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Abstract

In this paper, we study the generalization
properties of online learning based stochas-
tic methods for supervised learning problems
where the loss function is dependent on more
than one training sample (e.g., metric learn-
ing, ranking). We present a generic decou-
pling technique that enables us to provide
Rademacher complexity-based generalization
error bounds. Our bounds are in general
tighter than those obtained by Wang et al.
(2012) for the same problem. Using our de-
coupling technique, we are further able to ob-
tain fast convergence rates for strongly con-
vex pairwise loss functions. We are also able
to analyze a class of memory efficient on-
line learning algorithms for pairwise learning
problems that use only a bounded subset of
past training samples to update the hypoth-
esis at each step. Finally, in order to comple-
ment our generalization bounds, we propose
a novel memory efficient online learning algo-
rithm for higher order learning problems with
bounded regret guarantees.

1. Introduction

Several supervised learning problems involve working
with pairwise or higher order loss functions, i.e., loss
functions that depend on more than one training sam-
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ple. Take for example the metric learning problem
(Jin et al., 2009), where the goal is to learn a met-
ric M that brings points of a similar label together
while keeping differently labeled points apart. In this
case the loss function used is a pairwise loss function
`(M, (x, y), (x′, y′)) = φ (yy′ (1−M(x,x′))) where φ
is the hinge loss function. In general, a pairwise
loss function is of the form ` : H × X × X → R+

where H is the hypothesis space and X is the input
domain. Other examples include preference learning
(Xing et al., 2002), ranking (Agarwal & Niyogi, 2009),
AUC maximization (Zhao et al., 2011) and multiple
kernel learning (Kumar et al., 2012).

In practice, algorithms for such problems use intersect-
ing pairs of training samples to learn. Hence the train-
ing data pairs are not i.i.d. and consequently, standard
generalization error analysis techniques do not apply
to these algorithms. Recently, the analysis of batch
algorithms learning from such coupled samples has re-
ceived much attention (Cao et al., 2012; Clémençon
et al., 2008; Brefeld & Scheffer, 2005) where a dom-
inant idea has been to use an alternate representa-
tion of the U-statistic and provide uniform convergence
bounds. Another popular approach has been to use al-
gorithmic stability (Agarwal & Niyogi, 2009; Jin et al.,
2009) to obtain algorithm-specific results.

While batch algorithms for pairwise (and higher-order)
learning problems have been studied well theoretically,
online learning based stochastic algorithms are more
popular in practice due to their scalability. However,
their generalization properties were not studied until
recently. Wang et al. (2012) provided the first gen-
eralization error analysis of online learning methods
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applied to pairwise loss functions. In particular, they
showed that such higher-order online learning methods
also admit online to batch conversion bounds (similar
to those for first-order problems (Cesa-Bianchi et al.,
2001)) which can be combined with regret bounds to
obtain generalization error bounds. However, due to
their proof technique and dependence on L∞ covering
numbers of function classes, their bounds are not tight
and have a strong dependence on the dimensionality
of the input space.

In literature, there are several instances where
Rademacher complexity based techniques achieve
sharper bounds than those based on covering num-
bers (Kakade et al., 2008). However, the coupling of
different input pairs in our problem does not allow us
to use such techniques directly.

In this paper we introduce a generic technique for
analyzing online learning algorithms for higher order
learning problems. Our technique, that uses an exten-
sion of Rademacher complexities to higher order func-
tion classes (instead of covering numbers), allows us
to give bounds that are tighter than those of (Wang
et al., 2012) and that, for several learning scenarios,
have no dependence on input dimensionality at all.

Key to our proof is a technique we call Symmetrization
of Expectations which acts as a decoupling step and al-
lows us to reduce excess risk estimates to Rademacher
complexities of function classes. (Wang et al., 2012),
on the other hand, perform a symmetrization with
probabilities which, apart from being more involved,
yields suboptimal bounds. Another advantage of our
technique is that it allows us to obtain fast conver-
gence rates for learning algorithms that use strongly
convex loss functions. Our result, that uses a novel
two stage proof technique, extends a similar result in
the first order setting by Kakade & Tewari (2008) to
the pairwise setting.

Wang et al. (2012) (and our results mentioned above)
assume an online learning setup in which a stream of
points z1, . . . , zn is observed and the penalty function
used at the tth step is L̂t(h) = 1

t−1
∑t−1
τ=1 `(h, zt, zτ ).

Consequently, the results of Wang et al. (2012) expect
regret bounds with respect to these all-pairs penalties
L̂t. This requires one to use/store all previously seen
points which is computationally/storagewise expensive
and hence in practice, learning algorithms update their
hypotheses using only a bounded subset of the past
samples (Zhao et al., 2011).

In the above mentioned setting, we are able to give
generalization bounds that only require algorithms to
give regret bounds with respect to finite-buffer penalty

functions such as L̂buf
t (h) = 1

|B|
∑

z∈B `(h, zt, z) where

B is a buffer that is updated at each step. Our proofs
hold for any stream oblivious buffer update policy in-
cluding FIFO and the widely used reservoir sampling
policy (Vitter, 1985; Zhao et al., 2011)1.

To complement our online to batch conversion bounds,
we also provide a memory efficient online learning al-
gorithm that works with bounded buffers. Although
our algorithm is constrained to observe and learn using
the finite-buffer penalties L̂buf

t alone, we are still able
to provide high confidence regret bounds with respect
to the all-pairs penalty functions L̂t. We note that
Zhao et al. (2011) also propose an algorithm that uses
finite buffers and claim an all-pairs regret bound for
the same. However, their regret bound does not hold
due to a subtle mistake in their proof.

We also provide empirical validation of our proposed
online learning algorithm on AUC maximization tasks
and show that our algorithm performs competitively
with that of (Zhao et al., 2011), in addition to being
able to offer theoretical regret bounds.

Our Contributions:

(a) We provide a generic online-to-batch conversion
technique for higher-order supervised learning
problems offering bounds that are sharper than
those of (Wang et al., 2012).

(b) We obtain fast convergence rates when loss func-
tions are strongly convex.

(c) We analyze online learning algorithms that are
constrained to learn using a finite buffer.

(d) We propose a novel online learning algorithm that
works with finite buffers but is able to provide a
high confidence regret bound with respect to the
all-pairs penalty functions.

2. Problem Setup

For ease of exposition, we introduce an online learning
model for higher order supervised learning problems in
this section; concrete learning instances such as AUC
maximization and metric learning are given in Sec-
tion 6. For sake of simplicity, we restrict ourselves to
pairwise problems in this paper; our techniques can be
readily extended to higher order problems as well.

For pairwise learning problems, our goal is to learn a

1Independently, Wang et al. (2013) also extended their
proof to give similar guarantees. However, their bounds
hold only for the FIFO update policy and have worse de-
pendence on dimensionality in several cases (see Section 5).
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real valued bivariate function h∗ : X × X → Y, where
h∗ ∈ H, under some loss function ` : H×Z×Z → R+

where Z = X × Y.

The online learning algorithm is given sequential ac-
cess to a stream of elements z1, z2, . . . , zn chosen i.i.d.
from the domain Z. Let Zt := {z1, . . . , zt}. At each
time step t = 2 . . . n, the algorithm posits a hypothesis
ht−1 ∈ H upon which the element zt is revealed and
the algorithm incurs the following penalty:

L̂t(ht−1) =
1

t− 1

t−1∑
τ=1

`(ht−1, zt, zτ ). (1)

For any h ∈ H, we define its expected risk as:

L(h) := E
z,z′

J`(h, z, z′)K . (2)

Our aim is to present an ensemble h1, . . . , hn−1 such
that the expected risk of the ensemble is small. More
specifically, we desire that, for some small ε > 0,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) + ε,

where h∗ = arg min
h∈H

L(h) is the population risk min-

imizer. Note that this allows us to do hypothe-
sis selection in a way that ensures small expected
risk. Specifically, if one chooses a hypothesis as ĥ :=

1
(n−1)

∑n
t=2 ht−1 (for convex `) or ĥ := arg min

t=2,...,n
L(ht)

then we have L(ĥ) ≤ L(h∗) + ε.

Since the model presented above requires storing all
previously seen points, it becomes unusable in large
scale learning scenarios. Instead, in practice, a sketch
of the stream is maintained in a buffer B of capacity
s. At each step, the penalty is now incurred only on
the pairs {(zt, z) : z ∈ Bt} where Bt is the state of the
buffer at time t. That is,

L̂buf
t (ht−1) =

1

|Bt|
∑
z∈Bt

`(ht−1, zt, z). (3)

We shall assume that the buffer is updated at each
step using some stream oblivious policy such as FIFO
or Reservoir sampling (Vitter, 1985) (see Section 5).

In Section 3, we present online-to-batch conversion
bounds for online learning algorithms that give re-
gret bounds w.r.t. penalty functions given by (1). In
Section 4, we extend our analysis to algorithms using
strongly convex loss functions. In Section 5 we provide
generalization error bounds for algorithms that give re-
gret bounds w.r.t. finite-buffer penalty functions given
by (3). Finally in section 7 we present a novel memory
efficient online learning algorithm with regret bounds.

3. Online to Batch Conversion Bounds
for Bounded Loss Functions

We now present our generalization bounds for algo-
rithms that provide regret bounds with respect to the
all-pairs loss functions (see Eq. (1)). Our results give
tighter bounds and have a much better dependence on
input dimensionality than the bounds given by Wang
et al. (2012). See Section 3.1 for a detailed comparison.

As was noted by (Wang et al., 2012), the general-
ization error analysis of online learning algorithms in
this setting does not follow from existing techniques
for first-order problems (such as (Cesa-Bianchi et al.,
2001; Kakade & Tewari, 2008)). The reason is that the
terms Vt = L̂t(ht−1) do not form a martingale due to
the intersection of training samples in Vt and Vτ , τ < t.

Our technique, that aims to utilize the Rademacher
complexities of function classes in order to get tighter
bounds, faces yet another challenge at the sym-
metrization step, a precursor to the introduction of
Rademacher complexities. It turns out that, due to
the coupling between the “head” variable zt and the
“tail” variables zτ in the loss function L̂t, a standard
symmetrization between true zτ and ghost z̃τ samples
does not succeed in generating Rademacher averages
and instead yields complex looking terms.

More specifically, suppose we have true variables zt
and ghost variables z̃t and are in the process of bound-
ing the expected excess risk by analyzing expressions
of the form

Eorig = `(ht−1, zt, zτ )− `(ht−1, z̃t, z̃τ ).

Performing a traditional symmetrization of the vari-
ables zτ with z̃τ would give us expressions of the form

Esymm = `(ht−1, zt, z̃τ )− `(ht−1, z̃t, zτ ).

At this point the analysis hits a barrier since unlike
first order situations, we cannot relate Esymm to Eorig

by means of introducing Rademacher variables.

We circumvent this problem by using a technique that
we call Symmetrization of Expectations. The technique
allows us to use standard symmetrization to obtain
Rademacher complexities. More specifically, we ana-
lyze expressions of the form

E′orig = E
z

J`(ht−1, z, zτ )K− E
z

J`(ht−1, z, z̃τ )K

which upon symmetrization yield expressions such as

E′symm = E
z

J`(ht−1, z, z̃τ )K− E
z

J`(ht−1, z, zτ )K

which allow us to introduce Rademacher variables
since E′symm = −E′orig. This idea is exploited by the
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lemma given below that relates the expected risk of the
ensemble to the penalties incurred during the online
learning process. In the following we use the follow-
ing extension of Rademacher averages (Kakade et al.,
2008) to bivariate function classes:

Rn(H) = E

t

sup
h∈H

1

n

n∑
τ=1

ετh(z, zτ )

|

where the expectation is over ετ , z and zτ . We shall
denote composite function classes as follows : ` ◦H :=
{(z, z′) 7→ `(h, z, z′), h ∈ H}.
Lemma 1. Let h1, . . . , hn−1 be an ensemble of hy-
potheses generated by an online learning algorithm
working with a bounded loss function ` : H×Z ×Z →
[0, B]. Then for any δ > 0, we have with probability at
least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ 1

n− 1

n∑
t=2

L̂t(ht−1)

+
2

n− 1

n∑
t=2

Rt−1(` ◦ H) + 3B

√
log n

δ

n− 1
.

The proof of the lemma involves decomposing the ex-
cess risk term into a martingale difference sequence
and a residual term in a manner similar to (Wang
et al., 2012). The martingale sequence, being a
bounded one, is shown to converge using the Azuma-
Hoeffding inequality. The residual term is han-
dled using uniform convergence techniques involving
Rademacher averages. The complete proof of the
lemma is given in the Appendix A.

Similar to Lemma 1, the following converse relation
between the population and empirical risk of the pop-
ulation risk minimizer h∗ can also be shown.

Lemma 2. For any δ > 0, we have with probability at
least 1− δ,

1

n− 1

n∑
t=2

L̂t(h∗) ≤ L(h∗) +
2

n− 1

n∑
t=2

Rt−1(` ◦ H)

+3B

√
log 1

δ

n− 1
.

An online learning algorithm will be said to have an
all-pairs regret bound Rn if it presents an ensemble
h1, . . . , hn−1 such that

n∑
t=2

L̂t(ht−1) ≤ inf
h∈H

n∑
t=2

L̂t(h) + Rn.

Suppose we have an online learning algorithm with a
regret bound Rn. Then combining Lemmata 1 and

2 gives us the following online to batch conversion
bound:

Theorem 3. Let h1, . . . , hn−1 be an ensemble of hy-
potheses generated by an online learning algorithm
working with a B-bounded loss function ` that guar-
antees a regret bound of Rn. Then for any δ > 0, we
have with probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
4

n− 1

n∑
t=2

Rt−1(` ◦ H)

+
Rn

n− 1
+ 6B

√
log n

δ

n− 1
.

As we shall see in Section 6, for several learning prob-
lems, the Rademacher complexities behave as Rt−1(`◦
H) ≤ Cd · O

(
1√
t−1

)
where Cd is a constant depen-

dent only on the dimension d of the input space and
the O (·) notation hides constants dependent on the
domain size and the loss function. This allows us to
bound the excess risk as follows:∑n

t=2 L(ht−1)

n− 1
≤ L(h∗) +

Rn

n− 1
+O

(
Cd +

√
log(n/δ)√
n− 1

)
.

Here, the error decreases with n at a standard 1/
√
n

rate (up to a
√

log n factor), similar to that obtained
by Wang et al. (2012). However, for several problems
the above bound can be significantly tighter than those
offered by covering number based arguments. We pro-
vide below a detailed comparison of our results with
those of Wang et al. (2012).

3.1. Discussion on the nature of our bounds

As mentioned above, our proof enables us to use
Rademacher complexities which are typically easier to
analyze and provide tighter bounds (Kakade et al.,
2008). In particular, as shown in Section 6, for L2 reg-
ularized learning formulations, the Rademacher com-
plexities are dimension independent i.e. Cd = 1. Con-
sequently, unlike the bounds of (Wang et al., 2012)
that have a linear dependence on d, our bound be-
comes independent of the input space dimension. For
sparse learning formulations with L1 or trace norm
regularization, we have Cd =

√
log d giving us a mild

dependence on the input dimensionality.

Our bounds are also tighter that those of (Wang et al.,
2012) in general. Whereas we provide a confidence
bound of δ < exp

(
−nε2 + log n

)
, (Wang et al., 2012)

offer a weaker bound δ < (1/ε)d exp
(
−nε2 + log n

)
.

An artifact of the proof technique of (Wang et al.,
2012) is that their proof is required to exclude a con-
stant fraction of the ensemble (h1, . . . , hcn) from the
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analysis, failing which their bounds turn vacuous. Our
proof on the other hand is able to give guarantees for
the entire ensemble.

In addition to this, as the following sections show, our
proof technique enjoys the flexibility of being extend-
able to give fast convergence guarantees for strongly
convex loss functions as well as being able to accom-
modate learning algorithms that use finite buffers.

4. Fast Convergence Rates for Strongly
Convex Loss Functions

In this section we extend results of the previous section
to give fast convergence guarantees for online learning
algorithms that use strongly convex loss functions of
the following form: `(h, z, z′) = g(〈h, φ(z, z′)〉) + r(h),
where g is a convex function and r(h) is a σ-strongly
convex regularizer (see Section 6 for examples) i.e.
∀h1, h2 ∈ H and α ∈ [0, 1], we have

r(αh1 + (1− α)h2) ≤ αr(h1) + (1− α)r(h2)

− σ

2
α(1− α) ‖h1 − h2‖2 .

For any norm ‖·‖, let ‖·‖∗ denote its dual norm. Our
analysis reduces the pairwise problem to a first order
problem and a martingale convergence problem. We
require the following fast convergence bound in the
standard first order batch learning setting:

Theorem 4. Let F be a closed and convex set of func-
tions over X . Let ℘(f,x) = p(〈f, φ(x)〉) + r(f), for a
σ-strongly convex function r, be a loss function with P
and P̂ as the associated population and empirical risk
functionals and f∗ as the population risk minimizer.
Suppose ℘ is L-Lipschitz and ‖φ(x)‖∗ ≤ R,∀x ∈ X .
Then w.p. 1− δ, for any ε > 0, we have for all f ∈ F ,

P(f)− P(f∗) ≤ (1 + ε)
(
P̂(f)− P̂(f∗)

)
+

Cδ
εσn

where Cδ = C2
d · (4(1 + ε)LR)2 (32 + log(1/δ)) and Cd

is the dependence of the Rademacher complexity of the
class F on the input dimensionality d.

The above theorem is a minor modification of a similar
result by Sridharan et al. (2008) and the proof (given
in Appendix B) closely follows their proof as well. We
can now state our online to batch conversion result for
strongly convex loss functions.

Theorem 5. Let h1, . . . , hn−1 be an ensemble of hy-
potheses generated by an online learning algorithm
working with a B-bounded, L-Lipschitz and σ-strongly
convex loss function `. Further suppose the learning
algorithm guarantees a regret bound of Rn. Let Vn =

max
{
Rn, 2C

2
d log n log(n/δ)

}
Then for any δ > 0, we

have with probability at least 1− δ,

1

n− 1

n∑
t=2

L(ht−1) ≤ L(h∗) +
Rn

n− 1

+Cd · O

(√
Vn log n log(n/δ)

n− 1

)
,

where the O (·) notation hides constants dependent on
domain size and the loss function such as L,B and σ.

The decomposition of the excess risk in this case is not
made explicitly but rather emerges as a side-effect of
the proof progression. The proof starts off by apply-
ing Theorem 4 to the hypothesis in each round with
the following loss function ℘(h, z′) := E

z
J`(h, z, z′)K.

Applying the regret bound to the resulting expres-
sion gives us a martingale difference sequence which
we then bound using Bernstein-style inequalities and
a proof technique from (Kakade & Tewari, 2008). The
complete proof is given in Appendix C.

We now note some properties of this result. The ef-
fective dependence of the above bound on the input
dimensionality is C2

d since the expression
√
Vn hides

a Cd term. We have C2
d = 1 for non sparse learning

formulations and C2
d = log d for sparse learning for-

mulations. We note that our bound matches that of
Kakade & Tewari (2008) (for first-order learning prob-
lems) up to a logarithmic factor.

5. Analyzing Online Learning
Algorithms that use Finite Buffers

In this section, we present our online to batch con-
version bounds for algorithms that work with finite-
buffer loss functions L̂buf

t . Recall that an online learn-
ing algorithm working with finite buffers incurs a loss
L̂buf
t (h) = 1

|Bt|
∑

z∈Bt `(ht−1, zt, z) at each step where

Bt is the state of the buffer at time t.

An online learning algorithm will be said to have a
finite-buffer regret bound Rbuf

n if it presents an en-
semble h1, . . . , hn−1 such that

n∑
t=2

L̂buf
t (ht−1)− inf

h∈H

n∑
t=2

L̂buf
t (h) ≤ Rbuf

n .

For our guarantees to hold, we require the buffer up-
date policy used by the learning algorithm to be stream
oblivious. More specifically, we require the buffer up-
date rule to decide upon the inclusion of a particular
point zi in the buffer based only on its stream index
i ∈ [n]. Popular examples of stream oblivious policies
include Reservoir sampling (Vitter, 1985) (referred to
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as RS henceforth) and FIFO. Stream oblivious poli-
cies allow us to decouple buffer construction random-
ness from training sample randomness which makes
analysis easier; we leave the analysis of stream aware
buffer update policies as a topic of future research.

In the above mentioned setting, we can prove the fol-
lowing online to batch conversion bounds:

Theorem 6. Let h1, . . . , hn−1 be an ensemble of hy-
potheses generated by an online learning algorithm
working with a finite buffer of capacity s and a B-
bounded loss function `. Moreover, suppose that the
algorithm guarantees a regret bound of Rbuf

n . Then for
any δ > 0, we have with probability at least 1− δ,∑n

t=2 L(ht−1)

n− 1
≤ L(h∗) +

Rbuf
n

n− 1
+O

(
Cd√
s

+B

√
log n

δ

s

)
If the loss function is Lipschitz and strongly convex as
well, then with the same confidence, we have∑n

t=2 L(ht−1)

n− 1
≤ L(h∗) +

Rbuf
n

n− 1
+ Cd · O

(√
Wn log n

δ

sn

)

where Wn = max
{
Rbuf
n ,

2C2
dn log(n/δ)

s

}
and Cd is the

dependence of Rn(H) on the input dimensionality d.

The above bound guarantees an excess error of Õ (1/s)
for algorithms (such as Follow-the-leader (Hazan et al.,
2006)) that offer logarithmic regret Rbuf

n = O (log n).
We stress that this theorem is not a direct corollary of
our results for the infinite buffer case (Theorems 3
and 5). Instead, our proofs require a more careful
analysis of the excess risk in order to accommodate the
finiteness of the buffer and the randomness (possibly)
used in constructing it.

More specifically, care needs to be taken to handle ran-
domized buffer update policies such as RS which in-
troduce additional randomness into the analysis. A
naive application of techniques used to prove results
for the unbounded buffer case would result in bounds
that give non trivial generalization guarantees only for
large buffer sizes such as s = ω(

√
n). Our bounds, on

the other hand, only require s = ω̃(1).

Key to our proofs is a conditioning step where we
first analyze the conditional excess risk by condi-
tioning upon randomness used by the buffer update
policy. Such conditioning is made possible by the
stream-oblivious nature of the update policy and thus,
stream-obliviousness is required by our analysis. Sub-
sequently, we analyze the excess risk by taking expec-
tations over randomness used by the buffer update pol-
icy. The complete proofs of both parts of Theorem 6
are given in Appendix D.

Note that the above results only require an online
learning algorithm to provide regret bounds w.r.t. the
finite-buffer penalties L̂buf

t and do not require any re-
gret bounds w.r.t the all-pairs penalties L̂t.

For instance, the finite buffer based online learning
algorithms OAMseq and OAMgra proposed in (Zhao
et al., 2011) are able to provide a regret bound
w.r.t. L̂buf

t (Zhao et al., 2011, Lemma 2) but are not
able to do so w.r.t the all-pairs loss function (see Sec-
tion 7 for a discussion). Using Theorem 6, we are
able to give a generalization bound for OAMseq and
OAMgra and hence explain the good empirical perfor-
mance of these algorithms as reported in (Zhao et al.,
2011). Note that Wang et al. (2013) are not able to
analyze OAMseq and OAMgra since their analysis is
restricted to algorithms that use the (deterministic)
FIFO update policy whereas OAMseq and OAMgra use
the (randomized) RS policy of Vitter (1985).

6. Applications

In this section we make explicit our online to batch
conversion bounds for several learning scenarios and
also demonstrate their dependence on input dimen-
sionality by calculating their respective Rademacher
complexities. Recall that our definition of Rademacher
complexity for a pairwise function class is given by,

Rn(H) = E

t

sup
h∈H

1

n

n∑
τ=1

ετh(z, zτ )

|

.

For our purposes, we would be interested in the
Rademacher complexities of composition classes of the
form ` ◦ H := {(z, z′) 7→ `(h, z, z′), h ∈ H} where `
is some Lipschitz loss function. Frequently we have
`(h, z, z′) = φ (h(x,x′)Y (y, y′)) where Y (y, y′) = y−y′
or Y (y, y′) = yy′ and φ : R → R is some margin loss
function (Steinwart & Christmann, 2008). Suppose φ
is L-Lipschitz and Y = sup

y,y′∈Y
|Y (y, y′)|. Then we have

Theorem 7. Rn(` ◦ H) ≤ LYRn(H).

The proof uses standard contraction inequalities and
is given in Appendix E. This reduces our task to com-
puting the values of Rn(H) which we do using a two
stage proof technique (see Appendix F). For any sub-
set X of a Banach space and any norm ‖·‖p, we define

‖X‖p := sup
x∈X
‖x‖p. Let the domain X ⊂ Rd.

AUC maximization (Zhao et al., 2011): the goal
here is to maximize the area under the ROC curve
for a linear classification problem where the hypothe-
sis space W ⊂ Rd. We have hw(x,x′) = w>x−w>x′

and `(hw, z, z
′) = φ ((y − y′)hw(x,x′)) where φ is the
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hinge loss. In case our classifiers are Lp regularized for

p > 1, we can show thatRn(W) ≤ 2 ‖X‖q ‖W‖p
√

q−1
n

where q = p/(p− 1). Using the sparsity promoting L1

regularizer gives us Rn(W) ≤ 2 ‖X‖∞ ‖W‖1
√

e log d
n .

Note that we obtain dimension independence, for ex-
ample when the classifiers are L2 regularized which
allows us to bound the Rademacher complexities of
kernelized function classes for bounded kernels as well.

Metric learning (Jin et al., 2009): the goal here
is to learn a Mahalanobis metric MW(x,x′) = (x −
x′)>W(x − x′) using the loss function `(W, z, z′) =
φ
(
yy′
(
1−M2

W(x,x′)
))

for a hypothesis class W ⊂
Rd×d. In this case it is possible to use a variety of
mixed norm ‖·‖p,q and Schatten norm ‖·‖S(p) regu-
larizations on matrices in the hypothesis class. In
case we use trace norm regularization on the ma-

trix class, we get Rn(W) ≤ ‖X‖22 ‖W‖S(1)
√

e log d
n .

The (2, 2)-norm regularization offers a dimension in-

dependent bound Rn(W) ≤ ‖X‖22 ‖W‖2,2
√

1
n . The

mixed (2, 1)-norm regularization offers Rn(W) ≤
‖X‖2 ‖X‖∞ ‖W‖2,1

√
e log d
n .

Multiple kernel learning (Kumar et al., 2012):
the goal here is to improve the SVM classification
algorithm by learning a good kernel K that is a
positive combination of base kernels K1, . . . ,Kp i.e.
Kµ(x,x′) =

∑p
i=1 µiKi(x,x

′) for some µ ∈ Rp,µ ≥
0. The base kernels are bounded, i.e. for all i,
|Ki(x,x

′)| ≤ κ2 for all x,x′ ∈ X The notion of
goodness used here is the one proposed by Balcan
& Blum (2006) and involves using the loss function
`(µ, z, z′) = φ (yy′Kµ(x,x′)) where φ(·) is a margin
loss function meant to encode some notion of align-
ment. The two hypothesis classes for the combination
vector µ that we study are the L1 regularized unit
simplex ∆(1) = {µ : ‖µ‖1 = 1,µ ≥ 0} and the L2 reg-
ularized unit sphere S2(1) = {µ : ‖µ‖2 = 1,µ ≥ 0}.
We are able to show the following Rademacher com-
plexity bounds for these classes: Rn(S2(1)) ≤ κ2

√
p
n

and Rn(∆(1)) ≤ κ2
√

e log p
n .

The details of the Rademacher complexity derivations
for these problems and other examples such as simi-
larity learning can be found in Appendix F.

7. OLP : Online Learning with Pairwise
Loss Functions

In this section, we present an online learning algorithm
for learning with pairwise loss functions in a finite
buffer setting. The key contribution in this section

Algorithm 1 RS-x : Stream Subsampling with Replace-
ment
Input: Buffer B, new point zt, buffer size s, timestep t.
1: if |B| < s then //There is space
2: B ← B ∪ {zt}
3: else //Overflow situation
4: if t = s+ 1 then //Repopulation step
5: TMP← B ∪ {zt}
6: Repopulate B with s points sampled uniformly

with replacement from TMP.
7: else //Normal update step
8: Independently, replace each point of B with zt

with probability 1/t.
9: end if

10: end if

Algorithm 2 OLP : Online Learning with Pairwise Loss
Functions
Input: Step length scale η, Buffer size s
Output: An ensemble w2, . . . ,wn ∈ W with low regret
1: w0 ← 0, B ← φ
2: for t = 1 to n do
3: Obtain a training point zt
4: Set step length ηt ← η√

t

5: wt ← ΠW
[
wt−1 + ηt

|B|
∑

z∈B ∇w`(wt−1, zt, z)
]

//ΠW projects onto the set W
6: B ← Update-buffer(B, zt, s, t) //using RS-x
7: end for
8: return w2, . . . ,wn

is a buffer update policy that when combined with a
variant of the GIGA algorithm (Zinkevich, 2003) al-
lows us to give high probability regret bounds.

In previous work, Zhao et al. (2011) presented an on-
line learning algorithm that uses finite buffers with
the RS policy and proposed an all-pairs regret bound.
The RS policy ensures, over the randomness used in
buffer updates, that at any given time, the buffer con-
tains a uniform sample from the preceding stream. Us-
ing this property, (Zhao et al., 2011, Lemma 2) claimed

that E
r
L̂buf
t (ht−1)

z
= L̂t(ht−1) where the expecta-

tion is taken over the randomness used in buffer con-
struction. However, a property such as E

r
L̂buf
t (h)

z
=

L̂t(h) holds only for functions h that are either fixed
or obtained independently of the random variables
used in buffer updates (over which the expectation is
taken). Since ht−1 is learned from points in the buffer
itself, the above property, and consequently the regret
bound, does not hold.

We remedy this issue by showing a relatively weaker
claim; we show that with high probability we have
L̂t(ht−1) ≤ L̂buf

t (ht−1) + ε. At a high level, this claim
is similar to showing uniform convergence bounds for
L̂buf
t . However, the reservoir sampling algorithm is not

particularly well suited to prove such uniform conver-
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Figure 1. Performance of OLP (using RS-x) and OAMgra

(using RS) by (Zhao et al., 2011) on AUC maximization
tasks with varying buffer sizes.

gence bounds as it essentially performs sampling with-
out replacement (see Appendix G for a discussion). We
overcome this hurdle by proposing a new buffer update
policy RS-x (see Algorithm 1) that, at each time step,
guarantees s i.i.d. samples from the preceding stream
(see Appendix H for a proof).

Our algorithm uses this buffer update policy in con-
junction with an online learning algorithm OLP (see
Algorithm 2) that is a variant of the well-known GIGA
algorithm (Zinkevich, 2003). We provide the following
all-pairs regret guarantee for our algorithm:

Theorem 8. Suppose the OLP algorithm work-
ing with an s-sized buffer generates an ensemble
w1, . . . ,wn−1. Then with probability at least 1− δ,

Rn

n− 1
≤ O

(
Cd

√
log n

δ

s
+

√
1

n− 1

)

See Appendix I for the proof. A drawback of our
bound is that it offers sublinear regret only for buffer
sizes s = ω(log n). A better regret bound for constant
s or a lower-bound on the regret is an open problem.

8. Experimental Evaluation

In this section we present experimental evaluation of
our proposed OLP algorithm. We stress that the aim
of this evaluation is to show that our algorithm, that
enjoys high confidence regret bounds, also performs
competitively in practice with respect to the OAMgra

algorithm proposed by Zhao et al. (2011) since our
results in Section 5 show that OAMgra does enjoy good

generalization guarantees despite the lack of an all-
pairs regret bound.

In our experiments, we adapted the OLP algorithm to
the AUC maximization problem and compared it with
OAMgra on 18 different benchmark datasets. We used
60% of the available data points up to a maximum of
20000 points to train both algorithms. We refer the
reader to Appendix J for a discussion on the imple-
mentation of the RS-x algorithm. Figure 1 presents
the results of our experiments on 4 datasets across 5
random training/test splits. Results on other datasets
can be found in Appendix K. The results demonstrate
that OLP performs competitively to OAMgra while
in some cases having slightly better performance for
small buffer sizes.

9. Conclusion

In this paper we studied the generalization capabilities
of online learning algorithms for pairwise loss func-
tions from several different perspectives. Using the
method of Symmetrization of Expectations, we first
provided sharp online to batch conversion bounds for
algorithms that offer all-pairs regret bounds. Our re-
sults for bounded and strongly convex loss functions
closely match their first order counterparts. We also
extended our analysis to algorithms that are only able
to provide finite-buffer regret bounds using which we
were able to explain the good empirical performance
of some existing algorithms. Finally we presented a
new memory-efficient online learning algorithm that is
able to provide all-pairs regret bounds in addition to
performing well empirically.

Several interesting directions can be pursued for future
work, foremost being the development of online learn-
ing algorithms that can guarantee sub-linear regret
at constant buffer sizes or else a regret lower bound
for finite buffer algorithms. Secondly, the idea of a
stream-aware buffer update policy is especially inter-
esting both from an empirical as well as theoretical
point of view and would possibly require novel proof
techniques for its analysis. Lastly, scalability issues
that arise when working with higher order loss func-
tions also pose an interesting challenge.
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