The Bigraphical Lasso: Supplementary material
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1. Useful identities

All matrix derivatives are based on the following dif-
ferential forms; for proofs see (Magnus & Neudecker,
1988):

IX®Y)=(0X)®Y + X (Y) (1)

oX ! = - X"1ox)X ! (2)
Oln|X| = tr (X~ '9X) . (3)
of

Moreover, if the X in 7% is symmetric then
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2. Derivatives for BiGLasso

We denote J¥ as the single-entry matrix with Jij =1
and zeros elsewhere; d;; = 1if ¢ = j and 6;; = 0 if

i # 5.

Gradient wrt ¥, Taking the gradient of (8) with
respect to ¥;; and using identity (3), we get:

=tr {W (JY +J" = J7J7)@1,)}, by (4)
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=trq W +tr {W (J/'®1,)}
—tr {W (J¥JY ®1,)}
=2 {Wey} —ditr {Wey},

where W £ (¥, @ ©,)1; I;(,i’j) is at the (i,7)-th
block of size p X p, that is, (i,j) = [(pi—p+1):pi, (pj—
p+1):pj]. Thereby,

8%111“1’” @O, =2tr, (W) —tr,(W)oI. (5)

Also, using (4) gives

0 ptr(¥,T)

00, =2pT—Tol. (6)
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3. Product of Gaussians

The product of two Gaussian distributions yields an
unnormalized Gaussian:

N(X|/J’A32A) N(X“‘BazB) x N(X‘HJCWEC)v
where po =3¢ (Ez‘luA + E;luB)_l

-1 —1\~1 (7)
o= (' +325) -
Note that the precision matrix of the unnormalized
Gaussian is simply the sum of the individual preci-
sion matrices and the mean is the convex sum of the
means, weighted by the individual precision matrices
(Rasmussen & Williams, 2006, section A.2).
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