative flavor of the results.

Theorem 3. Continuous case: Let ξ̂ be given
by (14), π̂ be the solution of (23), and K̃ =
diag(1/

√
ξ)K. Under Assumption (2b), as T →∞,

‖π̂ − π‖2 .P

√
(n3 lnn)g2ψL

4

Tσ4
1(K̃)

, (24)

Error Analysis for the Matrix A. Again, for sim-
plicity, instead of analyzing the quadratic programs
(11) and (20) with a weighted `2 norm, we consider
the following quadratic programs, whose solutions are
also asymptotically consistent for ν̂ ∈ {σ̂, η̂}:

min
Aij≥0,

∑
i Aij=1

‖ν̂ − ĈA‖22. (25)

Note that this QP is applicable even if νkk′ = 0 for
some k, k′, which implies that ν̂kk′ = 0 as well.

Theorem 4. Discrete case. Let Â be the solution
of (25) with ν̂ = σ̂ given in (5). Then, as T →∞,

∥∥∥Â−A∥∥∥
F
.P

√
n3g2ψ

Ta40a
2
1σ

10
1 (B)

(26)

and thus an observed sequence length

T &
n3g2ψ

a40a
2
1σ

10
1 (B)

(27)

suffices for accurate estimation.

−15 −10 −5 0 5 10 15
0
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Figure 1. The mixture and its components.

Theorem 5. Continuous case. Let Â be the so-
lution of (25) with ν̂ = η̂ given in (19). Then, as
T →∞,

∥∥∥Â−A∥∥∥
F
.P

√
(n7 lnn)g2ψL

4

Ta60σ
8
1(F )σ4

1(K)
(28)

and thus an observed sequence length

T &
(n7 lnn)g2ψL

4

a40σ
8
1(F )σ4

1(K)
(29)

suffices for accurate estimation.

Remarks. Note the key role of the smallest singular
value σ1, in the error bounds in the theorems above:
Two hidden states with very similar output probabil-
ities drive σ1 toward zero, thus requiring many more
observations to resolve the properties of the underlying
hidden sequence.

Inaccuracies in the output parameters. In prac-
tice we only have approximate output parameters,
found for example, via an EM algorithm. For simplic-
ity, we study the effect of such inaccuracies only in the
continuous case. Similar results hold in the discrete
case. To this end, assume the errors in the matrices
K and F of Eqs. (12) and (17) are of the form

K̂ = K + εL2Q, F̂ = F + εP, (30)

with ‖Q‖F , ‖P‖F ≤ 1. The following theorem shows
our estimators are stable w.r.t. errors in the estimated
output parameters. Note that if K,F are estimated by
a sequence of length T , then typically ε = O(T−1/2).

Theorem 6. Given an error of O(ε) in the output pa-
rameters as in Eq. (30), the estimators given in Theo-

rems 3 and 5, incur an additional error of O
(
nrε
a20σ

4
1

)
,

with r = 1 for estimating π, and r = 3
2 for estimating

A, and where σ1 is the smallest singular value of K/L2

when estimating π, and of F when estimating A.
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Figure 2. Average Error E‖Â−A‖2F and runtime comparison of different algorithms vs. sample size T .
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Figure 3. Convergence of the BW iterations.

5. Simulation Results

We illustrate our algorithm by some simulation results,
executed in MATLAB with the help of the HMM and
EM toolboxes3. We consider a toy example with n = 4
hidden states, whose outputs are univariate Gaussians,
N (µi, σ

2
i ), with A, Fθn and π given by

A =

 0.7 0.0 0.2 0.5
0.2 0.6 0.2 0.0
0.1 0.2 0.6 0.0
0.0 0.2 0.0 0.5

 ,

f1 = N (−4, 4)
f2 = N (0, 1)
f3 = N (2, 36)
f4 = N (4, 1)

πᵀ = (0.3529, 0.2941, 0.2353, 0.1176).

Fig.1 shows the mixture and its four components.

To estimate A we considered the following methods:

method initial θ initial A
1 BW random random
2 none exactly known QP
3 none EM QP
4 BW exactly known QP
5 BW EM QP
6 BW exactly known random
7 BW EM random

Fig. 2 (left) shows on a logarithmic scale E‖Â−A‖2F
3Available at http://www.cs.ubc.ca/~murphyk and

http://www.mathworks.com/ (under EM GM Fast).

vs. sample size T , averaged over 100 independent re-
alizations. Fig. 2 (right) shows the running time as
a function of T . In these two figures, the number of
iterations of the BW step was set to 20.

Fig. 3 (left) shows the convergence of E‖Â−A‖2F as a
function of the number of BW iterations, with known
output parameters, but either with or without the QP
results. Fig. 3 (right) gives E‖Â−A‖2F as a function
of the number of BW iterations for both known and
EM-estimated output parameters with 105 samples.

The simulation results highlight the following points:
(i) BW with a random guess of both A and the pa-
rameters θj = (µj , σ

2
j ) is useless if run for only 20

iterations. It often requires hundreds of iterations to
converge, in some cases to a highly inaccurate solution
(results not shows due to lack of space); (ii) For a small
number of samples the accuracy of QP+EM (method
3) is comparable to BW+EM (method 5) but requires
only a fraction of the computation time. (iii) When
the number of samples becomes large, the QP+EM
is not only faster, but (surprisingly) also more accu-
rate than BW+EM. As Fig. 3 suggests, this is due
to the slow convergence of the BW algorithm, which
requires more than 20 iterations for convergence. (iv)
Starting the BW iterations with (µi, σ

2
i ) estimated by

EM and A estimated by QP as its initial values signif-
icantly accelerated the convergence giving a superior
accuracy after only 20 iterations. These results show
the (well known) importance of initializing the BW al-
gorithm with sufficiently accurate starting values. Our
QP approach provides such an initial value for A by a
computationally fast algorithm.
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