
Algebraic classifiers: a generic approach to fast cross-validation,
online training, and parallel training

Michael Izbicki mike@izbicki.me

UC Riverside, 900 University Ave., Riverside, CA 92521

Abstract

We use abstract algebra to derive new algo-
rithms for fast cross-validation, online learn-
ing, and parallel learning. To use these al-
gorithms on a classification model, we must
show that the model has appropriate alge-
braic structure. It is easy to give algebraic
structure to some models, and we do this ex-
plicitly for Bayesian classifiers and a novel
variation of decision stumps called HomS-
tumps. But not all classifiers have an ob-
vious structure, so we introduce the Free
HomTrainer. This can be used to give a
“generic” algebraic structure to any classi-
fier. We use the Free HomTrainer to give al-
gebraic structure to bagging and boosting. In
so doing, we derive novel online and parallel
algorithms, and present the first fast cross-
validation schemes for these classifiers.

1. Introduction

Abstract algebra is an increasingly popular tool for
computer scientists. In machine learning, algebra pro-
vides an alternative approach to difficult problems in-
volving harmonic analysis and the Fourier transform
(Kondor et al., 2007; Kondor & Borgwardt, 2008;
Pachauri et al., 2012). In statistics, it facilitates ex-
perimental design (Watanabe, 2009). And in cryp-
tography, algebraic methods allow users to perform
calculations on encrypted data without knowing the
encryption key (Vaikuntanathan, 2011). But the main
inspiration for this paper is the work by functional pro-
grammers. Their use of algebra promotes reuse of high
level ideas and code in the most generic way possible
(Yorgey, 2012). In this paper, we derive algebraic pro-
cedures for three common machine learning tasks. The

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

 0 20 40 60 80 100

standard
 cross-validation

monoid
cross-validation

number of folds (k)

ru
n

ti
m

e

Figure 1. The monoid cross-validation algorithm runs
asymptotically faster than the standard version. Run time
is essentially independent of the number of folds.

algebraic formulation makes these procedures widely
applicable to many learning models.

First, cross-validation lets us find the optimal param-
eters for our model and estimate its generalization ca-
pability. Typically (although not always) increasing
the number of folds makes for a better generalization
estimate. On large data sets, however, doing many
folds is expensive. To alleviate this probelem, a num-
ber of fast cross-validation algorithms have been devel-
oped for specific models (Arlot & Celisse, 2010). We
present a new version of cross-validation that is more
generic. It takes advantage of an algebraic structure
called a monoid (defined in Section 2). Monoid cross-
validation scales better than standard cross-validation,
as shown in Figure 1. Furthermore, it is not an
approximation—it gives the exact same results as stan-
dard cross-validation.

Second, online training algorithms let us process
streams of data. In general, online training is much
harder than batch training, and there is a large body of
work exploring this difficulty (Littlestone, 1989; Ben-
david et al., 1997; Kakade & Kalai, 2005; Dekel, 2008).
Our contribution is to show that if a model has monoid
structure, then it has a simple online training algo-

Algebraic classifiers

rithm. Furthermore, the online and batch algorithms
both produce exactly the same results.

Third, parallel training algorithms let us speed up
batch training by simply adding more processors. We
can scale the number of processors with the size of
our data set to keep our training times manageable, as
shown in Figure 2. Monoid structures are a simple ab-
straction for parallel computing. All computations in
the “parallel complexity class” NC1 can be expressed
as a computation over a monoid (Tesson & Thrien,
2004). For example, in Google’s MapReduce frame-
work, the reduce step is a monoid computation (Dean
& Ghemawat, 2004). Many popular learning algo-
rithms1 have been parallelized in this way (Chu et al.,
2006; Palit & Reddy, 2011). These authors gave learn-
ing algorithms an implicit monoid structure in order
to parallelize them. By making this structure explicit,
we can also use our online and fast cross-validation
methods on these learning models.

The rest of this paper is organized as follows: Sec-
tion 2 defines our basic notation and algebraic terms.
Section 3 presents our fast cross-validation algorithms,
and our online and parallel training algorithms. Sec-
tion 4 shows that Bayesian classifiers and a new type
of decision stump called HomStumps have the needed
algebraic structure. Finally, section 5 presents a tech-
nique for giving algebraic structure to any learning
model. In each section, we theoretically and empirical
justify our claims as appropriate.

2. Notation

We focus on the supervised learning problem. The
data points have type L × A, where L is the type of
class labels, A = A1 ×A2 × ...×At is the type of the
attributes, and t is the number of attributes. We call
the space of our data sets D, and every individual data
set d ∈ D contains points drawn from L × A. Every
classifier has a space of possible models M, a batch
training function T : D → M, and a classification
function C :M×A→ L.

In this paper, we study classifiers whose model space
M forms a monoid or a group and whose batch trainer
T is a homomorphism. These are fundamental con-
cepts in algebra, and we briefly define them here.

1Chu et. al. adapted these algorithms to MapReduce:
locally weighted linear regression, naive bayes, gaussian
discriminative analysis, k-means, logistic regression, neural
networks, principal component analysis, independent com-
ponent analysis, expectation maximization, and support
vector machines. Palit and Reddy adopted AdaBoost.

tim
e

to
 tr

ai
n

m
od

el

number of processors (p)

O
(

n
p

+ log p
)

number of processors (p)

ti
m

e
to

tr
a
in

m
o
d
el

Figure 2. We can parallelize any batch trainer if the model
is a monoid. Most of the potential speed up can be realized
with only a small number of processors.

Definition 1. A monoid consists of a set M, an as-
sociative binary operation � : M×M → M, and a
special identity element ε such that for all m ∈M,

ε �m = m � ε = m

For example, our type of data sets D forms a monoid
with concatenation (++) as the binary operation and
the empty data set as ε. In this paper, we will use (++)
to denote the monoid operation on data sets, and (�)
for our classification models.

Definition 2. We call monoid M a group if every
element m in M has a unique inverse m−1 such that:

m �m−1 = m−1 �m = ε

We call the group Abelian if the binary operation is
also commutative.

Definition 3. If the model M we are trying to learn
forms a monoid, then our batch trainer T : D →M is
a homomorphism if for all data sets d1, d2 ∈ D:

T(d1 ++ d2) = T(d1) � T(d2)

Homomorphisms are a generalization of linear
functions—both are particularly nice to work with.

3. New Algorithms

In this section, we show how to use the algebraic prop-
erties of a model to derive a fast cross-validation algo-
rithm, an online trainer, and a parallel batch trainer.
To simplify run time analysis, we make three assump-
tions: (i) the batch trainer runs in time O(n), where
n is the number of elements in the data set; (ii) the
monoid operation runs in constant time; (iii) classify-
ing a data point takes constant time. These assump-
tions are not strictly necessary, but they hold for the
examples in section 4 and the Free HomTrainer pre-
sented in section 5.

Algebraic classifiers

Table 1. Run times for cross-validation algorithms.

method k-fold leave-one-out (k = n)

standard O(kn) O(n2)

monoid O(k + n) O(n)

3.1. Fast Cross-Validation

We can do fast cross-validation if our model forms a
monoid. In standard k-fold cross-validation, we have
a loop that iterates k times. Inside the loop we split
the data set into a training set and a testing set. We
train a model m ∈M on the training set, and measure
m’s performance on the testing set. Because training
a model takes time O(n), the whole procedure takes
time O(kn).

In the standard procedure, each data point will be
in the training set k − 1 times. This results in re-
peated work as we train different models on this same
data point. Monoid cross-validation avoids repeating
this work using the well known prefix-sum procedure.
Pseudocode is shown in Algorithm 1. We begin in the
training loop by splitting the data set into k subsets
and train a model mi on each subset di. In the prefix
loop we calculate pi, which is a model trained on all
of the data points in subsets i− 1 and smaller. In the
suffix loop we calculate si, which is a model trained
on all of the data points in subsets i + 1 and larger.
Finally in the testing loop, we merge the appropriate
prefix and suffix together. This merge operation gives
a model m that has been trained on every data point
except those in the test set di.

Our first loop has k iterations, and in each iteration
we train a model on n

k data points. Training takes
time O

(
n
k

)
, so the loop takes time O(n). The other

three loops also have k iterations, but each iteration
takes constant time. The overall run time is therefore
O(k + n).

3.2. Online Algorithms

We can construct an online trainer for any monoid
learner. An online trainer TO : M × D → M is a
function that lets us add new data points to an already
constructed model. If our model is a monoid, we can
construct the online training function as

TO(m, d) = m � T(d)

where m ∈ M is the previously trained model, and
d ∈ D is the set of data points we want to add. Often
this set will contain only a single point, but it can be
arbitrarily large.

Algorithm 1 Monoid cross-validation

Input: Batch trainer T : D → M, data set d ∈ D,
metric P :M×D → R, number of folds k
Output: Mean (µ) and variance (σ2) of scores
// training loop
for i← 1..k do

Let di = select ith n
k data points from d

Let mi = T(di)
end for
// prefix loop
Let p0 = ε
for i← 1..k do

Let pi = mi � pi−1
end for
// suffix loop
Let sk+1 = ε
for i← k..1 do

Let si = mi � si+1

end for
// testing loop
for i← 1..k do

Let m = pi−1 � si+1

Update µ, σ2 with P (m, di)
end for
Return (µ, σ2)

This construction is exact. That is, we get the same
model whether we train our model in online mode or
batch mode. This exactness is a straightforward con-
sequence of the definition of a homomorphism: We
know that our model m was trained from some data
set dm ∈ D; so m = T(dm). By substitution, we get
that

TO(m, d) = T(dm) � T(d) = T(dm ++ d)

which is the model generated by the batch trainer.

3.3. Parallel Algorithms

We can train a model in parallel if it forms a monoid.
Google’s MapReduce is a popular platform for achiev-
ing this parallelism (Dean & Ghemawat, 2004), and
our procedure is similarly divided into map and re-
duce steps. In the map step, we split the data set into
p equal subsets d1...dp, where p is the number of pro-
cessors. Each processor i trains a model mi = T(di).
This takes parallel time O(n

p). In the reduce step,
we use the monoid operation to combine the resulting
models with a fan-in reduction (Parhami, 1999). If the
monoid operation takes constant time, the reduction
takes parallel time O(log p). The overall run time is
plotted in Figure 2.

Because our training function is a monoid homomor-

Algebraic classifiers

phism, we have that

T(d1) � T(d2) � ... � T(dp) = T(d1 ++ d2 ++ ...++ dp)

Less formally, the model we get from training in paral-
lel is the same exact model we would get from training
with a single machine.

4. Examples

In this section, we show two examples of models with
Abelian group structure. Abelian groups are a type
of monoid, so this lets us apply the techniques above
to create online, parallel, and fast cross-validation al-
gorithms for these models. In the first example, we
present a straightforward extension to the Bayesian
classifier. In the second example, we derive algebraic
structure for a new variant of decision stumps called
HomStumps.

4.1. Bayesian Classification

Bayesian classifiers use Bayes theorem to calculate
P (L|A), where L is a random variable for the labels
and A is a random variable for the attributes. To clas-
sify, we select the label with the highest probability.
Formally,

CBayes(a) = arg max
l∈L

P (L = l)P (A = a|L = l)

The model for the Bayesian classifier is

MBayes = (P (L), P (A|L))

where P (L) and P (A|L) are estimated from the data.
Notice that this is an equation at the type level, not the
value level. It says that any model m ∈MBayes must
have the structure of an ordered pair of two “base”
probability distributions.

If these base distributions have Abelian group struc-
ture, then the Bayesian classifier will as well.2 The
Bayesian model’s binary operation is defined as:

(Pa(L), Pa(A|L))�(Pb(L), Pb(A|L))

= (Pa(L) � Pb(L), Pa(A|L) � Pb(A|L))

The empty element is:

εBayes = (εP (L), εP (A|L))

And the inverse is:

(P (L), P (A|L))−1 = (P (L)−1, P (A|L)−1)

2The method of moments is a simple way to give this
structure to a continuous probability distribution. The
supplemental material reviews how.

Attribute 1 Attribute 2

o(i)

Pblue(A1)

Pred(A1)

Pblue(A2)

Pred(A2)

Figure 4. We plot Pl(Ai) for two attributes from a clas-
sification problem with blue and red class labels. The
HomStump algorithm would split on attribute 2 because
o(2) < o(1).

If the Abelian group laws hold for the underlying dis-
tribution, then they hold for the Bayesian classifier as
well. Finally, note that we have not made the inde-
pendence assumption of naive Bayes, so P (A|L) can
be a multivariate distribution.

4.1.1. Discussion

We do not test this method empirically because the
online and parallel training algorithms will generate
exactly the same classifier as the standard batch al-
gorithm. Additionally, our fast cross-validation algo-
rithm generates the same results as standard cross-
validation.

4.2. Homomorphic Decision Stumps

A decision stump is a decision tree with a single branch
(Iba & Langley, 1992). It is rarely a good classifier by
itself, but it makes a good base classifier for ensemble
algorithms. For example, the Viola-Jones face detec-
tion algorithm uses boosted decision stumps because
they are faster than decision trees and have similar
classification accuracy (Viola & Jones, 2004). In this
section, we introduce a homomorphic variant of deci-
sion stumps called HomStumps and test them empiri-
cally. In section 5.2 we show how to use these HomS-
tumps as a base classifier for homomorphic boosting.

Standard decision stumps use information gain to de-
termine which attribute to split on, and where in the
attribute’s range to split. Unfortunately, it is diffi-
cult to define an algebraic structure for this splitting
criterion. HomStumps use a different criterion. In-
stead of calculating the split point directly from the
input data, we first estimate a distribution of the in-
puts. In particular, for every attribute Ai, we estimate
the probability distribution for each label l ∈ L. We
call this distribution Pl(Ai). If the set of distributions
for a given attribute i has a lot of overlap, then at-
tribute i carries little predictive information and is a

Algebraic classifiers

 0

 1

 0 1
HomStumps
(Accuracy)

D
ec

is
io

n
st

u
m

p
s

(A
cc

u
ra

cy
)

 0

 1

 0 1
Boosted HomStumps

(Accuracy)

B
o
o
st

ed
d
ec

is
io

n
st

u
m

p
s

(A
cc

u
ra

cy
)

 0

 1

 0 1
Boosted HomStumps

(Accuracy)

H
o
m

S
tu

m
p
s

(A
cc

u
ra

cy
)

Figure 3. We empirically evaluate the HomStump’s classification accuracy. We tested it on thirty binary (+) and multi-
class (×) data sets. (left) HomStumps classify slightly better than standard decision stumps on most binary data sets and
much better on multiclass data sets. (center) HomStumps still outperform standard decision stumps when boosted by
AdaBoost. (right) Boosting almost always improves HomStump’s accuracy. The supplemental material contains further
details about this experiment.

bluered red greenblue red

Figure 5. HomStumps outperform standard decision
stumps when they create multiple decision boundaries.
This can happen in two ways: (left) The densities cross at
multiple points. (right) There are more than two classes
in the dataset.

bad candidate for splitting. If the distributions have
little overlap, then attribute i is a good predictor and a
good candidate for splitting. This is shown graphically
in Figure 4.

For a discrete distribution we calculate the overlap o(i)
on attribute i as

o(i) =
∑
a∈Ai

Pl2(a)

where l2 is the label with the second highest density
when Ai = a. For a continuous distribution, this gen-
eralizes to

o(i) =

∫ ∞
−∞

Pl2(a) da

We use this overlap to calculate the split point s:

s = arg min
i∈{1..t}

o(i)

Now, we can classify a data point with a modified
Bayesian technique that only considers the attribute
we chose to split on. Our classification function is:

CHomStump ({a1, a2, ..., as, ...ak})
= arg min

l∈L
P (L = l)P (As = as|L = l)

This uses exactly the same information as the Bayesian
classifier, just in a different way. This modification
makes the HomStump an “unstable classifier.” That
is, a single input is likely to have a large change in clas-
sification results if it changes the splitting attribute s.
Unstable classifiers are particularly useful in ensemble
methods, which we discuss in section 5.2.

Finally, showing an algebraic structure for the HomS-
tump model is easy. The model itself is the same as
the model for a Bayesian classifier:

MHomStump = (P (L), P (L|A))

Therefore, HomStumps have the same monoid struc-
ture.

4.2.1. Discussion

It was hard to give the standard decision stumps al-
gebraic structure. We therefore created a variant of
HomStumps based on a classifier that does have al-
gebraic structure. This technique can potentially be
used to give algebraic structure to other models as
well. These variants can have similar or better perfor-
mance to the classifiers that inspire them. For exam-
ple, HomStumps tend to outperform standard decision
stumps in practice. As Figure 5 shows, HomStumps

Algebraic classifiers

naturally split an attribute in multiple locations when
this is appropriate. Traditional decision stumps only
split once for ease of computation. In practice, this
greatly improves the HomStump’s classification accu-
racy. Figure 3 shows HomStumps outperforming deci-
sion stumps both as stand alone classifiers and as the
base model to AdaBoost.

5. Homomorphisms for Any Classifier

In this section we present the Free HomTrainer. This
technique is a generalization of bagging, and is useful
for discovering algebraic structure in a base model.
We will use it to develop a variant of AdaBoost with
Abelian group structure.

5.1. Training and Classification

The Free HomTrainer relies on “free objects” from the
branch of mathematics called category theory.3 Free
objects have two important properties for our pur-
poses. First, they are the most generic way to give
algebraic structure to a set. We will use this fact to
imbue a model space M with Abelian group struc-
ture. The resulting structure is denoted F(M). This
free Abalian group has the structure:

F(M) = {(Z,M)}

This is a type level equation. It says that an element
m ∈ F(M) will be a set of pairs of base models (having
type M) and the (possibly negative) number of times
that model appears.

The second important property of free objects is that if
we have a modelMwith training function T : D →M
then there is a natural way to construct the function
F(T) : F(D) → F(M). This natural construction for
F(T) is guaranteed to be a homomorphism. Therefore,
if we select F(M) to be our model, and F(T) to be
our training function, we satisfy the algebraic condi-
tions necessary for the parallel, online, and fast cross-
validation algorithms of Section 3. Unfortunately, we
cannot use the function F(T) directly. We must first
convert our data set into a free data set using a func-
tion δ : D → F(D). After applying this function to
our data set, we can train F(M) like normal.

For Abelian groups, this is a simple procedure. The
function δ must somehow split our data set d into a
set of multiple smaller data sets {d1, ..., dk}. Each of
these smaller data sets is a data point for F(M). Our

3Category theory is an extremely abstract branch of
mathematics. It has been called both the “unifying theory
of mathematics” and “general abstract nonsense.”

modified training function is:

F(T) = {(1, d1),(1, d2), ..., (1, dk)} 7→
{(1, T(d0)), (1, T(d1)), ..., (1, T(dk))}

To classify, we would like to provide another function
µ : F(M) → M, so that the following diagram com-
mutes:

D M

F(D) F(M)

T

F(T)

δ µ

In other words, we want T = µ · F(T) · δ. This would
let us construct the free model’s classification function
CF(M) : F(M)×A → L using the base model’s clas-
sification function CM :M×A→ L as:

CF(M)(m, a) = CM(µ(m), a)

It is easy to make the diagram commute if our base
modelM already has an Abelian group structure. We
take:

δ = {x1, x2, ..., xn} 7→ {{(1, x1)}, {(1, x2)}, ..., {(1, xn)}}
µ = {(1,m1), (1,m2), ..., (1,mk)} 7→ m1 �m2 � ... �mk

In general, however, it is impossible to construct this
µ without any knowledge of the underlying modelM.
A suitable map is not even guaranteed to exist.

Fortunately, we can take advantage of the classifier
structure ofM. That is, if we fix the data point a that
we are trying to classify, then there exists a function
Ca : M → L. We can use this map to extend the
commutative diagram like so:

D M L

F(D) F(M) F(L)

T Ca

F(T) F(Ca)

δ λ

Our newly introduced function λ : L → F(L) is inde-
pendent of the structure of the model. Unfortunately,
it is not possible to select λ so that the diagram com-
mutes; however, we can select λ so that the diagram
almost commutes. One easy way to do this is by let-
ting λ take the majority vote.

Algebraic classifiers

 0.6

 0.65

 0.7

 0.75

 0.8

 0 5 10 15 20 25

A
cc

u
ra

cy
o
n

T
T

T

F(MBayes)

 0.6

 0.65

 0.7

 0.75

 0.8

 0 5 10 15 20 25

A
cc

u
ra

cy
o
n

P
im

a

single MBayes

 0.6

 0.65

 0.7

 0.75

 0.8

 0 5 10 15 20 25

A
cc

u
ra

cy
o
n

G
C

merged MBayes

Number of partitions Number of partitions Number of partitions

Figure 6. As in the bagging classifier, the accuracy of the Free HomTrainer depends on the combined characteristics of
our base model, data set, and the number of partitions created by δ. (left) On the Tic-Tac-Toe data set, the Bayesian
classifier over fits the data; therefore, F(MBayes) is more accurate. (center) On the Pima Indian Diabetes data set, the
Bayesian classifier and F(MBayes) have similar classification accuracies. (right) On the German Credit data set, the
Bayesian classifier outperforms F(MBayes). (all data sets) If we train a Bayesian classifier on only a single partition,
classification accuracy falls as the number of data points decreases. If we train a Bayesian classifier on each partition and
merge them with the monoid operation, then performance is constant because the batch trainer is a homomorphism.

5.1.1. Discussion

Figure 6 empirically demonstrates that the Free Hom-
Trainer F(M) classifies similarly to the base model
M for at least some model/data set combinations. In
particular, if the base model is stable and doesn’t over
fit the data set, the Free HomTrainer will be a good
approximation. This is a well known property of the
bagging classifier (Breiman, 1996), which supports the
notion that the Free HomTrainer is a generalization of
the bagging classifier to arbitrary algebraic structures.

The real usefulness of this categorical construction is
that it will help us derive specialized homomorphic
learning algorithms for other classifiers. We now con-
sider this procedure for boosting.

5.2. Specializing to Boosting

AdaBoost is a popular and highly effective classifica-
tion algorithm (Freund & Schapire, 1996), but finding
an algebraic structure for it is nontrivial. It has a num-
ber of published variants for online (Oza, 2001; Grab-
ner et al., 2008) and parallel training (Yu & b. Skil-
licorn, 2001; Merler et al., 2007; Chen et al., 2008; Palit
& Reddy, 2011), but no previously published method
for fast cross-validation. We derive novel variants of
these algorithms by applying the Free HomTrainer. In
particular, we show three definitions of µ that take ad-
vantage of the boosting model’s structure in different
ways.

Boosting is an iterative procedure. At each iteration
i, a base model mi ∈MBase is generated and assigned
a weight wi ∈ R. The model for a boosting algorithm

is a set of these weighted base models:

MBoost = {(R,MBase)}

Classification is the weighted vote of the base mod-
els in the set. For boosting, our µ function has type
µ : F(MBoost) →MBoost . We will compare three al-
ternative definitions for µ that take advantage of the
boosting model’s internal structure. Their empirical
performance is discussed in Figure 7.

5.2.1. Concatenation

Our first candidate µ is the simplest. Observe that
since MBoost is a set of other models, F(MBoost) is a
set of a set of models:

F(MBoost) = {(Z,MBoost)} = {(Z, {(R,MBase))}}

Classification on F(MBoost) happens as in a repre-
sentative democracy—each AdaBoost model uses its
base classifiers to elect a label; then these labels vote
in the λ function to determine the final classification.
The concatenation method “flattens” this representa-
tive democracy into a direct democracy. It uses the
mapping:

{(ci, {(wij ,mij)})} 7→ {(ciwij ,mij)}

where i ranges over each element in the free Hom-
Trainer, and j ranges over each element in the boosting
model.

5.2.2. Sorting+Voting

We can derive a slightly more complicated method
from the work of Palit and Reddy (2011). They

Algebraic classifiers

 0

 1

 0 1
Concatenation

(Accuracy)

S
o
rt

in
g
+

V
o
ti

n
g

(A
cc

u
ra

cy
)

 0

 1

 0 1
Sorting+Monoid

(Accuracy)

S
o
rt

in
g
+

V
o
ti

n
g

(A
cc

u
ra

cy
)

 0

 1

 0 1
Sorting+Monoid

(Accuracy)

C
o
n
ca

te
n
a
ti

o
n

(A
cc

u
ra

cy
)

Figure 7. We compare the effectiveness of our different µ functions (Concatenation, Sorting+Voting and Sorting+Monoid).
In each experiment we use AdaBoost with HomStumps as the base classifier. The supplemental material contains further
details. (left) The concatenation method dramatically outperforms the sort method. (center) The monoid method tends
to outperform the sort method, but much less dramatically. (right) The concat method and monoid method perform well
on different data sets. With an unstable base classifier like HomStumps, the concat method tends to do better.

adapted the AdaBoost algorithm to run on the
MapReduce architecture. In so doing, they implicitly
define a monoid structure for MBoost . By adapting
their algorithm to the Free HomTrainer, we make this
monoid structure explicit and get online and fast cross-
validation algorithms “for free.”

The key to Palit and Reddy’s algorithm is a reduc-
ing function that takes a set of boosting models and
merges them into a single boosting model. This func-
tion is our second candidate for µ. We briefly review
their technique here, but full details are provided in
their paper. First, the components of each boosting
model are sorted according to their weights. Then,
the smallest weighted models get associated together
into a single voting classifier; the next smallest get
associated; and so on. Classification proceeds as an-
other 2-tiered weighted vote, just as for F(MBoost).
The difference is that in this new model, we have re-
arranged the voting districts so that base models with
similar weights are voting together. This gerryman-
dering tends to improve classification accuracy because
base models with similar weights tend to vote in a sim-
ilar manner.

As shown in Figure 7 (left), the direct democracy
of our concatenation method outperforms this mod-
ified representative democracy. However, this method
of sorting and voting is the inspiration for our next
method.

5.2.3. Sorting+Monoid

If our base model has a monoid structure, we can cre-
ate a third µ function. The procedure is the same as

Palit and Reddy’s, with one minor difference. When
we are associating similarly weighted models together,
we don’t construct a voting classifier. Instead, we
merge those moddels together into a single model with
the monoid operation.

This modified algorithm gives us several advantages.
First, it improves classification accuracy in many cases
as shown empirically in Figure 7. Second, it requires
asymptotically less space—the resulting model is sim-
ply a set of base classifiers whose size is the same as a
single AdaBoost model’s size.

6. Conclusion

The algebraic structure of our models is important. In
the future, we hope to derive algebraic structures for
other learning models, and develop new algorithms for
operating over these structures. Finally, this algebraic
approach need not be limited to supervised learning.
We plan to apply it to other areas of machine learning
as well.

Acknowledgements

Thank you to an anonymous reviewer who improved
the run time of the monoid cross-validation algorithm
from O(n + k2) to O(n + k). Also, thank you to the
Haskell community for encouraging programmers to
explore the relationship between algebra and program-
ming.

Algebraic classifiers

References

Arlot, Sylvain and Celisse, Alain. A survey of cross-
validation procedures for model selection. Statistics
Surveys, 4:40–79, 2010.

Ben-david, Shai, Kushilevitz, Eyal, and Mansour,
Yishay. Online Learning versus Offline Learning.
Machine Learning, 29:45–63, 1997.

Breiman, Leo. Bagging predictors. Machine Learning,
24:123–140, 1996.

Chen, Yen-kuang, Li, Wenlong, and Tong, Xiaofeng.
Parallelization of AdaBoost algorithm on multi-core
processors. In IEEE Workshop on Signal Processing
Systems, pp. 275–280, 2008.

Chu, Cheng-tao, Kim, Sang Kyun, Lin, Yi-an, Yu,
Yuanyuan, Bradski, Gary, Ng, Andrew, and Oluko-
tun, Kunle. Map-Reduce for Machine Learning on
Multicore. In Neural Information Processing Sys-
tems, pp. 281–288, 2006.

Dean, Jeffrey and Ghemawat, Sanjay. MapReduce:
Simplied Data Processing on Large Clusters. In
Operating Systems Design and Implementation, pp.
137–150, 2004.

Dekel, Ofer. From Online to Batch Learning with
Cutoff-Averaging. In Neural Information Process-
ing Systems, pp. 377–384, 2008.

Freund, Yoav and Schapire, Robert E. Experi-
ments with a New Boosting Algorithm. In Inter-
national Conference on Machine Learning, pp. 148–
156, 1996.

Grabner, Helmut, Leistner, Christian, and Bischof,
Horst. Semi-Supervised On-Line Boosting for Ro-
bust Tracking. 2008.

Iba, Wayne and Langley, Pat. Induction of One-Level
Decision Trees. In International Conference on Ma-
chine Learning, pp. 233–240, 1992.

Kakade, Sham M. and Kalai, Adam. From Batch to
Transductive Online Learning. In Neural Informa-
tion Processing Systems, 2005.

Kondor, Risi Imre and Borgwardt, Karsten M. The
skew spectrum of graphs. In International Con-
ference on Machine Learning (ICML), pp. 496–503,
2008.

Kondor, Risi Imre, Howard, Andrew, and Jebara,
Tony. Multi-object tracking with representations of
the symmetric group. 2:211–218, 2007.

Littlestone, Nick. From On-Line to Batch Learning. In
Computational Learning Theory, pp. 269–284, 1989.

Merler, Stefano, Caprile, Bruno, and Furlanello, Ce-
sare. Parallelizing AdaBoost by weights dynamics.
Computational Statistics & Data Analysis, 51:2487–
2498, 2007.

Oza, Nikunj C. Online Bagging and Boosting. 2001.

Pachauri, Deepti, Collins, Maxwell, Kondor, Risi Imre,
and Singh, Vikas. Incorporating domain knowl-
edge in matching problems via harmonic analysis.
In International Conference on Machine Learning
(ICML), 2012.

Palit, I. and Reddy, C.K. Scalable and parallel boost-
ing with mapreduce. Knowledge and Data Engineer-
ing, IEEE Transactions on, PP(99):1, 2011. ISSN
1041-4347.

Parhami, B. Introduction to Parallel Processing: Al-
gorithms and Architectures. Plenum Series in Com-
puter Science. Springer, 1999.

Tesson, Pascal and Thrien, Denis. Monoids and
Computations. International Journal of Alge-
bra and Computation, 14:801–816, 2004. doi:
10.1142/S0218196704001979.

Vaikuntanathan, Vinod. Computing blindfolded: New
developments in fully homomorphic encryption. In
Proceedings of the 2011 IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, FOCS
’11, pp. 5–16, Washington, DC, USA, 2011. IEEE
Computer Society.

Viola, Paul A. and Jones, Michael J. Robust Real-
Time Face Detection. International Journal of Com-
puter Vision, 57:137–154, 2004.

Watanabe, Sumio. Algebraic geometry and statistical
learning theory. Cambridge University Press, 2009.

Yorgey, Brent A. Monoids: theme and variations
(functional pearl). In Proceedings of the 2012 sym-
posium on Haskell symposium, Haskell ’12, pp. 105–
116, New York, NY, USA, 2012. ACM.

Yu, C. and b. Skillicorn, D. Parallelizing Boosting and
Bagging. 2001.

