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Abstract

We introduce a new large margin approach to
discriminative training of intractable discrete
graphical models. Our approach builds on a
convex quadratic programming relaxation of
the MAP inference problem. The model pa-
rameters are trained directly within this re-
stricted class of energy functions so as to op-
timize the predictions on the training data.
We address the issue of how to parameterize
the resulting model and point out its relation
to existing approaches. The primary motiva-
tion behind our use of the QP relaxation is
its computational efficiency; yet, empirically,
its predictive accuracy compares favorably to
more expensive approaches. This makes it an
appealing choice for many practical tasks.

1. Introduction

Discriminative training of structured prediction mod-
els is a significant computational challenge that be-
comes even more difficult if exact inference in the
model is intractable. Yet, this situation is not uncom-
mon at all: For instance, even plain grid-structured
graphical models, as commonly used in computer vi-
sion, can lead to NP-hard inference problems.

Discriminative learning formulations such as CRFs
(Lafferty et al., 2001) or M3Ns (Taskar et al., 2003)
require that an inference problem be solved repeat-
edly for each training example, at each step of an
iterative solver. Consequently, approximate training
objectives such as pseudolikelihood (Besag, 1975) or
piecewise training (Sutton & McCallum, 2009) have
commonly been used to avoid inference during train-
ing altogether. At test time, the prediction of the in-
tractable model is then obtained approximately.
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More recently, several authors (Wainwright, 2006;
Kulesza & Pereira, 2007; Finley & Joachims, 2008)
have discussed the benefits of using the same approx-
imate “inference machine” at test time and during
training, to ensure compatibility. One well-understood
approach towards this end relaxes the intractable
MAP inference problem via a linear programming for-
mulation due to Koval & Schlesinger (1976). Although
there has been steady progress in solving this LP (e.g.
Ravikumar et al., 2010; Savchynskyy et al., 2012), it
is still recognized as a difficult practical problem. For
instance, some of the most efficient specialized solvers
(Kolmogorov, 2006; Globerson & Jaakkola, 2007) work
on the dual of the LP relaxation and ensure monotonic
descent, but do not guarantee global convergence.

Here, we consider a different relaxation of MAP in-
ference and explore its utility in learning discrimina-
tive models. The quadratic programming relaxation
(Ravikumar & Lafferty, 2006) has several advantages
over its LP counterpart: Its optimization involves
fewer variables and a separable constraint set (§3.2);
dense interaction matrices can be incorporated if they
allow for efficient multiplication (§5.4); and it leads
to a differentiable large margin parameter estimation
objective (§4.2). On the downside, it is strictly dom-
inated by the LP relaxation in theory (Kumar et al.,
2009), though the practical impact is mostly unclear.
Moreover, tractability of the QP relaxation is typically
ensured by convexifying the problem post-hoc (§3.2),
so it is not immediately clear how to use it for learning.

We make the following contributions: a) We provide
specific discriminative parameterizations that directly
ensure convexity of the QP relaxation, avoiding the
need for post-hoc “convexification” and enabling its
use in large margin learning. b) We provide, to our
knowledge, the first empirical study of discriminative
training using the QP relaxation, comparing it directly
to related approaches (including the LP relaxation)
on four difficult structured prediction problems. Our
results show that the QP relaxation is highly efficient
and provides competitive predictive performance.



Learning Convex Quadratic Programming Relaxations for Structured Prediction

2. Related Work

We are not aware of previous work that uses convex QP
relaxations in learning; however, several authors have
considered training of discriminative models when ex-
act inference is intractable. Kulesza & Pereira (2007)
give technical conditions under which the use of LP-
relaxed inference yields provably good results in stan-
dard learning frameworks. Finley & Joachims (2008)
further show that large margin learning with relax-
ations discourages fractional predictions at test time.
While only the LP relaxation is actually considered in
their paper, the results apply equally to the convex
QP relaxation. Moreover, building on the aforemen-
tioned work, Martins et al. (2009) derive even stronger
guarantees for learning with relaxations.

A number of authors have attempted to accelerate ap-
proximate discriminative learning by dualizing the LP
relaxation in the loss function, keeping the dual vari-
ables of all examples in memory. Meshi et al. (2010)
alternate block coordinate updates on these dual vari-
ables and stochastic gradient descent on the model
parameters. Hazan & Urtasun (2010) devise a simi-
lar approach; in addition, their model contains a one-
parameter extension that interpolates between large
margin learning and maximum conditional likelihood
learning. Komodakis (2011) uses a dual formulation
motivated by dual decomposition, and again updates
model parameters and dual variables jointly. We do
not follow the same strategy for the QP relaxation,
but rather solve the inference subproblem exactly at
each step, which is fast and requires less memory.

A different approach to attaining tractability, which
has been followed for binary output variables, is to
enforce submodularity of the inference subproblem
(Taskar et al., 2006; Franc & Savchynskyy, 2008). The
subproblem can then be solved efficiently using graph
cuts, enabling exact training within this restricted
family. Our approach is related in that the inference
problem is restricted to belong to a particular class in
which we can learn efficiently; but unlike graph cuts,
our approach can handle multiple labels natively.

Finally, several authors have attempted to minimize
the empirical risk of arbitrary “inference machines”
mapping from input to a labeling by directly comput-
ing the loss on the prediction obtained from the model
(Stoyanov et al., 2011; Domke, 2011). Among these
methods, our approach is most closely related to the
logistic random field (LRF) of Tappen et al. (2008).
Unlike our approach, the logistic random field uses
an unconstrained quadratic energy. Moreover, it is
originally parameterized very restrictively and unfor-
tunately leads to a non-convex learning problem.

3. Background

Consider an undirected graphical model defined over
n nodes i ∈ V, each of which can be in one of k states
yi ∈ {1, . . . , k}. The likelihood of a joint state y =
(yi)i∈V is described in terms of an energy E,

p(y; θ) ∝ e−E(y;θ), (1)

which is assumed to decompose over edges (i, j) ∈ E :

E(y; θ) =
∑
i θi(yi) +

∑
(i,j) θij(yi, yj). (2)

For training and prediction, we want to obtain the
joint state that minimizes the energy, referred to as as
the min-sum problem or MAP estimation.

3.1. LP Formulation of the Min-Sum Problem

Observe that energy E can be defined equivalently
using indicator vectors φ(y) selecting the appropriate
components of the exponential parameters θ:

minimize
y∈Y

φ(y)′θ. (3)

The above optimization occurs over a finite number of
discrete points. By standard results, it is equivalent to
optimize over the convex hull M = conv{φ(y)}y∈Y ,

minimize
µ∈M

µ′θ, (4)

and any solution lies at one of the corner points of
M, known as the marginal polytope (Wainwright &
Jordan, 2008). Due to the exponential nature of M,
only special cases of the above LP can be solved.

LP relaxation. Instead, one can always optimize
over the local polytope L, an approximation ensuring
only local marginal consistency (Wainwright & Jor-
dan, 2008). This can introduce fractional solutions,
as shown in Fig. 1a. Moreover, the resulting LP has
O(k|V| + k2|E|) variables and O(2k|E|) constraints.
A dual formulation typically optimized by message
passing algorithms (e.g. Kolmogorov, 2006) is uncon-
strained, but still involves O(2k|E|) variables, which
can be prohibitively expensive for dense graphs.

3.2. QP Formulation of the Min-Sum Problem

In contrast, we will work with a different formulation of
the min-sum problem involving only O(k|V|) variables
and O(k|V|) separable constraints. In particular, by
arranging all pairwise parameters θij into a matrix Θ,
and all θi into a vector θ, an alternative (but exact)
definition of the min-sum problem is given by

minimize
y∈Y

ψ(y)′θ +
1

2
ψ(y)′Θψ(y). (5)
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Figure 1. Tractable approximations of the MAP problem.
In the exact LP and QP formulations, solutions are integral
and occur at corner points of the constraint set. a) In the
LP relaxation, corner points need no longer be integral. b)
In the convex QP relaxation, convexification of the energy
can lead to additional solutions in the interior.

Here, the convex hull of all indicator vectors ψ(y),

∆n,k = conv{ψ(y)}y∈Y
= {µ ≥ 0 |

∑
yi
µi(yi) = 1},

(6)

consists of n = |V| unit simplices; one per variable.
Each µi can be thought of as encoding the marginal
probabilities of the k states of a single node.

QP relaxation. Similarly to the exact LP, it is
known (Ravikumar & Lafferty, 2006) that optimizing
the quadratic energy over this set,

E(µ; θ) = µ′θ +
1

2
µ′Θµ, µ ∈ ∆n,k, (7)

yields corner points ψ(y) encoding exact solutions y.
However, since the energy is generally non-convex, di-
rect minimization is still difficult.

Ravikumar & Lafferty (2006) propose to convexify the
energy by adding a diagonal term D such that the ma-
trix Θ becomes diagonally dominant, and to subtract
the same term from the unary potentials,

Θ̌ = Θ +D and θ̌ = θ− vec(D). (8)

This approximation can be justified by the fact that
under the indicator formulation (5), equivalence is
maintained. However, the guarantee does not carry
over to continuous energy (7): Indeed, fractional solu-
tions can be introduced in the process (see Fig. 1b).

4. Learning Convex QP Relaxations

The QP relaxation is attractive due to its small num-
ber of variables and constraints. But convexifying the
energy post-hoc, akin to Ravikumar & Lafferty (2006),
is unsuitable for use in a learning framework. Instead,
we aim at directly learning the best parameters within
the class of convex quadratic energies.

4.1. Parameterization

In a discriminative model, the exponential parameters
are a function of the observed input x and the model
parameters w. Hence, our energy is of the form

E(µ|x;w) = µ′θ(x;w) +
1

2
µ′Θ(x;w)µ, µ ∈ ∆n,k.

(9)
Commonly, the model parameters w weight a matrix
of features F derived from input x, such that

θ(x;w) = Fθ(x)w and Θ(x;w) = FΘ(x)w.

For computational reasons, we want to ensure strict
convexity of the energy. Towards this end, we first
break up the energy into contributions by edges.

Decomposition. From its definition, it follows that
the energy can be decomposed as

E(µ|x;w) =
∑

(i,j)∈E

Eij(µ|x;w). (10)

Each such pairwise term is of the form

Eij(µ) = ( µi
µj )
′
(

θ̄i

θ̄j

)
︸ ︷︷ ︸

θij(x;w)

+ 1
2 ( µi

µj )
′
(

Θ̄ii Θ̄ij

Θ̄′
ij Θ̄jj

)
︸ ︷︷ ︸
Θij(x;w)

( µi
µj ) . (11)

If Θ̄ii and Θ̄jj are zero, the QP formulation is exact,
but the energy is non-convex. To ensure convexity of
the global energy, it suffices that Θij(x;w) � 0.

Convex forms. We now discuss, in increasing or-
der of expressiveness, forms of Θij(x;w) that lead to
convex energies and moreover ensure convexity of our
learning objective in the model parameters w.

Form 1 : A natural approach, followed in the logistic
random field (Tappen et al., 2008), is to define

Θij(x;w) = Fij(x)′ diag(wp)Fij(x), (12)

where wp ∈ w is a component-wise positive weighting
vector. By definition, we have Θij(x;w) � 0, and if
rank{Fij(x)} ≥ 2k, then Θij(x;w) � 0 holds. To en-
sure wp > 0, we can project onto the positive orthant
by clipping; but there are only few degrees of freedom.
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Form 2 : A more powerful approach is to directly learn
positive-definite matrices. Assuming {Wp} ∈ w is a set
of such matrices, we can use a linear combination

Θij(x;w) =
∑
p fp(x)Wp, fp(x) > 0. (13)

This way, a strictly larger class of interactions can be
modeled. To ensure Wp � 0, we can project it onto
the cone of positive-definite matrices at the small cost
of a single eigendecomposition.

Form 3 : It is often gainful to further exploit the de-
pendency on input x. To this end, we can define

Θij(x;w) = Fij(x; {Wp}), (14)

where Fij is a nonlinear function of the observed in-
put mapping to one of the matrices Wp � 0. As an
example, Fij might evaluate a decision tree on the in-
put, and return the specific matrix Wp stored at the
selected leaf. This approach was followed before for
Gaussian random fields by Jancsary et al. (2012).

Form 4 : Finally, for some applications, fixed-form
global interaction matrices Q exist that already model
the right semantics, so one can define

Θ(x;w) = wqQ(x), Q(x) � 0, (15)

and learn the contribution relative to other terms via a
positive scalar wq > 0. Since Q only enters the energy
in a matrix-vector product, even dense matrices can be
used if they permit efficient multiplication (see §5.4).

4.2. Parameter Estimation

Assume we are given i.i.d. labeled training examples
({xi}, {y?i }). To facilitate notation, we think of the
examples as disconnected components of a single in-
stance, denoted by (x, y?) and comprising n nodes.
Further, the cost of a misprediction µ̂ is measured by
a loss function that decomposes. The loss relative to
ground truth y? can then be written as µ̂′δ(y?), e.g.

δi(y
?
i ) = Jψi(y?i ) 6= 1K (16)

for Hamming loss. Direct minimization of such discon-
tinuous loss functions is infeasible; but following the
empirical risk formulation of large margin estimation
(Ratliff et al., 2007), we can define the surrogate

ξ(y|x;w) = E(ψ(y)|x;w)− min
µ∈∆n,k

[E(µ|x;w)−µ′δ(y)] ,

leading to a convex, regularized estimation problem:

minimize
w

C

2
‖w‖2 +

1

n
ξ(y?|x;w)

sb.t. Θij(x;w) � 0 for all (i, j) ∈ E .
(17)

One can verify that ξ(y|x;w) is an upper bound on the
loss of the actual prediction obtained from the energy.

Optimization. A convenient property specific to
our approach is that for Θij � 0, the surrogate loss
ξ(y|x;w) is differentiable in the model parameters w.
To see this, consider the loss augmented inference
problem solved in order to compute the surrogate:

µ̂δ(x;w) = argmin
µ∈∆n,k

[E(µ|x;w)− µ′δ(y)] . (18)

Since the energy is strictly convex, the minimum is
attained uniquely. Then, by Danskin’s theorem, the
subdifferential of the min function contains a single
element (the gradient), obtained by differentiating the
inner expression at point µ̂δ:

∂ξ(y|x;w)

∂θ(x;w)
= ψ(y?)− µ̂δ

and
∂ξ(y|x;w)

∂Θ(x;w)
=

1

2
[ψ(y?)ψ(y?)′ − µ̂δµ̂′δ] ,

while the gradient with respect to the actual model
parameters w follows from the chain rule.

In practice, we found projected quasi-Newton methods
(Schmidt et al., 2009) to be effective at solving (17),
since cheap closed-form projections ensuring positivity
are available for the parameterizations we discussed.
Because (17) is convex, we find the global optimum.

4.3. Inference

At test time, given the estimated model parameters ŵ
and input x, we determine the prediction as

µ̂(x; ŵ) = argmin
µ∈∆n,k

E(µ|x; ŵ). (19)

Since µ̂ can be fractional, we round to the nearest in-
tegral point to find a discrete ŷ.

For global minimization of (19), we use the spectral
projected gradient method (SPG; Birgin et al., 2000),
resulting in an efficient iterative scheme that depends
only on matrix-vector products Θ(x;w)µ as its basic
operation. The constraints µ ∈ ∆n,k are handled by
independently projecting each µi onto a simplex ∆k,
which takes expected linear time (Duchi et al., 2008).

4.4. Relation to Logistic Random Field

The Logistic Random Field (LRF) of Tappen et al.
(2008) uses a convex quadratic energy similar to (19),
but without constraints ∆n,k. Its parameters w are es-
timated by minimizing a logistic loss defined directly
on the prediction. This can be viewed as a smoothed
form of Hamming loss but leads to a non-convex prob-
lem, even if the energy is convex in w. Though not
used originally, all parameterizations we discussed for
our approach are equally applicable to LRF, so we
compare to such an extended version in the following.
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Figure 2. The graphical model for the multi-label classifi-
cation task, illustrated for the concrete case of the Yeast
dataset. Each binary variable Yi encodes whether label i
shall be one of the labels assigned to the example.

Table 1. Average test loss in multi-label classification,
along with standard error of the mean. The results for M3N
and LP-M3N are reported by Finley & Joachims (2008).

Data M3N LP-M3N QP-M3N LRF
Scene 10.06±.26 10.49±.27 10.48±.36 10.98±.33

Yeast 20.23±.53 20.49±.54 20.19±.45 29.05±.48

5. Applications and Experiments

We now assess the benefits of our approach on four
structured prediction tasks that lead to intractable
inference and training, comparing QP-M3N: large
margin learning with convex quadratic programming
relaxations (our approach); LP-M3N: large margin
learning with linear programming relaxations; LRF:
logistic random field of Tappen et al. (2008), with
quadratic regularization of the model parameters; and
finally M3N: exact max-margin Markov networks,
which are only feasible for small instances.

All experiments are performed on recent Intel Xeon
machines with 16GB of main memory. Depending on
the method and application, different iterative solvers
are used for inference and parameter estimation, but
we always tried to ensure that the convergence criteria
lead to a fair comparison in terms of both predictive
accuracy and computational efficiency.

5.1. Experiment 1: Multi-label Classification

The problem of multi-label classification is to assign a
subset of labels Y ⊆ {1, . . . , k} to each example. This
task can be expressed equivalently via k binary vari-
ables yi ∈ {0, 1} that each encode whether or not label
i shall be assigned to an example. These binary vari-
ables are correlated since some label combinations are
more likely than others. We follow Finley & Joachims
(2008) and encode the dependencies via a graphical
model with dense pairwise connectivity (see Figure 2).

He remains chief executive officer .
PRP VBZ JJ JJ NN .
B-NP B-VP B-NP I-NP I-NP O

Figure 3. An exemplary sentence of the joint PoS-tagging
and chunking task, taken from CoNLL-2000 data. The PoS
chain uses 44 labels, while 23 labels are used for chunking.

We evaluate on the Scene and Yeast datasets, which
were used by Finley & Joachims (2008) without any
pre-processing, allowing us to replicate the experiment
exactly. Besides the positivity constraints on the pair-
wise matrices in the QP-M3N and LRF systems, as in
(13), our setup is equivalent to theirs: Single-node po-
tentials are obtained as dot products of model parame-
ters and input features, while the pairwise terms learn
a co-occurrence bias for label combinations. For each
dataset and learning method, we choose from 14 differ-
ent settings of regularization parameter C via 10-fold
cross validation on the training data. The best value
of C is then used to train on the whole training data,
and we report the average normalized Hamming loss
on test examples (this is the loss all methods more or
less directly try to minimize during training).

Table 1 shows the new results obtained for QP-M3N
and LRF, alongside the results of Finley & Joachims
(2008). The standard error of the mean is indicated
next to the loss. Since the graphical models are tiny,
it is possible to compare against an exactly trained
M3N. As one can see, QP-M3N compares favorably
on both datasets, achieving lower test loss than LP-
M3N and even M3N on the Yeast dataset. LRF, on
the other hand, fails on the Yeast dataset. It is unclear
to us exactly why this is the case; we tried to tweak
various implementation details of the method in order
to achieve better results, to no avail. Presumably, non-
convexity of the training objective used by LRF is to
blame, although this was not in general a problem.

5.2. Experiment 2: PoS-Tagging and Chunking

The multi-label classification problem uses very small
graphical models, allowing for rigorous evaluation of
the predictive performance, but preventing realistic
comparisons in terms of computational efficiency. We
now consider a different problem, joint Part-of-Speech
tagging and phrase chunking, which already leads to
inference problems of more realistic size and difficulty.
The goal is to identify the lingustic category of each
word in a sentence, often referred to as a “part of
speech”. Moreover, phrase boundaries and types shall
be identified. This can be formulated as a tagging
problem on two chains, as illustrated in Fig. 3. Again,
the correlations between labels can be exploited.
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Table 2. Test loss on the joint PoS-tagging and chunking
task, using a strong unary classifier achieving a loss of 3.78.

C M3N LP-M3N QP-M3N LRF
10−0 13.88 15.18 13.54 3.87
10−3 3.58 3.54 3.76 3.87
10−6 ∼ 3.48 3.56 3.81
10−9 ∼ 3.41 3.56 4.03

Our experiments are performed on the CoNLL-2000
shared task (Tjong Kim Sang & Buchholz, 2000), com-
prising 8,936 training sentences and 2,012 test sen-
tences. As a baseline, we train two local SVM clas-
sifiers predicting each label independently. We use
sparse binary features similar to Sutton et al. (2004)
that check for the occurrence of words in a window
around the current token. The first classifier, called
strong, uses a window size of ±3 tokens, while the sec-
ond one, weak, is restricted to a window of ±1 tokens.
These classifiers are trained on the training data us-
ing crossvalidation and achieve an average normalized
Hamming loss of 3.78 and 13.17 on the test data.

In order to take into account correlations between the
output variables, we specify a graphical model similar
to Sutton et al. (2004), with a pairwise factor defined
between adjacent words within each label chain, as
well as a pairwise factor defined between the two chains
for each word, resulting in a grid structure. Pairwise
factors are specified as in (13), with factors of the same
spatial type sharing the same model parameters. The
unary factors are derived from the confidence scores
predicted by either the strong or the weak local SVM
classifier, creating two different scenarios.

Exact inference in this model is still feasible by form-
ing junction trees, which typically results in cliques in-
volving no more than three variables. For moderately
small values of regularization parameter C, this allows
us to train exact M3N models using bundle methods
(Teo et al., 2010). For LP-M3N, we follow Hazan &
Urtasun (2010) and slightly smooth the LP using a
concave entropy approximation (ε = 10−2), resulting
in a differentiable training objective that can be solved
efficiently for any value of C. Inference is done using
convex belief propagation (Hazan & Shashua, 2010).
We use our own implementation of these methods.

Let us first discuss the results obtained by using the
weak local classifier. The test loss of models trained
on the training data using a range of regularization
parameters C is shown in Table 2. Here, LP-M3N per-
forms comparably to an exact M3N, while QP-M3N is
slightly worse but still improves significantly over the
baseline classifier. LRF, on the other hand, achieves

Table 3. Test loss on the joint PoS-tagging and chunking
task, using a weak unary classifier achieving a loss of 13.17.

C M3N LP-M3N QP-M3N LRF
10−0 22.15 28.60 21.06 5.53
10−3 6.22 6.14 7.98 6.61
10−6 ∼ 5.74 6.64 6.02
10−9 ∼ 5.74 6.61 5.95

Table 4. Computational efficiency in joint PoS-tagging and
chunking, for the best value of C and weak unaries.

M3N LP-M3N QP-M3N LRF
Train 58h 11h 12h 38h
Test 12 sent/s 11 sent/s 313 sent/s 165 sent/s

worse results than the baseline classifier. Moreover,
regularization is less predictable than for the other
models. The standard error of the test loss ranges
from 0.1 to 0.2, so these results are rather conclusive.

Using weak baseline unaries, bigger improvements can
be expected from structured models. The results in
Table 3 mostly follow the previous discussion, with the
surprising exception that LRF achieves the strongest
results. This suggests that the restriction to convex
quadratic energies does not per se limit the expres-
siveness of a model on this task. The slightly worse
results achieved by QP-M3N must then stem either
from interactions with large margin estimation or the
additional simplicial constraints in the energy.

Table 4 compares computation time. Inference in QP-
M3N is very efficient, yielding predictions more than
an order of magnitude faster than LP-M3N and even
twice as fast as LRF, for which we use conjugate gra-
dient. Exact inference in M3N is as fast as solving
the LP relaxation using convex message passing, since
the prediction can be readily obtained from a junc-
tion tree. Training time is somewhat less informative;
the inference subproblem does not strongly dominate
the cost here, so it mostly depends on the number of
iterations required to optimize the model parameters.

5.3. Experiment 3: Inpainting of Characters

We now consider a task requiring conditional pairwise
interactions that strongly depend on the observed in-
put. The goal is to inpaint the occluded parts of Chi-
nese characters (cf. Figure 4, occlusions in gray). This
problem was first considered by Nowozin et al. (2011);
the data consists of 300 training and 100 test images.
Following the original experiment, we visualize predic-
tions on a version of the data with larger occlusions
and report predictive accuracy on smaller occlusions.
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Input Truth RF DTF RTF QP-M3N LRF

Figure 4. Inpainting of Chinese characters. Typical predic-
tions by various system configurations are shown.

The graphical model we use is identical to Nowozin
et al. (2011). In particular, we instantiate pairwise
factors according to 32 types of spatial offsets relative
to each pixel, such that each variable is connected to 64
other variables in its neighborhood. The potentials of
a pairwise factor are determined by its type: Each type
has an associated decision tree that performs feature
checks on the input image relative to the coordinates
of the factor. Leaf nodes store the positive-definite
interaction matrices, and so the path taken through
the tree determines the effective interaction for each
factor, as in (14). We also use one unary type.

Learning follows a two-step iterative scheme that alter-
nates between introducing new model parameters by
splitting tree nodes, and optimization of the current
model parameters according to the learning objective.
Tree nodes are split with the goal of achieving the
largest possible descent in the objective function. This
approach was introduced by Jancsary et al. (2012) in
order to train Regression Tree Fields (RTFs), but it
is equally applicable to QP-M3N and LRF. We train
unary trees to a depth of 10 and pairwise trees to a
depth of 4. Deeper trees lead to overfitting.

Besides Regression Tree Fields (RTFs), we compare
against a random forest (RF), as well as Decision Tree
Fields (DTF), introduced by Nowozin et al. (2011).
RTFs are based on a Gaussian conditional random
field while DTFs use a discrete random field. Both
methods are trained by maximizing the pseudolikeli-
hood (Besag, 1975) of the data. Predictions are ob-
tained from RTF using conjugate gradient (CG), sim-
ilarly to LRF. In contrast, DTF must solve an in-
tractable min-sum problem. One option is to solve the
LP relaxation instead; but, as shown in Table 6, this is
still expensive. TRW-S (Kolmogorov, 2006), special-
ized for binary problems, is over an order of magnitude
slower than inference in QP-M3N and the approaches
based on a Gaussian random field. While TRW-S is
recognized as one of the most efficient solvers for gen-

Table 5. Test loss on the Chinese characters inpainting
task. The numbers for RF, DTF and RTF are reported
by Nowozin et al. (2011) and Jancsary et al. (2012).

C QP-M3N LRF RF RTF DTF
10−0 43.22 20.95

32.26 22.45 23.99
10−3 22.36 22.35
10−6 24.01 21.48
10−9 23.57 20.64

Table 6. Chinese characters: Computational efficiency at
test time vs. inference algorithm used (seconds per image).

Algorithm QP-M3N LRF RTF DTF
SPG 0.25s
CG 0.22s 0.24s

TRW-S/LP 4.79s
Annealing ≈20s

eral binary labeling problems, it must update O(2k|E|)
variables, versus O(k|V|) variables in approaches based
on a quadratic energy. This makes a big difference in
these rather densely connected graphs. Even worse,
while TRW-S aims to solve the LP relaxation, it of-
ten gets stuck. Better results for DTF are obtained by
using simulated annealing, which is even slower. End-
to-end discriminative training using the LP relaxation,
as in LP-M3N, is conceivable, but would be extremely
expensive, since inference clearly dominates the com-
putational cost of training in this task. Training of
QP-M3N and LRF took 20 and 28 hours, respectively.

Table 5 lists the predictive accuracy of the competing
approaches, again measured in terms of average nor-
malized Hamming loss. Both QP-M3N and LRF are
competitive with the state of the art; LRF in particular
improves considerably on previously published results.
Again, this is rather surprising. In any case, Hamming
loss is perhaps not the most appropriate performance
measure on this task. Of equal interest is whether
the predictions look like plausible Chinese characters.
Typical predictions are shown in Figure 4.

5.4. Experiment 4: Semantic Segmentation

Finally, we show how fixed-form interaction matrices
can be employed in our model, as in (15). The goal
in semantic segmentation is to correctly identify the
parts and foreground objects of a scene, which can be
formalized as assigning one of k labels to each pixel of
an image (Fig. 5). It is desirable for segmentations to
expose a certain level of connectedness. To this end,
one can use an affinity matrix based on the pixels’ sim-
ilarity in appearance. We use the matting Laplacian,
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Figure 5. Semantic segmentation of a previously unseen image. QP-M3N and LRF use a matting Laplacian with r = 16.

Table 7. Segmentation results for varying window radii r of
the matting Laplacian. A random forest baseline achieves
a test loss of 30.62. Images are of size 320× 240, 8 labels.

Test loss Inference time

r QP-M3N LRF QP-M3N LRF
2 28.90 29.11 1.3 s/image 2.1 s/image

4 28.70 29.23 1.2 s/image 1.8 s/image

16 28.42 30.69 0.9 s/image 2.3 s/image

defined by Levin et al. (2008) as a sum of matrices

L(x) =
∑
i∈V Ai(x), (20)

each of which stores the affinities among pixels inside
a window of radius r. Since L is positive semi-definite,
we can incorporate it into the quadratic energies of
QP-M3N and LRF. Importantly, L allows for efficient
multiplication at constant cost in its window radius r
(He et al., 2010). Since inference in QP-M3N and LRF
only requires such products, full connectivity in arbi-
trarily large windows can be modeled. We do not know
how to achieve this efficiently in the LP relaxation.

In our experiment, we use the matting Laplacian to
refine segmentations obtained from a random forest.
We perform 5-fold crossvalidation on the 715 images in
the scene understanding dataset of Gould et al. (2009).
For each fold, a random forest is first trained on the
training portion of the data. The QP-M3N and LRF
models then incorporate the predictions of the ran-
dom forest as weighted unary features and learn their
relative importance versus a matting Laplacian term.
Due to the small number of model parameters, the
structured models are trained only on one third of the
training portion of each fold, and we do not regularize.
All models are evaluated on the test portion of each
fold, and the results are then averaged over the folds.

Table 7 shows that the gains of QP-M3N over the
random forest grow with increasing window radius r,
while the computational cost slightly decreases. In
contrast, LRF even fails to improve over the baseline at
r = 16. Empirically, we find that LRF over-smoothes
its predictions (see Figure 5). It is also less efficient:
Training takes 10 hours versus 2 hours for QP-M3N.

6. Discussion and Summary

Based on our findings, is it possible to recommend one
method over the others? Perhaps most closely related
to learning using convex QP relaxations (QP-M3N),
which we proposed in this paper, is the Logistic Ran-
dom Field (LRF) of Tappen et al. (2008). It achieved
better results than QP-M3N in two cases; but it also
failed completely in three scenarios, not even improv-
ing on a trivial baseline. We believe that this is due
to its non-convex learning objective, and also the fact
that regularization of the model is more difficult. In
contrast, QP-M3N always improved reliably on the
baseline, and it is at least as efficient. For this reason,
we would advise against the use of LRF in general.

The closest competitor of QP-M3N is large margin
learning with LP relaxations (LP-M3N). It achieved
better results than QP-M3N in one of the two tasks
where a direct comparison was possible. On the other
hand, in our experiments, it was at least an order of
magnitude faster to solve the convex QP relaxation.
This is not surprising: The LP relaxation involves
significantly more variables and a more difficult con-
straint set. In practice, the computational efficiency
of QP-M3N enables end-to-end discriminative train-
ing where LP-M3N is simply too expensive. QP-M3N
is also more flexible, in that it allows to incorporate
dense interaction matrices efficiently.

A drawback of our approach is that the limitations in
the expressiveness of convex QP relaxations are not yet
as well understood as those of other classes of energies
that can be minimized efficiently, such as submodu-
lar ones. Nonetheless, we hope to have demonstrated
that convex QP relaxations are widely applicable in
practice and computationally efficient. Furthermore,
they can be trained in a principled manner in a large
margin framework and yield competitive predictive ac-
curacy. For these reasons, we believe that convex QP
relaxations deserve further attention.
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