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Abstract

Our objective is to speed up non-linear SVM
prediction while maintaining classification
accuracy above an acceptable limit. We gen-
eralize Localized Multiple Kernel Learning
so as to learn a tree-based primal feature
embedding which is high dimensional and
sparse. Primal based classification decouples
prediction costs from the number of support
vectors and our tree-structured features effi-
ciently encode non-linearities while speeding
up prediction exponentially over the state-of-
the-art. We develop routines for optimizing
over the space of tree-structured features and
efficiently scale to problems with more than
half a million training points. Experiments
on benchmark data sets reveal that our for-
mulation can reduce prediction costs by more
than three orders of magnitude in some cases
with a moderate sacrifice in classification ac-
curacy as compared to RBF-SVMs. Further-
more, our formulation leads to better classi-
fication accuracies over leading methods.

1. Introduction

Real world applications often require efficient predic-
tion. Non-linear SVMs have prediction costs that are
proportional to the number of support vectors and
these can grow linearly with the size of the training
set. Thus, while non-linear SVMs have defined the
state-of-the-art in terms of prediction accuracy on mul-
tiple benchmark tasks, their use in computationally
intensive real world applications remains limited. The
problem is getting exacerbated as large quantities of
training data is becoming readily available in many
domains.
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Our objective is to ameliorate the situation by re-
ducing the cost of non-linear SVM prediction while
maintaining classification accuracy above an accept-
able threshold. Speeding up SVM prediction is an im-
portant research problem which has been approached
from multiple perspectives including approximating
the kernel function or matrix (Băzăvan et al., 2012;
Kar & Karnick, 2012; Maji et al., 2013; Rahimi &
Recht, 2007; 2008; Vedaldi & Zisserman, 2011; 2012;
Williams & Seeger, 2001; Yang et al., 2012), reduc-
ing the number of support vectors (Cossalter et al.,
2011; Joachims & Yu, 2009; Keerthi et al., 2006) and
directly formulating SVM variants with low prediction
costs (Ladicky & Torr, 2011).

We take a kernel learning based approach in this pa-
per. The objective in kernel learning is to jointly learn
both kernel and SVM parameters. In particular, Lo-
calized Multiple Kernel Learning (LMKL) (Gonen &
Alpaydin, 2008) aims to learn a different kernel, and
hence classifier, for each point in feature space (Ong
et al., 2005; Tsang & Kwok, 2006). It has never been
considered from the perspective of speeding up SVM
prediction since it achieves only a modest reduction in
the number of support vectors on average. In this pa-
per, we generalize LMKL to learn arbitrary local fea-
ture embeddings that go beyond LMKL’s non-negative
gating functions. We learn local embeddings that are
high dimensional, sparse and computationally deep 1.
This enables efficient prediction using primal variables
and thereby decouples prediction costs from the num-

1The term deep typically refers to architectures where
the cost of representation is logarithmic (Bengio et al.,
2010). However, in this paper, our focus is primarily
on computational cost and we seek computationally deep
models where the cost of prediction is logarithmic. While
bounding the generalization error of the proposed model is
beyond the scope of this paper, note that we can perfectly
represent highly varying patterns, such as the parity and
the checker-board functions by models with logarithmic
depth. Furthermore, unlike shallow axis-aligned decision
trees, our proposed model can be appropriately regular-
ized so as to generalize to regions of the feature space with
no training points.
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ber of support vectors and the size of the training set.

In our proposed Local Deep Kernel Learning
(LDKL) formulation, a composite non-linear kernel
K(xi,xj) = KL(xi,xj)KG(xi,xj) is learnt as the
product of a local kernel KL and a global kernel
KG (note that the product of two Mercer kernels is
also a Mercer kernel). This induces a high dimen-
sional feature space embedding of the form φ(x) =
φL(x) ⊗ φG(x) where φL and φG are the local and
global feature embeddings induced by KL and KG re-
spectively and ⊗ is the Kronecker product. We choose
φG to be low dimensional and φL to be high dimen-
sional and sparse so that classification can be carried
out using primal variables as y(x) = sign(wtφ(x)) =
sign(φt

L(x)W
tφG(x)) where the vector w has been re-

shaped to the matrix W and t denotes the transpose
operator. To make prediction efficient, φL is chosen to
be tree-structured. Each dimension of φL corresponds
to a node in a tree and only those dimensions of φL(x)
are non-zero which correspond to the path traversed by
x from the root to one of the leaves. Thus, for any x,
φL(x) has only logM non-zero dimensions, which can
be identified and computed in O(logM) time, where
M is the dimensionality of φL. This results in an
exponential speed up in prediction time with only a
marginal reduction in classification accuracy in most
cases. The learnt LDKL kernel also has a simple in-
tuitive interpretation. It modulates an overall global
similarity between pairs of points by a local similarity
which is proportional to the length of the path shared
by the two points in the learnt LDKL tree and which
is maximal when the two points are in the same local
region of space as defined by their common leaf node.

Most kernel learning formulations, including Local-
ized Multiple Kernel Learning, are optimized using
SVM dual parameters with the notable exception
of (Orabona et al., 2010; Orabona & Jie, 2011). How-
ever, it is more attractive to optimize our LDKL for-
mulation using primal stochastic sub-gradient descent
since primal predictions are efficient in our case and we
do not have to worry about maintaining dual variables
or dual sparsity.

Note that optimizing over the space of trees is a hard
non-convex problem. The loss incurred by a train-
ing point depends on its embedding which, in turn,
depends on the path traversed by the point in φL.
For instance, parameterizing node k by θk, φLk

(xi)
is proportional to

∏
l∈Ancestors(k)(1 ± sign(θt

lxi))/2
which evaluates to unity only if node k lies on the
path traversed by xi and is zero otherwise. Modifying
θk changes the path traversed by each training point
and this makes the objective function sharply discon-

tinuous. In order to make tree learning amenable to
sub-gradient descent, φL is relaxed by replacing the
signum function with the continuous tanh. However,
this has the potential drawback that many entries in
φL might become non-zero and sparsity might be lost.
We tackled this problem by introducing, and adap-
tively tuning, a scale parameter within the tanh func-
tions during the optimization so as to make them tend
to signum functions as convergence was approached.
This ensured that, by and large, only a single path
was dominant within the tree.

Experiments on benchmark data sets revealed that
LDKL could significantly bring down prediction costs
as compared to RBF-SVMs while maintaining classi-
fication accuracy above an acceptable threshold. The
experiments also revealed that LDKL could yield bet-
ter classification accuracies as compared to state-of-
the-art methods for speeding up SVM prediction. For
instance, on the challenging CoverType data set, an
RBF-SVM took days to train and yielded a classifi-
cation accuracy of 91.21% with a prediction cost that
was 1.37×105 times that of a linear SVM. If prediction
costs were restricted to 33 times that of a linear SVM,
popular methods such as the Random Fourier Features
(RFF) (Rahimi & Recht, 2007) yielded a classification
accuracy of 58%. LDKL’s accuracy was 88.21% for the
same prediction cost. Thus LDKL could improve clas-
sification accuracy by 30% over RFF and could speed
up RBF-SVMs by more than 4000 times with a toler-
able loss in accuracy. Furthermore, LDKL took only
hours to train and required less than 1 Mb of RAM
to store its model parameters. This opens up the pos-
sibility of learning accurate non-linear SVMs on large
data sets beyond the scope of RBF kernels.

Our main contribution in this paper is to formulate
the problem from a local kernel learning perspective
where we learn tree-structured features. Competing
approaches to speeding up SVM prediction mainly fol-
low the kernel approximation paradigm. These ap-
proaches suffer from the fact that the kernel is not ap-
proximated keeping the task and training set in mind.
Thus, modelling power is wasted in learning good ker-
nel approximations even far away from the decision
boundary. On the other hand, learning a kernel which
varies in feature space helps LDKL efficiently encode
non-linearities into the classification model which is ex-
plicitly trained for the given task and training set. The
focus is very much on learning the decision boundary
as points that do not violate the margin play no role
in the optimization. Furthermore, as the complexity
of the learning task grows, LDKL can keep increasing
the size of the embedding feature space while incurring
only logarithmic prediction costs. This enables LDKL
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to achieve an exponential speed up as compared to
other leading methods. Our optimization ensures that
training is efficient and that LDKL can scale to large
data sets where the most benefits are to be gained.
The LDKL source code can be downloaded from (Jose
et al., 2013).

2. Related work

Low rank kernel approximation techniques have been
specially developed for translation invariant ker-
nels (Rahimi & Recht, 2007; 2008), dot product ker-
nels (Kar & Karnick, 2012) and homogenous and ad-
ditive kernels (Maji et al., 2013; Vedaldi & Zisserman,
2011). These techniques lead to a compact linear rep-
resentation of the kernel taking O(DM) time to em-
bed D dimensional input features into an M dimen-
sional space. The main limitation of these techniques
is that they do not leverage knowledge about the task
or training data set. Thus, modelling power is wasted
in designing good kernel approximations even far away
from the decision boundary. This is somewhat ame-
liorated by Nyström approximations (Vedaldi & Zis-
serman, 2012; Williams & Seeger, 2001; Yang et al.,
2012) which are cognizant of the feature distribution
and come at a higher prediction cost. However, since
Nyström methods do not factor training labels into
their approximation, they are still oblivious to the de-
cision boundary. Finally, (Băzăvan et al., 2012) have
proposed learning some of the parameters in transla-
tion invariant kernel approximations such as the RBF
bandwidths in Random Fourier Features. While the
type of embedding is fixed a priori, the parameters
are learnt from training data and therefore improve
performance over the base Random Fourier Features.
In contrast, our proposed LDKL approach computes
the embedding in O(D logM) time thereby gaining
an exponential speed up over the kernel approxima-
tion techniques. Furthermore, the embedding is learnt
from training data by directly minimizing the chosen
loss and this can lead to a significant improvement in
classification accuracy as shown in our experiments.

Methods designed to decrease the number of support
vectors can potentially focus on the decision boundary.
Post-processing based reduced set methods (Burges
& Schölkopf, 1997; Cossalter et al., 2011) suffer from
the limitation that the original set of support vec-
tors needs to be determined before it can be reduced.
This can become costly, and even infeasible for modern
data sets, as non-linear SVM training typically scales
quadratically in the number of training instances. This
problem was addressed in (Keerthi et al., 2006; Tsang
et al., 2005; 2007) where the number of support vectors

was decreased during the training stage itself. This ap-
proach was extended in the Cutting-Plane Subspace
Pursuit (CPSP) algorithm (Joachims & Yu, 2009)
where support vectors were generated from outside the
training set. Finally, LLSVM (Ladicky & Torr, 2011)
directly formulates an SVM variant with low predic-
tion cost. It can be interpreted as a special case of
LDKL with a hand crafted, rather than learnt, local
feature embedding without the tree structure. We em-
pirically compare LDKL to LMKL, LLSVM and CPSP
and demonstrate that LDKL can learn a significantly
more accurate classifier for a given prediction cost.

Multiple kernel learning aims to learn the kernel from
training data and many formulations, kernel parame-
terizations and regularizers have been proposed (Aflalo
et al., 2011; Bach, 2008; Chapelle et al., 2002; Chen
et al., 2008; Cortes et al., 2009a;b; Jain et al., 2012;
Kloft et al., 2009; Lanckriet et al., 2004; Rakotoma-
monjy et al., 2008; Sindhwani & Lozano, 2011; Sonnen-
burg et al., 2006; Vishwanathan et al., 2010; Ye et al.,
2008). Recent techniques, such as (Băzăvan et al.,
2012), have applied standard convex MKL formula-
tions to learn the RBF bandwidths in approximate
Random Fourier Features (Rahimi & Recht, 2007).
In contrast, LDKL does not aim to approximate any
given kernel but focusses on learning the best decision
boundary in a sparse, high dimensional representation.

The literature on learning trees is vast and includes
methods for learning trees in feature space (decision
trees and random forests), trees in label space (hier-
archies, ontologies and structured output prediction)
and trees for efficient retrieval (KD Trees, Ball Trees,
etc.). Our approach should not be confused with these
methods, nor with tree kernels which determine the
similarity of two given trees rather than learn a tree
structured feature embedding. Our problem setting
and approach should also not be confused with kernel
methods for deep learning as these do not focus on
efficient SVM prediction. For instance, (Cho & Saul,
2009) design kernels which mimic the computation in
multi-layer networks while (Vinyals et al., 2012) learn
a deep classifier with layers of linear SVMs.

3. Localized Multiple Kernel Learning

The LMKL formulation (Gonen & Alpaydin, 2008)
learns a prediction function of the form

y(x) = sign(
∑

k

p(wk|x)w
t
kφk(x) + b) (1)

where p(wk|x) is a non-negative gating function which
can be interpreted as the probability of picking clas-
sifier wk for a given point x. Thus, a different com-
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bination of classifiers wk and features φk is selected
for each x. The gating functions are parameterized by

Θ = {(θk, θ0k)} as p(wk|x) = eθ
t
k
x+θ0k

∑
m eθ

t
mx+θ0m

. Kernel

and SVM parameters are jointly optimized using the
following non-convex formulation

min
Θ

max
α

1tα− 1
2α

tYKΘYα (2)

subject to 1tYα = 0, 0 ≤ α ≤ C (3)

where KΘ(xi,xj) =
∑

k p(wk|xi)Kk(xi,xj)p(wk|xj).
The optimization is carried out as a nested two stage
procedure (Chapelle et al., 2002; Rakotomamonjy
et al., 2008; Jain et al., 2012). In the outer loop, the
kernel parameters are optimized using gradient descent
while, in the inner loop, the kernel parameters are held
fixed and the SVM parameters are learnt using a sin-
gle kernel SVM training algorithm. The experiments
in (Gonen & Alpaydin, 2008) demonstrated that for
differentKk including linear, polynomial and RBF ker-
nels, LMKL could learn a classifier that was compet-
itive with a single kernel RBF-SVM but with slightly
fewer support vectors resulting in a minor speed up
over the RBF-SVM. It was also demonstrated that
combining multiple linear kernels could improve clas-
sification accuracy over that of a linear SVM.

4. Local Deep Kernel Learning

The Local Deep Kernel Learning formulation learns a
non-linear kernel K(xi,xj) = KL(xi,xj)KG(xi,xj) as
the product of a local kernel KL = φt

LφL and a global
kernel KG = φt

GφG leading to the prediction function

y(x) = sign(
∑

i

αiyiK(x,xi)) (4)

= sign(
∑

ijk

(αiyiφGj
(xi)φGj

(x)φLk
(xi)φLk

(x))

= sign(wt(φG(x)⊗ φL(x))) (5)

= sign(φt
L(x)W

tφG(x)) (6)

= sign(W t(x)φG(x)) (7)

where wk =
∑

i αiyiφLk
(xi)φG(xi), φLk

denotes di-
mension k of φL ∈ RM , W = [w1 . . .wM ], W (x) =
WφL(x) and ⊗ is the Kronecker product. Thus,
LDKL can be thought of as either learning a single
fixed linear classifier in φG ⊗ φL space or a differ-
ent classifier for each point in the given global feature
space φG. Our prediction function in (6) is similar to
LMKL’s prediction function in (1) and generalizes it
since our local features φL can be arbitrary and are not
restricted to being non-negative. Note that, if multiple
heterogeneous global features needed to be combined
as in LMKL, LDKL could easily be extended to learn

K =
∑

m KLm
KGm

and this could even give us the
added power of learning a forest of local embeddings.
However, in this paper, we focus on the problem of
speeding up SVMs given a single global feature.

Primal based classification using W decouples predic-
tion costs from the number of support vectors and the
size of the training set. The global feature embedding
should be chosen to be low dimensional, such as lin-
ear φG(x) = x ∈ RD or quadratic φG(x) = x ⊗ x, in
order to make prediction efficient. While the LDKL
formulation is general, we report experimental results
only for φG(x) = x in this paper.

Having fixed the global features to be linear, non-
linearities in LDKL are introduced through the lo-
cal features. LDKL would reduce to LMKL if we
set φLk

(x) = p(wk|x) and would further reduce to
LLSVM (Ladicky & Torr, 2011) if the embedding was
fixed and not learnt. Instead, φL is chosen to be high
dimensional, sparse and tree-structured. Each dimen-
sion k of φL can be thought of as a node in a tree.
For a given x, only those dimensions of φL(x) are
non-zero for which the corresponding node lies on the
path traversed by x from the root to the leaf. Thus,
φLk

(x) ∝ Ik(x) where Ik(x) is the indicator function
which is unity only if node k lies on the path traversed
by x and zero otherwise

Ik(x) =
∏

l∈Ancestors(k)

1
2 (sign(θ

t
lx) + (−1)C(l)) (8)

with C(l) being zero if node l is its parent’s left child
and 1 if it is its parent’s right child. Thus, if φL has
dimensionality M , then only logM dimensions will be
non-zero and these can be identified in logM time.

Deep representations are typically obtained by func-
tion composition. A possible choice of φLk

is therefore,

φLk
(x) = Ik(x)fk0

(x, fk1
(x, fk2

(· · · (fkR
(x, 1)))))

(9)

where kr indexes the rth ancestor of k and f is any
smooth non-linear function. LDKL would generate a
continuous, piecewise smooth decision boundary if fkr

were a smooth function of θt
kr
x with fkr

(x, z) = 0
whenever θt

kr
x = 0 – for instance, when fkr

(x, z) =
tanh(zθt

kr
x) or for polynomials such as fkr

(x, z) =

(zθt
kr
x)P . This ensures that if φLk

tends to zero then
all its descendants would also tend to zero. Thus as
the decision function transitions from one leaf node
to another by switching paths at node k and crossing
the leaf node cell boundary defined by θt

kx = 0, the
contributions of all the descendants of node k would
smoothly diminish and the decision function would be
determined by node k and its ancestors. LDKL could
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be further generalized if f was no longer restricted to
functions of θtx but could be any arbitrary function
of x. While such a representation yielded much bet-
ter classification accuracies than the state of the art,
the best results were obtained by a non-compositional
formulation with

φLk
(x) = tanh(σθ′t

kx)Ik(x) (10)

where the parameter set has been augmented with
Θ′ = [θ′

1, . . . ,θ
′

M ] and σ is a scaling parameter that
could be set via validation.

LDKL’s overall prediction time using (6) is there-
fore O(D logM) where D is the dimensionality of x.
This compares favourably, and leads to an exponen-
tial speed up, over all competing methods whose costs
are at least O(DM). The LDKL kernel K = KLKG

also has an intuitive interpretation. Two points are
most similar if they belong to the same local region in
space as defined by a given leaf node of φL. As one of
the points moves away from the region to another leaf
node, the similarity decreases depending on the num-
ber of common ancestors in φL. This local similarity
is modulated by an overall global linear similarity.

The LDKL primal for jointly learning Θ and W from
training data {(xi, yi)

N
i=1} can be formulated as

min
W,Θ.Θ′

P (W,Θ,Θ′) =
λW

2
Tr(W tW ) +

λΘ

2
Tr(ΘtΘ)

+
λΘ′

2
Tr(Θ′tΘ′) +

N∑

i=1

L(yi,φ
t
L(xi)W

txi) (11)

Our focus in this paper is on the hinge loss for binary
classification where L = max(0, 1 − yiφ

t
L(xi)W

txi)
though other appropriate loss functions for multi-class
and multi-label classification, regression and novelty
detection could also be plugged in. Note that LDKL
does not include an explicit bias term b but instead
adds a constant dimension to x whose value is deter-
mined through validation.

5. Optimizing LDKL

LDKL is optimized via primal stochastic sub-gradient
descent. At iteration j, a training point xi is picked
at random and W and Θ are updated as

W j+1 = W j − ηj∇WP (W j ,Θj ,Θ′j ,xi) (12)

Θj+1 = Θj − ηj∇ΘP (W j ,Θj ,Θ′j ,xi) (13)

Θ′j+1 = Θ′j − ηj∇Θ′P (W j ,Θj ,Θ′j ,xi) (14)

where ηj is the step size at iteration j and

∇wk
P (xi) = λWwk − δiyiφLk

(xi)xi (15)

∇θk
P (xi) = λΘθk − δiyi

∑

l

tanh(σθ′t
l xi)

∇θk
Il(xi)w

t
lxi (16)

∇θ′

k
P (xi) = λΘθ

′

k − δiyiσ(1− tanh2(σθ′t
kxi))

Ik(xi)w
t
kxixi (17)

where the gradient expressions have been derived for
the hinge loss for binary classification, assuming φLk

is non-compositional as in (10) and δi is unity if xi is
a margin violator and zero otherwise.

Optimization over the space of trees is a hard non-
convex problem. In this paper, we choose the tree
structure to be fully balanced (though the tree struc-
ture could also have been learnt by introducing l1 reg-
ularized node selection weights which ensure that all
child node weights go to zero if a parent’s weight goes
to zero). The task then boils down to learning the in-
dicator function Ik for each node k in the tree. Note
that Ik is sharply discontinuous with respect to the
tree parameters Θ. Thus, to make optimization via
sub-gradient descent tractable, Ik is relaxed to

Ik(x) =
∏

l∈Ancestors(k)

1
2 (tanh(sIθ

t
lx) + (−1)C(l))

⇒ ∇θl
Ik(x) = Ik(x)(tanh(sIθ

t
lx) + (−1)C(l))

δl∈Ancestors(k)sIx (18)

However, this also implies that, for a given x, Ik(x)
might be non-zero for many k. This destroys the
sparsity in φL and the cost of prediction no longer
remains logarithmic. Furthermore, optimization re-
mains hard, since the gradient needs to be propagated
back from the root to multiple leaf nodes. We tackled
this problem by introducing, and adaptively tuning,
a scale parameter sI within the tanh functions. Ini-
tially, sI was set to a small value so as to ensure that
most of the tanh relaxations were not saturated. As
optimization progressed, sI was adaptively increased
so that tanh(siθ

t
kx) had tended to sign(θt

kx) by the
time convergence was approached. This was found to
significantly speed up convergence and allowed us to
efficiently scale to training sets with more than half a
million data points.

Note that most MKL formulations, including LMKL,
are optimized using SVM dual parameters. However,
it is advantageous to optimize LDKL in the primal
using stochastic sub-gradient descent for three rea-
sons. First, primal based prediction using W is signif-
icantly more efficient in LDKL than dual based pre-
diction using α. One could potentially consider dual
co-ordinate ascent techniques which also maintain W

such as (Hsieh et al., 2008), but then one runs into
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LDKL Piecewise Smooth M=22−1=3 LDKL Piecewise Smooth M=23−1=7 LDKL Piecewise Smooth M=24−1=15

Figure 1. Piecewise smooth decision boundaries learnt by LDKL for M = 22 − 1 = 3, 23 − 1 = 7 and 24 − 1 = 15 on the
Banana data set. The first two decision boundaries are reasonable while M = 15 has started showing signs of over fitting.

Data Set
Num Num Linear RBF-SVM LDKL
Train Dims SVM Accuracy Norm. Time Accuracy Norm. Time Speed Up

CoverType 522,910 54 76.32 91.21 137,185.76 88.21 ± 0.15 32.54 ± 0.09 4216x
Letter 12,000 16 73.08 97.20 1,548.71 96.30 ± 0.42 33.29 ± 0.78 46x
MNIST 60,000 784 86.75 97.88 5,925.36 97.15 ± 0.06 17.55 ± 0.03 337x
CIFAR 50,000 400 68.45 81.58 28,529.87 76.54 ± 0.55 12.30 ± 0.02 2319x
Banana 1,000 2 55.49 90.21 322.12 88.67 ± 0.43 4.52 ± 0.05 71x
IJCNN 49,990 22 92.13 98.66 2,100.21 96.86 ± 0.07 13.24 ± 1.04 159x
USPS 7,291 256 83.35 96.86 1,415.72 95.18 ± 0.27 9.41 ± 0.03 150x
Magic04 14,226 10 79.08 86.88 4,493.89 85.74 ± 0.19 20.82 ± 0.49 215x

Table 1. LDKL can significantly speed up prediction time over an RBF-SVM (normalized time = prediction time / linear
SVM prediction time). LDKL’s average prediction cost, on 6 out of the 8 data sets, was 163 times lower than that of the
RBF-SVM with a 1.3% loss in accuracy. On CoverType and CIFAR, the speed up was more than 2000 times but the loss
was also higher at 3% and 5% respectively. Note that these data sets were found to be challenging for all methods.

the second problem. A co-ordinate or gradient step in
Θ would change KΘ and dual based techniques would
no longer be able to take co-ordinate steps but would
need to update all dual variables α by solving the en-
tire single kernel SVM for the new KΘ. Even with
warm restarts, this was found to be significantly more
expensive than the primal update strategy of taking a
sub-gradient step inW with respect to a single training
point. Third, for multi-class problems, it is desirable
to learn a single feature embedding for all classes using
the multi-class hinge loss rather than a 1-vs-All formu-
lation. Training time would rise to be quadratic in the
number of categories for dual MKL methods. All in
all, LDKL’s primal based optimizer was found to be
orders of magnitude faster than the LMKL optimizer
and even state-of-the-art dual based optimizers em-
ploying spectral projected gradient descent (Jain et al.,
2012). Finally, it should be noted that the vanilla con-
vex MKL problem subject to lp>1 regularization has
been optimized in the primal (Orabona et al., 2010;
Orabona & Jie, 2011) using stochastic sub-gradient
descent. However, since LDKL learns an explicit fea-
ture map, it does not have to worry about maintaining
dual variables or dual sparsity, and can therefore easily

scale to large problems.

6. Experiments

The performance of LDKL was assessed on multiple
benchmark data sets ranging from the small (Banana),
where not much improvement is expected, to the large
(CoverType) where the most gains are to be had. Ta-
ble 1 lists the statistics of all the data sets used in
the evaluation. Each data set comes with a predefined
training and test set. The training set was further
randomly partitioned into 80% for training and 20%
for validation. Parameters for all algorithms were cho-
sen so as to maximize classification accuracy on the
validation set.

Two types of experiments were carried out. First,
LDKL’s performance was compared to that of an RBF-
SVM in terms of classification accuracy and prediction
cost. Second, LDKL’s performance was compared to
LMKL (Gonen & Alpaydin, 2008) and state-of-the-
art methods such as CPSP (Joachims & Yu, 2009),
LLSVM (Ladicky & Torr, 2011), Random Fourier Fea-
tures (Rahimi & Recht, 2007) and the Nyström kernel
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Data Set LDKL LMKL RFF Nyström CPSP LLSVM
CoverType 88.21 ± 0.15 - 58.94 ± 1.94 55.21 ± 1.49 71.06 78.77 ± 0.56
Letter 96.30 ± 0.42 - 70.90 ± 1.58 62.31 ± 1.72 82.80 87.43 ± 0.37
MNIST 97.15 ± 0.06 - 69.48 ± 1.66 56.08 ± 1.48 89.22 94.91 ± 0.14
CIFAR 76.54 ± 0.55 - 58.26 ± 1.52 58.52 ± 1.44 66.91 72.06 ± 0.20
Banana 88.67 ± 0.43 86.09 66.81 ± 2.43 56.13 ± 2.33 79.60 87.21 ± 0.13
IJCNN 96.86 ± 0.07 - 90.49 ± 2.59 90.49 ± 2.59 91.42 93.19 ± 0.72
USPS 95.18 ± 0.27 - 68.22 ± 2.31 66.21 ± 1.91 88.29 93.97 ± 0.23
Magic04 85.74 ± 0.19 - 72.13 ± 2.05 71.38 ± 2.05 83.73 85.20 ± 0.09

Table 2. For a fixed prediction cost, LDKL’s classification accuracy can be significantly better than the state-of-the-art.
LDKL can be 30% better than methods such as Random Fourier Features (RFF) and Nyström which do not train on the
given labels and more than 10% better than methods such as CPSP and LLSVM that do.

approximation (Williams & Seeger, 2001; Yang et al.,
2012). These methods are briefly reviewed in Sec-
tion 2. For a fair comparison, the implementation as
provided by the authors on their websites was used for
all algorithms except for Nyström where the SciKit-
Learn library was used (Pedregosa et al., 2011).

Both the compositional (9) and non-compositional
(10) decision functions were tried out in LDKL and
the latter was found to lead to better results. We
therefore present results only for φLk

set as in (10).
Figure 1 plots the decision boundaries for piecewise
smooth LDKL for M = 22 − 1, 23 − 1 and 24 − 1 on
the Banana data set. The LDKL parameters λW , λΘ,
λΘ′ and σ were set by validation. LDKL’s prediction
time was controlled by the dimensionality of the lo-
cal embedding space M and Figure 2 presents results
for varying values of M for each data set. Note that
the LDKL formulation is non-convex and mean and
standard deviation values are reported for five random
initializations.

Table 1 compares the performance of LDKL with lin-
ear and RBF-SVMs. Prediction costs are reported
in terms of normalized time which is an algorithm’s
prediction time divided by a linear SVM’s prediction
time. LDKL’s classification accuracy was found to
be better than that of the linear SVM and tended
to the RBF-SVM’s accuracy in most cases. However,
LDKL’s prediction time could be orders of magnitude
lower than that of the RBF-SVM. For instance, for 6
out of the 8 data sets, LDKL reduced the RBF-SVM’s
prediction cost by 163 times on average while suffering
only a 1.3% loss in classification accuracy. On Cover-
Type, the speed up was more than 4000 times with
a 3% loss in accuracy. In contrast, popular methods
such as Random Fourier Features have demonstrated
only a thirty times speed up over the RBF-SVM us-
ing the given CoverType feature set (Rahimi & Recht,
2007) while achieving the same classification accuracy
as LDKL. The CIFAR data set was a challenge for

all methods. LDKL achieved a more than 2000 times
speed up over the RBF-SVM but also resulted in a
5% loss in accuracy (though the loss incurred by other
methods was even greater).

Table 2 compares LDKL’s performance to LMKL and
state-of-the-art methods for speeding up non-linear
SVM prediction. Having fixed LDKL’s prediction time
as in Table 1, it tabulates the classification accuracies
of all methods for the same prediction time. LDKL’s
accuracy was found to be as much as 30% higher
than kernel approximation methods such as Random
Fourier Features (RFF) and Nyström which do not
learn from the given training labels. LDKL’s accuracy
could also be as much as 15% and 10% higher than
CPSP’s and LLSVM’s accuracies respectively which
do learn from the given training labels. Finally, LDKL
was better than LMKL by 2.5% on even the small Ba-
nana data set. Unfortunately, the SVM dual based
LMKL implementation provided by the authors was
unable to scale to any other data set and hence no
further comparisons are presented to LMKL. Figure 2
plots the classification accuracies of all methods for a
range of prediction times. The scaling on the y-axis
starts from the accuracy obtained by a linear SVM
and hence if a method performed worse than a linear
SVM then its curve would not be visible. As can be
seen, LDKL’s curve was consistently higher than all
the other curves indicating that LDKL’s classification
accuracy was significantly better than the accuracies
of other methods for a fixed prediction time.

7. Conclusions

We developed the Local Deep Kernel Learning formu-
lation in this paper to speed up non-linear SVM pre-
diction. We generalized the Localized Multiple Kernel
Learning formulation (Gonen & Alpaydin, 2008) so as
to learn arbitrary local feature embeddings. In par-
ticular, we learnt high dimensional, sparse and com-
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Figure 2. LDKL can have significantly higher classification accuracies as compared to state-of-the-art methods for a given
prediction cost. A method’s curve not appearing in the plot for a given data set indicates that, for the given prediction
cost range, the methods performance was worse than that of a linear SVM. Figure best viewed magnified.

putationally deep local features. These introduced
non-linearities into the LDKL model while ensuring
that predictions could be made using primal variables
in time that is logarithmic in the dimensionality of
the local embedding space. We developed efficient
primal based routines to optimize over the space of
tree-structured local feature embeddings that scale to
large training sets with more than half a million train-
ing points. Experimental results demonstrated that
LDKL could achieve an exponential speed up over
the RBF-SVM (more than four thousand times on
CoverType) while maintaining classification accuracy
over an acceptable threshold. Finally, we also demon-
strated that LDKL could achieve significantly better
classification accuracies as compared to LMKL and
state-of-the-art methods. For instance, for a given pre-
diction cost on CoverType, LDKL’s classification ac-
curacy was 30% higher than that of Random Fourier
Features (Rahimi & Recht, 2007) and the Nyström
approximation (Williams & Seeger, 2001; Yang et al.,
2012), 15% higher than that of CPSP (Joachims
& Yu, 2009) and almost 10% higher than that of
LLSVM (Ladicky & Torr, 2011). LDKL took only
hours to train on CoverType whereas an RBF-SVM
took days. Furthermore, LDKL’s parameters could be

stored in less than 1 Mb of RAM. This opens up the
possibility of training non-linear SVMs on large data
sets beyond the scope of RBF and other traditional
kernels and making accurate predictions efficiently us-
ing these learnt models.
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