
Inference algorithms for pattern-based CRFs on sequence data

Rustem Takhanov takhanov@mail.ru

Institute of Science and Technology (IST), Austria

Vladimir Kolmogorov vnk@ist.ac.at

Institute of Science and Technology (IST), Austria

Abstract

We consider Conditional Random Fields
(CRFs) with pattern-based potentials defined
on a chain. In this model the energy of a
string (labeling) x1 . . . xn is the sum of terms
over intervals [i, j] where each term is non-
zero only if the substring xi . . . xj equals a
prespecified pattern α. Such CRFs can be
naturally applied to many sequence tagging
problems.

We present efficient algorithms for the three
standard inference tasks in a CRF, namely
computing (i) the partition function, (ii)
marginals, and (iii) computing the MAP.
Their complexities are respectively O(nL),
O(nL`max) and O(nLmin{|D|, log(`max+1)})
where L is the combined length of input
patterns, `max is the maximum length of
a pattern, and D is the input alphabet.
This improves on the previous algorithms
of (Ye et al., 2009) whose complexities are
respectively O(nL|D|), O

(
n|Γ|L2`2max

)
and

O(nL|D|), where |Γ| is the number of input
patterns. In addition, we give an efficient al-
gorithm for sampling, and revisit the case of
MAP with non-positive weights. Finally, we
apply pattern-based CRFs to the problem of
the protein dihedral angles prediction.

1. Introduction

This paper addresses the sequence labeling (or the
sequence tagging) problem: given an observation z
(which is usually a sequence of n values), infer label-
ing x = x1 . . . xn where each variable xi takes values
in some finite domain D. Such problem appears in

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

many domains such as text and speech analysis, signal
analysis, and bioinformatics.

One of the most successful approaches for tackling the
problem is the Hidden Markov Model (HMM). The kth
order HMM is given by the probability distribution
p(x|z) = 1

Z exp{−E(x|z)} with the energy function

E(x|z) =
∑
i∈[1,n]

ψi(xi, zi) +
∑

(i,j)∈Ek

ψij(xi:j) (1)

where Ek = {(i, i+k)|i ∈ [1, n−k]} and xi:j = xi . . . xj
is the substring of x from i to j. A popular generaliza-
tion is the Conditional Random Field model (Lafferty
et al., 2001) that allows all terms to depend on the full
observation z:

E(x|z) =
∑
i∈[1,n]

ψi(xi, z) +
∑

(i,j)∈Ek

ψij(xi:j , z) (2)

We study a particular variant of this model called a
pattern-based CRF. It is defined via

E(x|z) =
∑
α∈Γ

∑
[i,j]⊆[1,n]
j−i+1=|α|

ψαij(z) · [xi:j = α] (3)

where Γ is a fixed set of non-empty words, |α| is the
length of word α and [·] is the Iverson bracket. If we
take Γ = D ∪Dk then (3) becomes equivalent to (2);
thus we do not loose generality (but gain more flexi-
bility).

Intuitively, pattern-based CRFs allow to model long-
range interactions for selected subsequences of labels.
This could be useful for a variety of applications: in
part-of-speech tagging patterns could correspond to
certain syntactic constructions or stable idioms; in pro-
tein secondary structure prediction - to sequences of
dihedral angles corresponding to stable configuration
such as α-helixes; in gene prediction - to sequences
of nucleatydes with supposed functional roles such as
“exon” or “intron”, specific codons, etc.

Inference algorithms for pattern-based CRFs on sequence data

Inference This paper focuses on inference algorithms
for pattern-based CRFs. The three standard inference
tasks are (i) computing the partition function Z =∑
x exp{−E(x|z)}; (ii) computing marginal probabili-

ties p(xi:j = α|z) for all triplets (i, j, α) present in (3);
(iii) computing MAP, i.e. minimizing energy (3). The
complexity of solving these tasks is discussed below.
We denote L =

∑
α∈Γ |α| to be total length of patterns

and `max = maxα∈Γ |α| to be the maximum length of
a pattern.

A naive approach is to use standard message passing
techniques for an HMM of order k=`max−1. However,
they would take O(n|D|k+1) time which would become
impractical for large k. More efficient algorithms with
complexities O(nL|D|), O

(
n|Γ|L2`2max

)
and O(nL|D|)

respectively were given by (Ye et al., 2009).1 Our first
contribution is to improve this to O(nL), O(nL`max)
and O(nL ·min{|D|, log(`max +1)}) respectively (more
accurate estimates are given in the next section).

We also give an algorithm for sampling from the dis-
tribution p(x|z). Its complexity is either (i) O(nL)
per sample, or (ii) O(n) per sample with an O(nL|D|)
preprocessing (assuming that we have an oracle that
produces independent samples from the uniform dis-
tribution on [0, 1] in O(1) time).

Finally, we consider the case when all costs ψαij(z)
are non-positive. (Komodakis & Paragios, 2009) gave
an O(nL) technique for minimizing energy (3) in this
case. We present a modification that has the same
worst-case complexity but can beat the algorithm of
(Komodakis & Paragios, 2009) in the best case.

Related work The works of (Ye et al., 2009) and (Ko-
modakis & Paragios, 2009) are probably the most re-
lated to our paper. The former applied pattern-based
CRFs to the handwritten character recognition prob-
lem and to the problem of identification of named enti-
ties from texts. The latter considered a pattern-based
CRF on a grid for a computer vision application; the
MAP inference problem in (Komodakis & Paragios,
2009) was converted to sequence labeling problems by
decomposing the grid into thin “stripes”.

(Qian et al., 2009) considered a more general formu-
lation in which a single pattern is characterized by a
set of strings rather than a single string α. They pro-
posed an exact inference algorithm and applied it to
the OCR task and to the Chinese Organization Name
Recognition task. However, their algorithm could take

1Some of the bounds stated in (Ye et al., 2009) are actu-
ally weaker. However, it is not difficult to show that their
algorithms can be implemented in times stated above, us-
ing our Lemma 1.

time exponential in the total lengths of input patterns;
no subclasses of inputs were identified which could be
solved in polynomial time.

A different generalization (for non-sequence data) was
proposed in (Rother et al., 2009). Their inference pro-
cedure reduces the problem to the MAP estimation
in a pairwise CRF with cycles, which is then solved
with approximate techniques such as BP, TRW or
QPBO. This model was applied to the texture restora-
tion problem.

(Nguyen et al., 2011) extended algorithms in (Ye et al.,
2009) to the Semi-Markov model (Sarawagi & Cohen,
2004). We conjecture that our algorithms can be ex-
tended to this case as well, and can yield a better com-
plexity compared to (Nguyen et al., 2011).

2. Notation and preliminaries

First, we introduce a few definitions.

• A pattern is a pair α = ([i, j], x) where [i, j] is an
interval in [1, n] and x = xi . . . xj is a sequence over
alphabet D indexed by integers in [i, j] (j ≥ i− 1).
The length of α is denoted as |α| = |x| = j − i+ 1.

• Symbols “∗” denotes an arbitrary word or pattern
(possibly the empty word ε or the empty pattern
εs , ([s+1, s], ε) at position s). The exact meaning
will always be clear from the context. Similary, “+”
denotes an arbitrary non-empty word or pattern.

• The concatenation of patterns α = ([i, j], x) and
β = ([j + 1, k], y) is the pattern αβ , ([i, k], xy).
Whenever we write αβ we assume that it is defined,
i.e. α = ([·, j], ·) and β = ([j + 1, ·], ·) for some j.

• For a pattern α = ([i, j], x) and interval [k, `] ⊆ [i, j],
the subpattern of α at position [k, `] is the pattern
αk:` , ([k, `], xk:`) where xk:` = xk . . . x`.
If k = i then αk:` is called a prefix of α. If ` = j
then αk:` is a suffix of α.

• If β is a subpattern of α, i.e. β = αk:` for some
[k, `], then we say that β is contained in α. This is
equivalent to the condition α = ∗β∗.
• Di:j = {([i, j], x) | x ∈ D[i,j]} is the set of patterns

with interval [i, j]. We typically use letter x for pat-
terns in D1:s and letters α, β, . . . for other patterns.
Patterns x ∈ D1:s will be called partial labelings.

• For a set of patterns Π and index s ∈ [0, n] we denote
Πs to be the set of patterns in Π that end at position
s: Πs = {([i, s], α) ∈ Π}.

• For a pattern α let α− be the prefix of α of length
|α| − 1; if α is empty then α− is undefined.

We will consider the following general problem. Let
Π◦ be the set of patterns of words in Γ placed at all

Inference algorithms for pattern-based CRFs on sequence data

possible positions: Π◦ = {([i, j], α) | α ∈ Γ)}. Let
(R,⊕,⊗) be a commutative semiring with elements
O,1 ∈ R which are identities for ⊕ and ⊗ respectively.
Define the cost of pattern x ∈ Di:j via

f(x) =
⊗

α∈Π◦,x=∗α∗
cα (4)

where cα ∈ R are fixed constants. (Throughout the
paper we adopt the convention that operations ⊕ and
⊗ over the empty set of arguments give respectively O
and 1, and so e.g. f(εs) = 1.) Our goal is to compute

Z =
⊕

x∈D1:n

f(x) (5)

Example 1 If (R,⊕,⊗) = (R,+,×) then problem (5)
is equivalent to computing the partition function for
the energy (3), if we set c([i,j],α) = exp{−ψαij(z)}.

Example 2 If (R,⊕,⊗) = (R,min,+) where R ,
R ∪ {+∞} then we get the problem of minimizing en-
ergy (3), if c([i,j],α) = ψαij(z).

The complexity of our algorithms will be stated in
terms of the following quantities:

• P = |{α | ∃α∗ ∈ Γ, α 6= ε}| is the number of distinct
non-empty prefixes of words in Γ. Note that P ≤ L.

• P ′ = |{α|∃α+ ∈ Γ}| is the number of distinct proper
prefixes of words in Γ. There holds P

P ′ ∈ [1, |D|].
If Γ = D1 ∪D2 ∪ . . . ∪Dk then P

P ′ = |D|. If Γ is a

sparse random subset of the set above then P
P ′ ≈ 1.

• I(Γ) = {α | ∃α∗, ∗α ∈ Γ, α 6= ε} is the set of non-
empty words which are both prefixes and suffixes of
some words in Γ. Note that Γ⊆I(Γ) and |I(Γ)|≤P .

We will present 6 algorithms (omitting proofs due
to space limitations; all proofs are given in
(Takhanov & Kolmogorov, 2012)):

Sec. 3: Θ(nP) algorithm for the case when (R,⊕,⊗)
is a ring, i.e. it has operation 	 that satisfies (a	 b)⊕
b = a for all a, b ∈ R. This holds for the semiring in
Example 1 (but not for Example 2).
Sec. 4: Θ(nP) algorithm for sampling. Alternatively,
it can be implemented to produce independent samples
in Θ(n) time per sample with a Θ(nP |D|) preprocess-
ing.
Sec. 5: O(n

∑
α∈I(Γ) |α|) algorithm for computing

marginals for all patterns α ∈ Π◦.
Sec. 6: Θ(nP ′|D|) algorithm for a general commu-
tative semiring, which is equivalent to the algorithm
in (Ye et al., 2009). It will be used as a motivation for
the next algorithm.
Sec. 7: O(nP logP) algorithm for a general commuta-
tive semiring; for the semiring in Example 2 the com-
plexity can be reduced to O(nP log(`max + 1)).

.

.0

.1

. . . .10

. . .100

. . .101

. .1000

. .1010

0 1

1000 100 10

1010

101

ε

Figure 1. Graph G[Πs] for the set of 8 patterns shown on
the left (for brevity, their intervals are not shown; they all
end at the same position s.) This set of patterns would
arise if Γ = {0, 1, 1000, 1010} and Π was defined as the set
of all prefixes of patterns in Π◦.

Sec. 8 in (Takhanov & Kolmogorov, 2012): O(nP)
algorithm for the case (R,⊕,⊗) = (R,min,+), cα ≤ 0
for all α ∈ Π◦.

All algorithms will have the following structure. Given
the set of input patterns Π◦, we first construct another
set of patterns Π; it will typically be either the set of
prefixes or the set of proper prefixes of patterns in Π◦.
This can be done in a preprocessing step since sets Πs

will be isomorphmic (up to a shift) for indexes s that
are sufficiently far from the boundary. (Recall that Πs

is the set of patterns in Π that end at position s.) Then
we recursively compute messages Ms(α) for α ∈ Πs

which have the following interpretation: Ms(α) is the
sum (“⊕”) of costs f(x) over a certain set of partial
labelings of the form x = ∗α ∈ D1:s. In some of the
algorithms we also compute messages Ws(α) which is
the sum of f(x) over all partial labelings of the form
x = ∗α ∈ D1:s.

Graph G[Πs] The following construction will be used
throughout the paper. Given a set of patterns Π and
index s, we define G[Πs] = (Πs, E[Πs]) to be a directed
graph with the following set of edges: (α, β) belongs
to E[Πs] for α, β ∈ Πs if α is a proper suffix of β
(β = +α) and Πs does not have an “intermediate”
suffix γ of β with |β| > |γ| > |α|. It can be checked
that graph G[Πs] is a directed forest. If εs ∈ Πs then
G[Πs] is connected and therefore is a tree. In this case
we treat εs as the root. An example is shown in Fig. 1.

Computing partial costs Recall that f(α) for a
pattern α is the cost of all patterns inside α (eq. (4)).
We also define φ(α) to be the cost of only those pat-
terns that are suffixes of α:

φ(α) =
⊗

β∈Π◦,α=∗β

cβ (6)

Quantities φ(α) and f(α) will be heavily used by the
algorithms below; let us show how to compute them
efficiently.

Lemma 1. Let Π be a set of patterns with εs ∈ Π for

Inference algorithms for pattern-based CRFs on sequence data

all s ∈ [0, n]. Values φ(α) for all α ∈ Π can be com-
puted using O(|Π|) multiplications (“⊗”). The same
holds for values f(α) assuming that Π is prefix-closed,
i.e. α− ∈ Π for all non-empty patterns α ∈ Π.

Sets of partial labelings Let Πs be a set of patterns
that end at position s. Assume that εs ∈ Πs. For a
pattern α ∈ Πs we define

Xs(α) = {x ∈ D1:s | x = ∗α} (7)

Xs(α; Πs) = Xs(α)−
⋃

(α,β)∈E[Πs]

Xs(β) (8)

It can be seen that sets Xs(α; Πs) are disjoint, and
their union over α ∈ Πs is D1:s. Furthermore, there
holds

Xs(α; Πs) = {x ∈ Xs(α) | x 6= ∗β ∀β = +α ∈ Πs} (9)

We will use eq. (9) as the definition of Xs(α; Πs) in the
case when α /∈ Πs.

3. Computing partition function

In this section we give an algorithm for computing
quantity (5) assuming that (R,⊕,⊗) is a ring. This
can be used, in particular, for computing the partition
function. We will assume that D ⊆ Γ; we can always
add D to Γ if needed2.

First, we select set Π as the set of prefixes of patterns
in Π◦:

Π = {α | ∃α∗ ∈ Π◦} (10)

We will compute the following quantities for each s ∈
[0, n], α ∈ Πs:

Ms(α) =
⊕

x∈Xs(α;Πs)

f(x) , Ws(α) =
⊕

x∈Xs(α)

f(x) (11)

It is easy to see that for α ∈ Πs the following equalities
relate Ms and Ws:

Ms(α) = Ws(α)	
⊕

(α,β)∈E[Πs]

Ws(β) (12a)

Ws(α) = Ms(α)⊕
⊕

(α,β)∈E[Πs]

Ws(β) (12b)

2Note that we still claim complexity O(nP) where P is
the number of distinct non-empty prefixes of words in the
original set Γ. Indeed, we can assume w.l.o.g. that each
letter in D occurs in at least one word α∈Γ. (If not, then
we can “merge” non-occuring letters to a single letter and
add this letter to Γ; clearly, any instance over the original
pair (D,Γ) can be equivalenly formulated as an instance
over the new pair. The transformation increases P only by
1). The assumption implies that |D| ≤ P . Adding D to Γ
increases P by at most P , and thus does not affect bound
O(nP).

These relations motivate the following algorithm.
Since |Πs| = P + 1 for indexes s that are sufficiently
far from the boundary, its complexity is Θ(nP) assum-
ing that values φ(α) in eq. (13a) are computed using
Lemma 1.

Algorithm 1 Computing Z =
⊕

x∈D1:n

f(x) for a ring

1: initialize messages: set W0(ε0) := O
2: for each s = 1, . . . , n traverse nodes α ∈ Πs of tree
G[Πs] starting from the leaves and set

Ms(α):=φ(α)⊗

Ws−1(α−)	
⊕

(α,β)∈E[Πs]

Ws−1(β−)

(13a)

Ws(α):=Ms(α)⊕
⊕

(α,β)∈E[Πs]

Ws(β) (13b)

Exception: if α = εs then set Ms(α) := O instead
of (13a)

3: return Z := Wn(εn)

Theorem 2. Algorithm 1 is correct, i.e. it returns the
correct value of Z =

⊕
x F (x).

4. Sampling

In this section consider the semiring (R,⊕,⊗) =
(R,+,×) from Example 1. We assume that all costs cα
are strictly positive. We present an algorithm for sam-
pling labelings x ∈ D1:n according to the probability
distribution p(x) = f(x)/Z.

As in the previous section, we assume that D ⊆ Γ,
and define Π to be the set of prefixes of patterns in
Π◦ (eq. (10)). For a node α ∈ Πs let Ts(α) be the
set of nodes in the subtree of G[Πs] rooted at α, with
α ∈ Ts(α) ⊆ Πs. For a pattern α ∈ Πs+1 − {εs+1} we
define set

∆s(α) = Ts(α
−)−

⋃
(α,β)∈G[Πs+1]

Ts(β
−) (14)

We can now present the algorithm.

Algorithm 2 Sample x ∼ p(x) = f(x)/Z

1: run Algorithm 1 to compute messages Ms(α) for
all patterns α = ([·, s], ·) ∈ Π

2: sample αn∈Πn with probability p(αn)∝Mn(αn)
3: for s = n−1, . . . , 1 sample αs ∈ ∆s(αs+1) with

probability p(αs) ∝Ms(αs)
4: return labeling x with xs:s = (αs)s:s for s ∈ [1, n]

We say that step s of the algorithm is valid if either
(i) s = n, or (ii) s ∈ [1, n − 1], step s + 1 is valid,

Inference algorithms for pattern-based CRFs on sequence data

αs+1 6= εs+1 and Ms(α) > 0 for some α ∈ ∆s(αs+1).
(This is a recursive definition.) Clearly, if step s is
valid then line 3 of the algorithm is well-defined.

Theorem 3. (a) With probability 1 all steps of the
algorithm are valid. (b) The returned labeling x ∈ D1:n

is distributed according to p(x) = f(x)/Z.

Complexity Assume that we have an oracle that
produces independent samples from the uniform dis-
tribution on [0, 1] in O(1) time.

The main subroutine performed by the algorithm is
sampling from a given discrete distribution. Clearly,
this can be done in Θ(N) time where N is the number
of allowed values of the random variable. With a Θ(N)
preprocessing, a sample can also be produced in O(1)
time by the so-called “alias method” (Vose, 1991).

This leads to two possible complexities: (i) Θ(nP)
(without preprocessing); (ii) Θ(n) per sample (with
preprocessing). Let us discuss the complexity of this
preprocessing. Running Algorithm 1 takes Θ(nP)
time. After that, for each α ∈ Πs+1 we need to run the
linear time procedure of (Vose, 1991) for distributions
p(β) ∝ Ms(β), β ∈ ∆s(αs+1). The following theorem
implies that this takes Θ(nP |D|) time.

Theorem 4. There holds
∑
α∈Πs−{εs} |∆s−1(α)| =

|Πs−1| · |D|.

To summarize, we showed that with a Θ(nP |D|) pre-
processing we can compute independent samples from
p(x) in Θ(n) time per sample.

5. Computing marginals

In this section we again consider the semiring
(R,⊕,⊗) = (R,+,×) from Example 1 where all costs
cα are strictly positive, and consider a probablity dis-
tribution p(x) = f(x)/Z over labelings x ∈ D1:n.

For a pattern α we define

Ω(α) = {x ∈ D1:n | x = ∗α∗} (15)

Z(α) =
∑

x∈Ω(α)

f(x) (16)

We also define the set of patterns

Π = {α | ∃α∗, ∗α ∈ Π◦, α is non-empty} (17)

Note that Π◦ ⊆ Π and |Πs| = |I(Γ)| for indexes s
that are sufficiently far from the boundary. We will
present an algorithm for computing Z(α) for all pat-
terns α ∈ Π in time O(n

∑
α∈I(Γ) |α|). Marginal prob-

abilities of a pattern-based CRF can then be computed
as p(xi:j = α) = Z(α)/Z for a pattern α = ([i, j], ·).

In the previous section we used graph G[Πs] for a set
of patterns Πs; here we will need an analogous but a
slightly different construction for patterns in Π. For
patterns α, β we write α v β if β = ∗α∗. If we have
β = +α+ then we write α @ β.

Now consider α ∈ Π. We define Φ(α) to be the set of
patterns β ∈ Π such that α @ β and there is no other
pattern γ ∈ Π with α @ γ v β.

Our algorithm is given below. In the first step it runs
Algorithm 1 from left to right and from right to left; as

a result, we get forward messages
−→
W j(α) and backward

messages
←−
W i(α) for patterns α = ([i, j], ·) such that

−→
W j(α) =

∑
x=∗α
x∈D1:j

f(x)
←−
W i(α) =

∑
y=α∗
y∈Di:n

f(y) (18)

Algorithm 3 Computing values Z(α)

1: run Algorithm 1 in both directions to get messages−→
W j(α),

←−
W i(α). For each pattern α = ([i, j], ·) ∈ Π

set

W (α) :=

−→
W j(α)

←−
W i(α)

f(α)
(19a)

W−(α) :=

−→
W j−1(αi:j−1)

←−
W i+1(αi+1:j)

f(αi+1:j−1)
(19b)

2: for α∈Π (in the order of decreasing |α|) set

Z(α) := W (α) +
∑

β∈Φ(α)

[
Z(β)−W−(β)

]
(20)

The correctness of the algorithm is proved in
(Takhanov & Kolmogorov, 2012). Let us discuss its
complexity. We claim that all values f(α) used by
the algorithm can be computed in O(n(P + S)) time
where P and S are respectively the number of distinct
non-empty prefixes and suffixes of words in Γ. Indeed,
we first compute these values for patterns in the set−→
Π , {α | ∃α∗ ∈ Π◦}; by Lemma 1, this takes O(nP)
time. This covers values f(α) used in eq. (19a). As for
the value in eq. (19b) for pattern α = ([i, j], ·) ∈ Π, we
can use the formula

f(αi+1:j−1) =
f(α)c̃α
−→
φ (α)

←−
φ (α)

where c̃α = cα if α ∈ Π◦ and c̃α = 1 otherwise, and

−→
φ (α) =

∏
β∈Π◦,α=∗β

cβ ,
←−
φ (α) =

∏
β∈Π◦,α=β∗

cβ

Inference algorithms for pattern-based CRFs on sequence data

The latter values can be computed in O(n(P+S)) time
by applying Lemma 1 in the forward and backward
directions. (In fact, there were already computed when
running Algorithm 1.)

We showed that step 1 can be implemented in O(n(P+
S)) time; let us analyze step 2. The following
lemma implies that it performsO(n

∑
α∈I(Γ) |α|) arith-

metic operations; since
∑
α∈I(Γ) |α| ≥

∑
α∈Γ |α| ≥

max {P, S}, we then get that the overall complexity
is O(n

∑
α∈I(Γ) |α|).

Lemma 5. For each β ∈ Π there exist at most 2|β|
patterns α ∈ Π such that β ∈ Φ(α).

Remark 1. An alternative method for comput-

ing marginals with complexity O
(
n|Γ|L2`2max

)
was given

in (Ye et al., 2009). They compute value Z(α) directly

from messages
−→
M j′(·) and

←−
M i′(·) by summing over pairs

of patterns (thus the square factor in the complexity). In

contrast, we use a recursive rule that uses previously com-

puted values of Z(·). We also use the existence of the “	”

operation. This allows us to achieve better complexity.

6. General case: O(nP ′|D|) algorithm

In this section and in the next one we consider the case
of a general commutative semiring (R,⊕,⊗) (without
assuming the existence of an inverse operation for ⊕).
This can be used for computing MAP in CRFs con-
taining positive costs cα. The algorithm closely resem-
bles the method in (Ye et al., 2009); it is based on the
same idea and has the same complexity. Our primary
goal of presenting this algorithm is to motivate the
O(nP log(`max + 1)) algorithm for the MAP problem
given in the next section.

First, we select Π as the set of proper prefixes of pat-
terns in Π◦:

Π = {α | ∃α+ ∈ Π◦} (21)

For each α ∈ Πs we will compute message

Ms(α) =
⊕

x∈Xs(α;Πs)

f(x) (22)

In order to go from step s− 1 to s, we will use an
extended set of patterns Π̂s:

Π̂s = {α | α−∈Πs−1} ∪ {εs} (23)

= {αc | α∈Πs−1, c∈Ds:s} ∪ {εs}

It can be checked that

Πs ⊆ Π̂s and Π◦s ⊆ Π̂s (24)

In step s we compute values Ms(α) in eq. (22) for all

α ∈ Π̂s. Note, we now use the generalized definition of

Xs(α; Πs) (eq. (9)) since we may have α /∈ Πs. After

completing step s, messages Ms(α) for α ∈ Π̂s−Πs can
be discarded.

Our algorithm is given below. We have |Π̂s|=P ′|D|+1
for indexes s that are sufficiently far from the bound-
ary, and thus the algorithm’s complexity is Θ(nP ′|D|)
(if Lemma 1 is used for computing values φ(α)).

Algorithm 4 Computing Z =
⊕

x∈D1:n f(x)

1: initialize messages: set M0(ε0) := O
2: for each s = 1, . . . , n traverse nodes α ∈ Π̂s of tree
G[Π̂s] starting from the leaves and set

Ms(α) :=
[
φ(α)⊗Ms−1(α−)

]
⊕

⊕
(α,β)∈E[Π̂s],β /∈Πs

Ms(β) (25)

If α = εs then use Ms−1(α−) = O
3: return Z :=

⊕
α∈Πn

Mn(α)

Theorem 6. Algorithm 4 is correct.

Remark 2 As we already mentioned, Algorithm 4 resem-
bles the algorithm in (Ye et al., 2009). The latter computes
the same set of messages as we do but using the following
recursion: for a pattern α ∈ Πs − {εs} they set

Ms(α) :=
⊕

γ∈Ts−1(α−)−
⋃

(α,β)∈E[Πs]
Ts−1(β−)

φ(γa)⊗Ms−1(γ) (26)

where a = αs:s is the last letter of α and Ts−1(β) = {γ |γ =

∗β, γ ∈ Πs−1} for β ∈ Πs−1 is the set of patterns in the

branch of G[Πs−1] rooted at β. It can be shown that up-

dates (25) and (26) are equivalent: they need exactly the

same number of additions (and the same number of mul-

tiplications, if φ(γa) in eq. (26) is replaced with φ(α) and

moved before the sum).

7. General case: O(nP logP) algorithm

In the previous section we presented an algorithm
for a general commutative semiring with complexity
O(nP ′|D|). In some applications the size of the input
alphabet can be very large (e.g. hundreds or thou-
sands), so the technique may be very costly. Below we
present a more complicated version with complexity
O(nP logP). If (R,⊕,⊗) = (R,min,+) then this can
be reduced to O(nP log(`max +1)) using the algorithm
for Range Minimum Queries by (Berkman & Vishkin,
1993). We assume that D ⊆ Γ.

We will use the same definitions of sets Πs and Π̂s as
in the previous section, and the same intepretation of
messages Ms(α) given by eq. (22). We need to solve
the following problem: given messages Ms−1(α) for
α ∈ Πs−1, compute messages Ms(α) for α ∈ Πs.

Inference algorithms for pattern-based CRFs on sequence data

��� ���

������������ ���

������

��� ���

���

���

���

���

���

���

���

���

���

��� ���

���

���

���

���

���

���

���

���

���

α

β

β↓

Figure 2. Structure of the subtree ofG[Π̂s] rooted at a node
α ∈ Σs. White circles represent nodes in As (so all their
children are also white), gray circles - nodes in Bs, and
black circles - nodes in Σs. Note, if β ∈ Bs is a child of α
then (α, β↓) ∈ E[Σs].

Recall that in the previous section this was done by
computing messages Ms(α) for patterns in the ex-

tended set Π̂s of size O(P ′|D|). The idea of our modi-
fication is to compute these messages only for patterns
in the set Σs where

Σ◦s ⊆ Σs ⊆ Π̂s Σ◦s = Πs ∪Π◦s |Σs| ≤ 2|Σ◦s|

Note that |Σ◦s| ≤ P + 1. Patterns in Σs will be called
special. To define them, we will use the following no-
tation for a node α ∈ Π̂s:

• Φ̂s(α) is the set of children of α in the tree G[Π̂s].

• T̂s(α) is the set of nodes in the subtree of G[Π̂s]

rooted at α. We have α ∈ T̂s(α) ⊆ Π̂s.

We now define set Σs as follows: pattern α ∈ Π̂s is
special if either (i) α ∈ Σ◦s, or (ii) α has at least two

children β1, β2 ∈ Φ̂s(α) such that subtree T̂s(βi) for i ∈
{1, 2} contains a pattern from Σ◦s, i.e. T̂s(βi)∩Σ◦s 6= ∅.

The set of remaining patterns Π̂s−Σs will be split into
two sets As and Bs as follows:

• As is the set of patterns α ∈ Π̂s − Σ◦s such that

subtree T̂s(α) does not contain patterns from Σ◦s.

• Bs is the set of patterns α ∈ Π̂s−Σ◦s such that α has

exactly one child β inG[Π̂s] for which T̂s(β)∩Σ◦s 6=∅.

Clearly, Π̂s is a disjoint union of As, Bs and Σs.

Consider a node α ∈ Bs. From the definition, α has
exactly one link to a child in G[Π̂s] that belongs to
Bs ∪ Σs. If this child does not belong to Σs, then it
belongs to Bs and the same argument can be repeated
for it. By following such links we eventually get to a
node in Σs; the first such node will be denoted as α↓.

We will need two more definitions. For an index t and
patterns α, β ending at position t with β = +α we
denote

Wt(α) =
⊕

x∈Xt(α)

f(x) (27a)

Vt(α, β) =
⊕

x∈Xt(α)−Xt(β)

f(x) (27b)

We can now formulate the structure of the algorithm.

Algorithm 5 Computing Z =
⊕

x∈D1:n f(x)

1: initialize messages: set M0(ε) := O
2: for each s = 1, . . . , n traverse nodes α ∈ Σs of tree
G[Σs] starting from the leaves and set

Ms(α) := φ(α)⊗ [Ms−1(α−)⊕As(α)⊕Bs(α)]

⊕
⊕

(α,β)∈E[Σs],β /∈Πs

Ms(β) (28)

where

As(α) =
⊕

β∈Φ̂s(α)∩As

Ws−1(β−) (29a)

Bs(α) =
⊕

β∈Φ̂s(α)∩Bs

Vs−1(β−, β↓
−) (29b)

If α = εs then use Ms−1(α−) := O
3: return Z :=

⊕
α∈Πn

Mn(α)

To fully specify the algorithm, we still need to describe
how we compute quantities As(α) and Bs(α) defined
by eq. (29a) and (29b). This is addressed by the the-
orem below.

Theorem 7. (a) Algorithm 5 is correct.
(b) There holds |Σs| ≤ 2|Σ◦s| − 1 ≤ 2P + 1.
(c) Let h be the maximum depth of tree G[Πs−1].
(Note, h ≤ `max + 1.) With an O(P ′ log h) prepro-
cessing, values Vs−1(α, β) for any α, β ∈ Πs−1 with
β = +α can be computed in O(log h) time.
(d) Values As(α) for all α ∈ Σs can be computed in
O(P logP) time, or in O(P) time when (R,⊕,⊗) =
(R,min,+).

Clearly, the theorem implies that the algorithm
can be implemented in O(nP logP) time, or in
O(nP log(`max+1)) time when (R,⊕,⊗)=(R,min,+).
To see this, observe that the sum in (29b) is effectively
over a subset of children of α in the tree G[Σs] (see
Fig. 2), and this tree has size O(P).

8. Experiments and discussion

Experimental evaluation of pattern-based CRF on dif-
ferent tasks can be found in (Ye et al., 2009; Qian et al.,

Inference algorithms for pattern-based CRFs on sequence data

2009; Nguyen et al., 2011). Here we consider the prob-
lem of protein backbone dihedral angles prediction,
and compare with the HMMSTR method in (Bystroff
et al., 2000) which is often used as a baseline method.
It is based on the HMM approach where the states of
an HMM (“I-sites”) are computed by clustering fre-
quently occuring sequence-structure motifs.

We learn our pattern-based CRF using the Max-
Margin approach (“struct-SVM”) (Tsochantaridis
et al., 2004); it calls MAP inference as a subroutine.

Experimental data was taken from the PDB database
(www.pdb.org). The resulting sample contained 602
all-alpha proteins. Each protein in dataset is given
as a pair of words: an amino-acid sequence z and a
labeling x. Each amino-acid is labeled by two angles
φ, ψ. We discretized each angle into T = 18 levels
with the step of 20 degrees, and added a special value
“unknown” (since it is sometimes present in the data);
thus, the label set has size |D| = (T + 1)2 = 361.

We selected a set A of triplets a = (z, k, x) where
x ∈ Dk is a subsequence of labels, k ∈ [1, |z|] and z is
the amino-acid at the k-th position of the correspond-
ing amino-acids subsequence.3 We then considered the
distribution

p(x|z) ∼ exp{−
∑
a∈A

waha(x, z)} (30)

where ha(x, z) is the number of occurences of triplets
a consistent with x and z.

We use the Hamming loss function: ∆(x, x′) =∑
iH(xi, x

′
i) where H(·, ·) is the sum of distances for

angles φ and ψ (recall that xi = (φi, ψi)).
4 Note that

struct-SVM requires the maximization of ∆ (x, xt) +∑
a∈A waha(x, zt) over labelings x; this can be done

by algorithms in sections 6 or 7.

The sample set was divided into two subsets: a train-
ing sample (500) and test sample (102). The training
sample was used to train parameters for different regu-
larization parameters C of struct-SVM and subsequent
choice of the best one, and the resulting prediction ac-
curacy was assessed on the test set. As a measure of ac-
curacy, we used the MDA value from (Bystroff et al.,
2000), which is the fraction of residues in segments of
length 8 with no greater than 120 maximum deviation
between observed and predicted backbone torsion an-
gles. We obtained the result MDA = 59.0%. This

3 We took triplets that occur more then 20 times in
the database; this gave 7467 triplets. The average pattern
length was 3.4, with 6 being the maximum.

4For discretized angles φ we use Hφ (φ, φ′) =
min {|φ− φ′| , T − |φ− φ′|}. If one of the labels is “un-
known” and the other one is not then we use Hφ (φ, φ′) = T
instead. The distance for angles ψ is defined similarly.

approximately corresponds to the result of HMMSTR
(57.1% on a training data of 618 randomly selected
proteins, and 59.1% on a test data of size 61). How-
ever, they used an additional trick, namely clustering
frequently occuring sequence-structure motifs. This
allowed them, in particular, to utilize more informa-
tion, for example, the whole sequence of the amino-
acids for a given motif was taken into account (while
we look only at the first and the last amino-acids of a
pattern).

We thus expect that with a better “feature selection”
step the results of pattern-based CRFs can be im-
proved. In (Ye et al., 2009) this was done by boosting
type methods (Dietterich et al., 2004) with sequen-
tial selection of useful features. Another improvement
can be made by considering “superpatterns” by which
we mean clusters of patterns (where patterns are not
only sequences of labels, but also different local struc-
tures like “triplets” that we used) that have the same
weights in learning model. In this case a problem of
clusterization of patterns set is to be addressed before
learning of weights. It is also important to note that
our algorithms can adapt to formulation with long su-
perpatterns, since their complexities depend linearly
on the number of patterns.

A C++ implementation of our algorithms can be found
at http://pub.ist.ac.at/~vnk/software.html.

9. Conclusions and future work

The HMM/CRF models are a method of choice for
many sequence labeling problems. Pattern-based
CRFs generalize these models by providing more flex-
ibility; they allow efficiently encoding certain long-
range interactions. We provided a complete set of tools
for inference in pattern-based CRFs. Importantly, all
of our algorithms are linear in the number of patterns.

Our preliminary experiments show a potential of this
model for the protein dihedral angles prediction prob-
lem. With a rather basic model were able to ob-
tain results close to that in (Bystroff et al., 2000)
who used many optimizations. To improve results fur-
ther, we believe it is important to introduce techniques
for parameterizing pattern-based CRFs, including ef-
ficient algorithms for feature selection and superpat-
terns clusterization. This will be our future work.

Acknowledgements We thank Herbert Edelsbrun-
ner for helpful discussions.

References

Berkman, Omer and Vishkin, Uzi. Recursive star-tree
parallel data structure. SIAM Journal on Comput-

www.pdb.org
http://pub.ist.ac.at/~vnk/software.html

Inference algorithms for pattern-based CRFs on sequence data

ing, 22(2):221–242, 1993.

Bystroff, C., Thorsson, V., and Baker, D. HMMSTR:
a hidden Markov model for local sequence-structure
correlation in proteins. J Mol. Biol., 301:173–190,
2000.

Dietterich, T. G., Ashenfelter, A., and Bulatov, Y.
Training conditional random fields via gradient tree
boosting. In ICML, 2004.

Komodakis, N. and Paragios, N. Beyond pairwise ener-
gies: Efficient optimization for higher-order MRFs.
In CVPR, 2009.

Lafferty, J., McCallum, A., and Pereira, F. Condi-
tional random fields: Probabilistic models for seg-
menting and labeling sequence data. In ICML, 2001.

Nguyen, Viet Cuong, Ye, Nan, Lee, Wee Sun, and
Chieu, Hai Leong. Semi-Markov conditional ran-
dom field with high-order features. In ICML 2011
Structured Sparsity: Learning and Inference Work-
shop, 2011.

Qian, Xian, Jiang, Xiaoqian, Zhang, Qi, Huang, Xuan-
jing, and Wu, Lide. Sparse higher order conditional
random fields for improved sequence labeling. In
ICML, 2009.

Rother, C., Kohli, P., Feng, W., and Jia, J. Minimiz-
ing sparse higher order energy functions of discrete
variables. In CVPR, 2009.

Sarawagi, S. and Cohen, W. Semi-Markov conditional
random fields for information extraction. In NIPS,
2004.

Takhanov, R. and Kolmogorov, V. Inference algo-
rithms for pattern-based CRFs on sequence data.
ArXiv, abs/1210.0508, 2012.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Al-
tun, Y. Support vector machine learning for inter-
dependent and structured output spaces. In ICML,
2004.

Vose, M. D. A linear algorithm for generating random
numbers with a given distribution. IEEE Transac-
tions on software engineering, 17(9):972–975, 1991.

Ye, Nan, Lee, Wee Sun, Chieu, Hai Leong, and Wu,
Dan. Conditional random fields with high-order fea-
tures for sequence labeling. In NIPS, 2009.

