Fast Semidifferential-based Submodular Function Optimization

Rishabh Iyer
University of Washington, Seattle, WA 98195, USA

Stefanie Jegelka
University of California, Berkeley, CA 94720, USA

Jeff Bilmes
University of Washington, Seattle, WA 98195, USA

Abstract

We present a practical and powerful new
framework for both unconstrained and con-
strained submodular function optimization
based on discrete semidifferentials (sub- and
super-differentials). The resulting algorithms,
which repeatedly compute and then efficiently
optimize submodular semigradients, offer new
and generalize many old methods for sub-
modular optimization. Our approach, more-
over, takes steps towards providing a unifying
paradigm applicable to both submodular min-
imization and maximization, problems that
historically have been treated quite distinctly.
The practicality of our algorithms is impor-
tant since interest in submodularity, owing to
its natural and wide applicability, has recently
been in ascendance within machine learning.
We analyze theoretical properties of our al-
gorithms for minimization and maximization,
and show that many state-of-the-art maxi-
mization algorithms are special cases. Lastly,
we complement our theoretical analyses with
supporting empirical experiments.

1. Introduction

In this paper, we address minimization and maximiza-
tion problems of the following form:

Problem 2: max f(X)

Problem 1: ?gclf(X)’ max

where f:2Y — R is a discrete set function on subsets
of a ground set V = {1,2,--- ;n}, and C C 2" is a
family of feasible solution sets. The set C could express,

Proceedings of the 30" International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

RKIYERQU.WASHINGTON.EDU
STEFJEQEECS.BERKELEY.EDU

BILMESQU.WASHINGTON.EDU

for example, that solutions must be an independent set
in a matroid, a limited budget knapsack, or a cut (or
spanning tree, path, or matching) in a graph. Without
making any further assumptions about f, the above
problems are trivially worst-case exponential time and
moreover inapproximable.

If we assume that f is submodular, however, then in
many cases the above problems can be approximated
and in some cases solved exactly in polynomial time. A
function f : 2V — R is said to be submodular (Fujishige,
2005) if for all subsets S, T C V, it holds that f(S) +
F(T) = f(SUT) + f(SNT). Defining £(j|S) 2 (S U
j) — f(S) as the gain of j € V' with respect to S C V,
then f is submodular if and only if f(j|S) > f(4|T)
for all S C T and j ¢ T. Traditionally, submodularity
has been a key structural property for problems in
combinatorial optimization, and for applications in
econometrics, circuit and game theory, and operations
research. More recently, submodularity’s popularity in
machine learning has been on the rise.

On the other hand, a potential stumbling block is
that machine learning problems are often large (e.g.,
“big data”) and are getting larger. For general uncon-
strained submodular minimization, the computational
complexity often scales as a high-order polynomial.
These algorithms are designed to solve the most general
case and the worst-case instances are often contrived
and unrealistic. Typical-case instances are much more
benign, so simpler algorithms (e.g., graph-cut) might
suffice. In the constrained case, however, the problems
often become NP-complete. Algorithms for submod-
ular maximization are very different in nature from
their submodular minimization cohorts, and their com-
plexity too varies depending on the problem. In any
case, there is an urgent need for efficient, practical, and
scalable algorithms for the aforementioned problems if
submodularity is to have a lasting impact on the field
of machine learning.

Fast Semidifferential-based Submodular Function Optimization

In this paper, we address the issue of scalability and
simultaneously draw connections across the apparent
gap between minimization and maximization problems.
We demonstrate that many algorithms for submodu-
lar maximization may be viewed as special cases of a
generic minorize-maximize framework that relies on
discrete semidifferentials. This framework encompasses
state-of-the-art greedy and local search techniques, and
provides a rich class of very practical algorithms. In
addition, we show that any approximate submodular
maximization algorithm can be seen as an instance of
our framework.

We also present a complementary majorize-minimize
framework for submodular minimization that makes
two contributions. For unconstrained minimization, we
obtain new nontrivial bounds on the lattice of minimiz-
ers, thereby reducing the possible space of candidate
minimizers. This method easily integrates into any
other exact minimization algorithm as a preprocessing
step to reduce running time. In the constrained case,
we obtain practical algorithms with bounded approx-
imation factors. We observe these algorithms to be
empirically competitive to more complicated ones.

As a whole, the semidifferential framework offers a new
unifying perspective and basis for treating submodu-
lar minimization and maximization problems in both
the constrained and unconstrained case. While it has
long been known (Fujishige, 2005) that submodular
functions have tight subdifferentials, our results rely on
a recently discovered property (Iyer & Bilmes, 2012a;
Jegelka & Bilmes, 2011b) showing that submodular
functions also have superdifferentials. Furthermore, our
approach is entirely combinatorial, thus complementing
(and sometimes obviating) related relaxation methods.

2. Motivation and Background

Submodularity’s escalating popularity in machine learn-
ing is due to its natural applicability. Indeed, instances
of Problems 1 and 2 are seen in many forms, to wit:

MAP inference/Image segmentation: Markov
Random Fields with pairwise attractive potentials are
important in computer vision, where MAP inference
is identical to unconstrained submodular minimization
solved via minimum cut (Boykov & Jolly, 2001). A
richer higher-order model can be induced for which
MAP inference corresponds to Problem 1 where V is
a set of edges in a graph, and C is a set of cuts in this
graph — this was shown to significantly improve many
image segmentation results (Jegelka & Bilmes, 2011b).
Moreover, Delong et al. (2012) efficiently solve MAP
inference in a sparse higher-order graphical model by
restating the problem as a submodular vertex cover,
i.e., Problem 1 where C is the set of all vertex covers

in a graph.

Clustering: Variants of submodular minimization
have been successfully applied to clustering problems
(Narasimhan et al., 2006; Nagano et al., 2010).

Limited Vocabulary Speech Corpora: The prob-
lem of finding a maximum size speech corpus with
bounded vocabulary (Lin & Bilmes, 2011a) can be
posed as submodular function minimization subject
to a size constraint. Alternatively, cardinality can
be treated as a penalty, reducing the problem to un-
constrained submodular minimization (Jegelka et al.,
2011).

Minimum Power Assignment: In wireless net-
works, one seeks a connectivity structure that maintains
connectivity at a minimum energy consumption. This
problem is equivalent to finding a suitable structure
(e.g., a spanning tree) minimizing a submodular cost
function (Wan et al., 2002).

Transportation: Costs in real-world transportation
problems are often non-additive. For example, it may
be cheaper to take a longer route owned by one carrier
rather than a shorter route that switches carriers. Such
economies of scale, or “right of usage” properties are
captured in the “Categorized Bottleneck Path Prob-
lem” — a shortest path problem with submodular costs
(Averbakh & Berman, 1994). Similar costs have been
considered for spanning tree and matching problems.

Summarization/Sensor placement: Submodular
maximization also arises in many subset extraction
problems. Sensor placement (Krause et al., 2008), docu-
ment summarization (Lin & Bilmes, 2011b) and speech
data subset selection (Lin & Bilmes, 2009), for example,
are instances of submodular maximization.

Determinantal Point Processes: The Determi-
nantal Point Processes (DPPs) which have found nu-
merous applications in machine learning (Kulesza &
Taskar, 2012) are known to be log-submodular distri-
butions. In particular, the MAP inference problem is
a form of non-monotone submodular maximization.

Indeed, there is strong motivation for solving Problems
1 and 2 but, as mentioned above, these problems come
not without computational difficulties. Much work has
therefore been devoted to developing optimal or near
optimal algorithms. Among the several algorithms
(McCormick, 2005) for the unconstrained variant of
Problem 1, where C = 2V, the best complexity to
date is O(n®y + n%) (Orlin, 2009) (v is the cost of
evaluating f). This has motivated studies on faster,
possibly special case or approximate, methods (Stobbe
& Krause, 2010; Jegelka et al., 2011). Constrained

Fast Semidifferential-based Submodular Function Optimization

minimization problems, even for simple constraints
such as a cardinality lower bound, are mostly NP-hard,
and not approximable to within better than a
polynomial factor. Approximation algorithms for these
problems with various techniques have been studied
in (Svitkina & Fleischer, 2008; Iwata & Nagano, 2009;
Goel et al., 2009; Jegelka & Bilmes, 2011a). Unlike
submodular minimization, all forms of submodular
maximization are NP-hard. Most such problems,
however, admit constant-factor approximations, which
are attained via very simple combinatorial algorithms
(Nemhauser et al., 1978; Buchbinder et al., 2012).

Majorization-minimization (MM)! algorithms are
known to be useful in machine learning (Hunter &
Lange, 2004). Notable examples include the EM
algorithm (McLachlan & Krishnan, 1997) and the
convex-concave procedure (Yuille & Rangarajan, 2002).
Discrete instances have been used to minimize the
difference between submodular functions (Narasimhan
& Bilmes, 2005; Iyer & Bilmes, 2012b), but these
algorithms generally lack theoretical guarantees.
This paper shows, by contrast, that for submodular
optimization, MM algorithms have strong theoretical
properties and empirically work very well.

3. Submodular semi-differentials

We first briefly introduce submodular semidifferentials.
Throughout this paper, we assume normalized sub-
modular functions (i.e., f(f) = 0). The subdifferential
97(Y) of a submodular set function f:2Y — R for a
set Y C V is defined (Fujishige, 2005) analogously to
the subdifferential of a continuous convex function:

Or(Y)={yeR": (1)
FX) —y(X) = f(Y) —y(Y) for all X CV}

For a vector z € RY and X C V, we write z(X) =
> jex ©(j) — in such case, we say that x is a normal-
ized modular function. We shall denote a subgradient
at Y by hy € 0¢(Y). The extreme points of d¢(Y)
may be computed via a greedy algorithm: Let o be
a permutation of V' that assigns the elements in Y to
the first |Y| positions (o(¢) € Y if and only if ¢ < |Y).
Each such permutation defines a chain with elements
S§ =0, 57 = {o(1),0(2),...,0(i)} and SF, =Y.
This chain defines an extreme point h§ of 9;(Y) with
entries

hy (o(i)) = £(S7) = fF(S71)- (2)

Surprisingly, we can also define superdifferentials 9/ (V")
of a submodular function (Jegelka & Bilmes, 2011b;

MM also refers to minorization-maximization here.

Iyer & Bilmes, 2012a) at Y:

oY) = fy e R": (3)

F(X) = y(X) < F(¥) = y(¥)sfor all X C V}
We denote a generic supergradient at Y by gy. It is
easy to show that the polyhedron 97 is non-empty. We

define three special supergradients gy (“grow”), gy
(“shrink”) and gy as follows (Iyer & Bilmes, 2012a):

gyy(@)=1GIVAEYH () =,01Y)

gy () =FG 1Y N gy () =rG10)
gy () =FG 1V \{}) gy () =10 10)
forjeyY for j ¢Y.

4. The discrete MM framework

With the above semigradients, we can define a generic
MM algorithm. In each iteration, the algorithm opti-
mizes a modular approximation formed via the current
solution Y. For minimization, we use an upper bound

m?(X) = f(Y) +gv(X) —gv(Y) = f(X), (4)
and for maximization a lower bound
mpy (X) = f(Y) 4+ hy (X) = hy (Y) < f(X). (5)

Both these bounds are tight at the current solution,
satisfying mg, (Y) = mp, (Y) = f(Y). In almost all
cases, optimizing the modular approximation is much
faster than optimizing the original cost function f.

Algorithm 1 Subgradient ascent [descent] algorithm
for submodular maximization [minimization]

1: Start with an arbitrary X°.
2: repeat
3: Pick a semigradient hy: [gx¢] at X*
4 X" = argmaxy o my , (X)
[X! = argmin y .o m9x* (X))
t+t+1
until we have converged (X*~! = X?)

Algorithm 1 shows our discrete MM scheme for maxi-
mization (MMax) [and minimization (MMin)] , and for
both constrained and unconstrained settings. Since we
are minimizing a tight upper bound, or maximizing a
tight lower bound, the algorithm must make progress.

Lemma 4.1. Algorithm 1 monotonically improves the
objective function value for Problems 1 and 2 at every
iteration, as long as a linear function can be exactly
optimized over C.

Contrary to standard continuous subgradient descent
schemes, Algorithm 1 produces a feasible solution at

Fast Semidifferential-based Submodular Function Optimization

each iteration, thereby circumventing any rounding or
projection steps that might be challenging under certain
types of constraints. In addition, it is known that for
relaxed instances of our problems, subgradient descent
methods can suffer from slow convergence (Bach, 2011).
Nevertheless, Algorithm 1 still relies on the choice of the
semigradients defining the bounds. Therefore, we next
analyze the effect of certain choices of semigradients.

5. Submodular function minimization

For minimization problems, we use MMin with the su-
pergradients §x, gx and gx. In both the unconstrained
and constrained settings, this yields a number of new
approaches to submodular minimization.

5.1. Unconstrained Submodular Minimization

We begin with unconstrained minimization, where C =
2V in Problem 1. Each of the three supergradients
yields a different variant of Algorithm 1, and we will call
the resulting algorithms MMin-I, IT and III, respectively.
We make one more assumption: of the minimizing
arguments in Step 4 of Algorithm 1, we always choose
a set of minimum cardinality.

MMin-I is very similar to the algorithms proposed
in (Jegelka et al., 2011). Those authors, however, de-
compose f and explicitly represent graph-representable
parts of the function f. We do not require or consider
such a restriction here.

Let us define the sets A = {j : f(j|0) < 0} and B = {j :
IV \{s}) <0}. Submodularity implies that A C B,
and this allows us to define a lattice £ = [A, B] whose
least element is the set A and whose greatest element
is the set is B. This sublattice £ of [, V] retains all
minimizers X* (i.e., A C X* C B for all X*):

Lemma 5.1. (Fujishige, 2005) Let L* be the lattice
of the global minimizers of a submodular function f.
Then L* C L, where we use C to denote a sublattice.

Lemma 5.1 has been used to prune down the search
space of the minimum norm point algorithm (Bach,
2011; Fujishige & Tsotani, 2011). Indeed, A and B may
be obtained by using MMin-III:

Lemma 5.2. With X° =0 and X° =V, MMin-III
returns the sets A and B, respectively. Initialized by
an arbitrary X°, MMin-III converges to (X° N B) U A.

Lemma 5.2 implies that MMin-III effectively provides
a contraction of the initial lattice to £, and, if X°
is not in L, it returns a set in L. Henceforth, we
therefore assume that we start with a set X° € L.

While the known lattice £ has proven useful for warm-
starts, MMin-I and IT enable us to prune £ even further.
Let A4 be the set obtained by starting MMin-I at

X% =0, and B, be the set obtained by starting MMin-
II at X9 = V. This yields a new, smaller sublattice
L4 = [A4, B] that retains all minimizers:

Theorem 5.3. For any minimizer X* € L, it holds
that AC Ay C X*C By CB. Hence L* C Ly C L.
Furthermore, when initialized with X = 0 and X° =
V', respectively, both MMin-I and II converge in O(n)
iterations to a local minimum of f.

By a local minimum, we mean a set X that satisfies
f(X) < f(Y) for any set Y that differs from X by
a single element. We point out that Theorem 5.3
generalizes part of Lemma 3 in (Jegelka et al., 2011).

Theorem 5.3 has a number of nice implications. First,
it provides a tighter bound on the lattice of minimiz-
ers of the submodular function f that, to the best of
our knowledge, has not been used or mentioned before.
This means we can start any algorithm for submod-
ular minimization from the lattice £, instead of the
initial lattice 2" or £. When using an algorithm whose
running time is a high-order polynomial of |V|, any
reduction of the ground set V is beneficial. Second,
each iteration of MMin takes linear time. Therefore,
its total running time is O(n?). Third, Theorem 5.3
states that both MMin-I and II converge to a local
minimum. In consequence, a local minimum of a sub-
modular function can be obtained in O(n?), a fact that
is of independent interest and that does not hold for
local maximizers (Feige et al., 2007).

The following example illustrates that £, can be a
strict subset of £ and therefore provides non-trivial
pruning. Let wy,w; € RY, w; > 0 be two vectors, each
defining a linear (modular) function. Then the func-
tion f(X) = /w1 (X) 4+ wa(X) is submodular. Specifi-
cally, let wy = [3,9,17,14,14,10, 16,4, 13,2] and wy =
[-9,4,6,—1,10,—4,—6,—1,2,—8]. Then we obtain £
defined by A = [1,6,7,10] and B = [1,4,6,7,8,10].
The tightened sublattice contains exactly the mini-
mizer: Ay = By = X* =1[1,6,7,8,10].

The MMin algorithms can be extended to arbitrary ini-
tializations and other supergradients (Tyer et al., 2013).

5.2. Constrained submodular minimization

MDMin straightforwardly generalizes to constraints more
complex than C = 2V, and Theorem 5.3 still holds for
more general lattices or ring family constraints.

Beyond lattices, MMin applies to any set of constraints
C as long as we have an efficient algorithm at hand that
minimizes a nonnegative modular cost function over
C. This subroutine can even be approximate. Such
algorithms are available for cardinality bounds, inde-
pendent sets of a matroid and many other combinatorial
constraints such as trees, paths or cuts.

Fast Semidifferential-based Submodular Function Optimization

As opposed to unconstrained submodular minimization,
almost all cases of constrained submodular minimiza-
tion are very hard (Svitkina & Fleischer, 2008; Jegelka
& Bilmes, 2011a; Goel et al., 2009), and admit at most
approximate solutions in polynomial time. The next
theorem states an upper bound on the approximation
factor achieved by MMin-I for nonnegative, nonde-
creasing cost functions. An important ingredient in the
bound is the curvature (Conforti & Cornuejols, 1984)
of a monotone submodular function f, defined as

ryp=1—minjev f(j [V\j)/ f(j) (6)
Theorem 5.4. Let X* € argminy . f(X). The solu-
tion X returned by MMin-I satisfies

. X
T < T - =g

fX7) < [

fX7)

If the minimization mAStep 4 s done with approrima-
tion factor B, then f(X) < B/(1 —ks) f(X¥).

A similar, slightly looser bound was shown for cuts
in (Jegelka & Bilmes, 2011b), by using a weaker notion
of curvature. Note that the bound in Theorem 5.4 is
at most m, where n = |V| is the dimension
of the problem. We prove Theorem 5.4 in (Iyer et al.,
2013).

In the worst case, when xy = 1, our approximation
bounds are identical to prior work (Goel et al., 2009;
Svitkina & Fleischer, 2008). Matroid rank functions
have ky = 1, implying that they are difficult instances
for MMin. But several practically relevant submodular
functions do satisfy xy > 0. In such case, Theorem 5.4
replaces known polynomial bounds by an improved
factor depending on «y. An example for such functions
are concave over modular functions used in (Stobbe &
Krause, 2010; Lin & Bilmes, 2011b; Jegelka & Bilmes,
2011b). These comprise, for instance, functions of
the form f(X) = (w(X))?, for some a € [0,1] and

a nonnegative weight vector w, whose curvature is

ke~ 1 — a(%‘%@))l_“ < 1. Another example is
f(X) =log(l1+w(X)) with s ~1— %‘%3) Several

applications use a sum of such functions, each with
bounded support (Jegelka & Bilmes, 2011b; Iyer &
Bilmes, 2012b). This further reduces the curvature.

The bounds of Theorem 5.4 hold after the first iter-
ation. Nevertheless, empirically we often found that
for problem instances that are not worst-case, subse-
quent iterations can improve the solution substantially.
Using Theorem 5.4, we can bound the number of iter-
ations the algorithm will take. To do so, we assume
an n-approximate version, where we proceed only if
F(XTH) < (1 —n) f(X?) for some i > 0. In practice,
the algorithm usually terminates after 5 to 10 iterations
for an arbitrarily small 7.

Concave over Modular

Bipartite

—_
o
o

100

—MMin-1 & |
—MMin-llI

2 4
A

(@)

o
o

o

10 20 30
A

% Contraction/Relative Tim
[8)]
o

% Contraction/Relative Tim
(4]
o

Figure 1. Lattice reduction (solid line), and runtime (%) of
MMin+min-norm relative to unadorned min-norm (dotted).

Lemma 5.5. MMin-I runs in O(%Tlog m)

time, where T is the time for minimizing a modular
function subject to X € C.

5.3. Experiments

We will next see that, apart from its theoretical proper-
ties, MMin is in practice competitive to more complex
algorithms. We implement and compare algorithms
using Matlab and the SFO toolbox (Krause, 2010).

Unconstrained minimization We first study the
results in Section 5.1 for contracting the lattice of
possible minimizers. We measure the size of the new
lattices relative to the ground set. Applying MMin-I
and IT (lattice £) to Iwata’s test function (Fujishige
& Tsotani, 2011), we observe an average reduction of
99.5% in the lattice. MMin-III (lattice £) obtains only
about 60% reduction. Averages are taken for n between
20 and 120.

In addition, we use concave over modular functions
Vw1 (X) + Awz(V\X) with randomly chosen vectors
wy,wy in [0,1]™ and n = 50. We also consider the
application of selecting limited vocabulary speech cor-
pora. Lin & Bilmes (2011a); Jegelka et al. (2011) use
functions of the form /wy (I'(X)) + w2(V\X), where
I'(X) is the neighborhood function of a bipartite graph.
Here, we choose n = 100 and random vectors w; and
ws. For both function classes, we vary A such that the
optimal solution X* moves from X* = () to X* = V.
The results are shown in Figure 1. In both cases, we ob-
serve a significant reduction of the search space. When
used as a preprocessing step for the minimum norm
point algorithm (MN) (Fujishige & Isotani, 2011), this
pruned lattice speeds up the MN algorithm accord-
ingly, in particular for the speech data. The dotted
lines represent the relative time of MN including the
respective preprocessing, taken with respect to MN
without preprocessing.

Constrained minimization. For constrained mini-
mization, we compare MMin-I to two methods: a sim-
ple algorithm (MU) that minimizes the upper bound

Fast Semidifferential-based Submodular Function Optimization

(8) varying ¢, =0 (b) Spanning Tree

(c) Shortest Path (d) Bipartite Matching

L ||Te=0t = 5 =4 =5 %
S 8{—e=0.2 o] I=
S o o o
8 |—e=03 & 4 T3 < 4
%ol =04 "; - -
2 3 3 33
g IS 25 IS x
T 4 &2 g &2 *
= © < © x x x
5 £t g’ g1

@ [@

0 0 0

50 100 150 200 250
n

CM CCM BS WC

CM CCM BS WC

CM CCM BS WC

Figure 2. Constrained minimization for worst-case (a) and average-case (b-d) instances. In (a), Dashed lines: MMin,
dotted lines: EA, solid lines: theoretical bound. In (b - d), bars are average approximation factors and crosses worst
observed results. CM - Concave over Mod., CCM - Clust. Concave Mod., BS - Best Set and WC - Worst Case

9(X) =>,cx f(i) (Goel et al., 2009) (this is identical
to the first iteration of MMin-I), and a more complex
algorithm (EA) that computes an approximation to the
submodular polyhedron (Goemans et al., 2009) and in
many cases yields a theoretically optimal approxima-
tion. MU has the theoretical bounds of Theorem 5.4,
while EA achieves a worst-case approximation factor
of O(y/nlogn). We show two experiments: the theo-
retical worst-case and average-case instances. Figure 2
illustrates the results.

Worst case. We use a very hard cost function (Goe-
mans et al., 2009)

F(X) = min{|X,|IX R+ B,a}, (7)
where o = n'/?*¢ and B = n?, and R is a random
set such that |R| = a. This function is the theoretical
worst case. Figure 2 shows results for cardinality lower
bound constraints; the results for other, more complex
constraints are similar. As e shrinks, the problem
becomes harder. In this case, EA and MMin-I achieve
about the same empirical approximation factors, which
matches the theoretical guarantee of n'/2—¢.

Average case. We next compare the algorithms on
more realistic functions that occur in applications. Fig-
ure 2 shows the empirical approximation factors for
minimum submodular-cost spanning tree, bipartite
matching, and shortest path. We use four classes of
randomized test functions: (1) concave (square root
or log) over modular (CM), (2) clustered CM (CCM)
of the form f(X) = Ele Vw(X NCy) for clusters
Cy, - ,Ck, (3) Best Set (BS) functions where the
optimal feasible set R is chosen randomly (f(X) =
I(IXNR[=1)+ 3 cp x wj) and (4) worst case-like
functions (WC) similar to equation (7). Functions of
type (1) and (2) have been used in speech and com-
puter vision (Lin & Bilmes, 2011b; Jegelka & Bilmes,
2011b; Iyer & Bilmes, 2012b) and have reduced cur-
vature (ky < 1). Functions of type (3) and (4) have
k¢ = 1. In all four cases, we consider both sparse and
dense graphs, with random weight vectors w. The plots

show averages over 20 instances of these graphs. For
more details, please refer to (Iyer et al., 2013).

First, we observe that in many cases, MMin clearly
outperforms MU. This suggests the practical utility of
more than one iteration. Second, despite its simplicity,
MMin performs comparably to EA, and sometimes even
better. In summary, the experiments suggest that the
complex EA only gains on a few worst-case instances,
whereas in many (average) cases, MMin yields near-
optimal results (factor 1-2). In terms of running time,
MMin is definitely preferable: on small instances (for
example n = 40), our Matlab implementation of MMin
takes 0.2 seconds, while EA needs about 58 seconds.
On larger instances (n = 500), the running times differ
on the order of seconds versus hours.

6. Submodular maximization

Just like for minimization, for submodular maximiza-
tion too we obtain a family of algorithms where each
member is specified by a distinct schedule of subgradi-
ents. We will only select subgradients that are vertices
of the subdifferential, i.e., each subgradient corresponds
to a permutation of V. For any of those choices, MMax
converges quickly. To bound the running time, we
assume that we proceed only if we make sufficient
progress, i.e., if f(X'T1) > (1+n)f(X?).

Lemma 6.1. MMazx with X° = argmax; f(j) runs in
time O(T logy 4, n), where T' is the time for mazimizing
a modular function subject to X € C.

In practice, we observe that MMax terminates within
3-10 iterations. We next consider specific subgradients
and their theoretical implications. For unconstrained
problems, we assume the submodular function to be
non-monotone (the results trivially hold for monotone
functions too); for constrained problems; we assume
the function f to be monotone nondecreasing. Our
results rely on the observation that many maximization
algorithms actually compute a specific subgradient and
run MMax with this subgradient. To our knowledge,
this observation is new. The proofs for the statements
in Section 6.1 may be found in (Iyer et al., 2013).

Fast Semidifferential-based Submodular Function Optimization

6.1. Unconstrained Maximization

Random Permutation (RA/RP). In iteration ¢,
we randomly pick a permutation ¢ that defines a sub-
gradient at X!, i.e., X*~! is assigned to the first
| Xt~1| positions. At XY = (), this can be any permuta-
tion. Stopping after the first iteration (RP) achieves an
approximation factor of 1/4 in expectation, and 1/2 for
symmetric functions. Making further iterations (RA)
only improves the solution.

Randomized local search (RLS). Instead of using
a completely random subgradient as in RA, we fix the
positions of two elements: the permutation must satisfy
that o'(|X*| 4+ 1) € argmax; f(j|X") and o*(|X*| —
1) € argmin; f(j]1X*\j). The remaining positions are
assigned randomly. An n-approximate version of MMax
with such subgradients returns an n-approximate local
maximum that achieves an improved approximation

factor of 1/3 — 7 in 0(71217;]%”) iterations.

Deterministic local search (DLS). A completely
deterministic variant of RLS defines the permutation
by an entirely greedy ordering. We define permutation
o' used in iteration ¢ via the chain () = Sgt csyc
.. C Sflt it will generate. The initial permutation is
a%(j) = AIGMAX, 4 go0 f(k|53731) for j =1,2,.... In

subsequent iterations t, the permutation o? is

o' 1(j)
argmax;, f(k|SZ_1)
argminy f(k|SJ"+1\k)
o'~ 1(j)

This schedule is equivalent to the deterministic local

search (DLS) algorithm by Feige et al. (2007), and
therefore achieves an approximation factor of 1/3 — 7.

if t even, j € Xt~!
if t even, j ¢ X1
if t odd, j € X!
if t odd, j ¢ X1,

o'(j) =

Bi-directional greedy (BG). The procedures
above indicate that greedy and local search algorithms
implicitly define specific chains and thereby subgradi-
ents. Likewise, the deterministic bi-directional greedy
algorithm by Buchbinder et al. (2012) induces a dis-
tinct permutation of the ground set. It is therefore
equivalent to MMax with the corresponding subgradi-
ents and achieves an approximation factor of 1/3. This
factor improves that of the local search techniques by
removing 7. Moreover, unlike for local search, the 1/3
approximation holds already after the first iteration.

Randomized bi-directional greedy (RG). Like
its deterministic variant, the randomized bi-directional
greedy algorithm by Buchbinder et al. (2012) can be
shown to run MMax with a specific subgradient. Start-
ing from () and V', it implicitly defines a random chain of

subsets and thereby (random) subgradients. A simple
analysis shows that this subgradient leads to the best
possible approximation factor of 1/2 in expectation.

6.2. Constrained Maximization

In this final section, we analyze subgradients for max-
imization subject to the constraint X € C. Here we
assume that f is monotone. An important subgradient
results from the greedy permutation o9, defined as

. g
fGISTL)- (®)

o9(i) € argmax

2S¢, and 79, U{j}eC

This definition might be partial, we arrange any remain-
ing elements arbitrarily. When using the corresponding
subgradient h%”, we recover a number of approximation
results already after one iteration:

Lemma 6.2. Using h®’ in iteration 1 of MMaz yields
the following approzimation bounds for X :

. 71f(1 —e "), ifC={X CV:|X| <k}

. , for the intersection C=NY_,Z; of p matroids

1
ptKf
. R—lf(l - (%)k), for any down-monotone constraint
C, where K and k are the mazimum and minimum
cardinality of the maximal feasible sets in C.

A similar result holds for Knapsack constraints. The
proof of Lemma 6.2 (Iyer et al., 2013) relies on the ob-
servation that the maximizer of the function my, for the
subgradient h = h?’ is never worse than the result of
a greedy algorithm. The bounds follow from (Conforti
& Cornuejols, 1984).

6.3. Generality

The correspondences between MMax and maximization
algorithms hold even more generally:

Theorem 6.3. For any polynomial-time unconstrained
submodular mazximization algorithm that achieves an
approzimation factor «, there exists a schedule of sub-
gradients (obtainable in polynomial time) that, if used
within MMaz, leads to a solution with the same approz-
imation factor «.

Under mild assumptions, Theorem 6.3 holds even for
constrained maximization. Lastly, we pose the question
of selecting the optimal subgradient in each iteration.
An optimal subgradient h would lead to a function my,
whose maximization yields the largest improvement.
Unfortunately, obtaining such an “optimal” subgradi-
ent is impossible:

Theorem 6.4. The problem of finding the optimal
subgradient cOTT = argmax, ycy h%:(X) in Step 4 of
Algorithm 1 is NP-hard even when C =2V . Given such

Fast Semidifferential-based Submodular Function Optimization

an oracle, however, MMax using subgradient c@F7T

returns a global optimizer.

6.4. Experiments

We now empirically compare variants of MMax with
different subgradients. As a test function, we use
the objective of Lin & Bilmes (2009), f(X) =
Doiev 2ojex Sij — ADlijex Sij» where A is a redun-
dancy parameter. This non-monotone function was
used to find the most diverse yet relevant subset of
objects. We use the objective with both synthetic and
real data. We generate 10 instances of random simi-
larity matrices {s;;};; and vary A from 0.5 to 1. Our
real-world data is the Speech Training data subset selec-
tion problem (Lin & Bilmes, 2009) on the TIMIT cor-
pus (Garofolo et al., 1993), using the string kernel met-
ric (Rousu & Shawe-Taylor, 2006) for similarity. We use
20 < n < 30 so that the exact solution can still be com-
puted with the algorithm of Goldengorin et al. (1999).

We compare the algorithms DLS, BG, RG, RLS, RA
and RP, and a baseline RS that picks a set uniformly
at random. RS achieves a 1/4 approximation in expec-
tation (Feige et al., 2007). For random algorithms, we
select the best solution out of 5 repetitions. Figure 3
shows that DLS, BG, RG and RLS dominate. Even
though RG has the best theoretical worst-case bounds,
it performs slightly poorer than the local search ones
and BG. Moreover, MMax with random subgradients
(RP) is much better than choosing a set uniformly at
random (RS). In general, the empirical approximation
factors are much better than the theoretical worst-case
bounds. Importantly, the MMax variants are extremely
fast, about 200-500 times faster than the exact branch
and bound technique of (Goldengorin et al., 1999).

7. Discussion and Conclusions

In this paper, we introduced a general MM framework
for submodular optimization algorithms. This
framework is akin to the class of algorithms for
minimizing the difference between submodular func-
tions (Narasimhan & Bilmes, 2005; Iyer & Bilmes,
2012b). In addition, it may be viewed as a special
case of a proximal minimization algorithm that
uses Bregman divergences derived from submodular
functions (Iyer et al., 2012). To our knowledge
this is the first generic and unifying framework of
combinatorial algorithms for submodular optimization.

An alternative framework relies on relaxing the discrete
optimization problem by using a continuous extension
(the Lovdsz extension for minimization and multilinear
extension for maximization). Relaxations have been
applied to some constrained (Iwata & Nagano, 2009)
and unconstrained (Bach, 2011) minimization problems

Synthetic Data Speech Data

S 1 e -
§ -j‘__\.f — 5
[T A I3
- e _/_\/\ E P
%09~ ""RP 35 0.9 RP
o o
s ||TBs g —DLS
= ---RLS 1 ---RLS
. —BG ; —BG
o8
8'0.8 -RG £0.8 ---RG
© | |=ns © —RS
1 0.6 0.8 1

06 07 08 09
A

Figure 3. Empirical approximation factors for variants of
MMax. See Section 6.1 for legend details.

as well as maximization problems (Buchbinder et al.,
2012). Such relaxations, however, rely on a final round-
ing step that can be challenging — the combinatorial
framework obviates this step. Moreover, our results
show that in many cases, it yields good results very
efficiently.

Acknowledgments: We thank Karthik Mohan, John
Halloran and Kai Wei for discussions. This material
is based upon work supported by the National Science
Foundation under Grant No. IIS-1162606, and by a
Google, a Microsoft, and an Intel research award.

References

Averbakh, I. and Berman, O. Categorized bottleneck-
minisum path problems on networks. Operations
Research Letters, 16:291-297, 1994.

Bach, F. Learning with Submodular functions: A
convex Optimization Perspective. Arziv, 2011.

Boykov, Y. and Jolly, M.P. Interactive graph cuts for
optimal boundary and region segmentation of objects
in n-d images. In ICCV, 2001.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz,
R. A tight (1/2) linear-time approximation to un-
constrained submodular maximization. In FOCS,
2012.

Conforti, M. and Cornuejols, G. Submodular set func-
tions, matroids and the greedy algorithm: tight
worst-case bounds and some generalizations of the
Rado-Edmonds theorem. Discrete Applied Mathe-
matics, 7(3):251-274, 1984.

Delong, A., Veksler, O., Osokin, A., and Boykov, Y.
Minimizing sparse high-order energies by submodular
vertex-cover. In In NIPS, 2012.

Feige, U., Mirrokni, V., and Vondrak, J. Maximiz-
ing non-monotone submodular functions. SIAM J.
COMPUT., 40(4):1133-1155, 2007.

Fujishige, S. Submodular functions and optimization,
volume 58. Elsevier Science, 2005.

Fast Semidifferential-based Submodular Function Optimization

Fujishige, S. and Isotani, S. A submodular function
minimization algorithm based on the minimum-norm
base. Pacific Journal of Optimization, 7:3-17, 2011.

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pal-
let, D., and Dahlgren, N. Timit, acoustic-phonetic
continuous speech corpus. In DARPA, 1993.

Goel, G., Karande, C., Tripathi, P., and Wang, .. Ap-
proximability of combinatorial problems with multi-
agent submodular cost functions. In FOCS, 2009.

Goemans, M.X., Harvey, N.J.A., Iwata, S., and Mir-
rokni, V. Approximating submodular functions ev-
erywhere. In SODA, pp. 535-544, 2009.

Goldengorin, B., Tijssen, G.A., and Tso, M. The
mazimization of submodular functions: Old and new
proofs for the correctness of the dichotomy algorithm.
University of Groningen, 1999.

Hunter, D.R. and Lange, K. A tutorial on MM algo-
rithms. The American Statistician, 2004.

Iwata, S. and Nagano, K. Submodular function min-
imization under covering constraints. In In FOCS,
pp- 671-680. IEEE, 2009.

Iyer, R. and Bilmes, J. The submodular Bregman and
Lovész-Bregman divergences with applications. In
NIPS, 2012a.

Iyer, R. and Bilmes, J. Algorithms for approximate
minimization of the difference between submodular
functions, with applications. In UAI, 2012b.

Iyer, R., Jegelka, S., and Bilmes, J. Mirror de-
scent like algorithms for submodular optimization.
NIPS Workshop on Discrete Optimization in Ma-
chine Learning (DISCML), 2012.

Iyer, R., Jegelka, S., and Bilmes, J. Fast
Semidifferential-based Submodular Function Opti-
mization : Extended Version, 2013.

Jegelka, S. and Bilmes, J. A. Approximation bounds
for inference using cooperative cuts. In ICML, 2011a.

Jegelka, S. and Bilmes, J. A. Submodularity beyond
submodular energies: coupling edges in graph cuts.
In CVPR, 2011b.

Jegelka, S., Lin, H., and Bilmes, J. On fast approximate
submodular minimization. In NIPS, 2011.

Krause, A. SFO: A toolbox for submodular function
optimization. JMLR, 11:1141-1144, 2010.

Krause, A., Singh, A., and Guestrin, C. Near-optimal
sensor placements in Gaussian processes: Theory,
efficient algorithms and empirical studies. JMLR, 9:
235-284, 2008.

Kulesza, A. and Taskar, B. Determinantal point
processes for machine learning. arXiv preprint
arXw:1207.6083, 2012.

Lin, H. and Bilmes, J. How to select a good training-
data subset for transcription: Submodular active
selection for sequences. In Interspeech, 2009.

Lin, H. and Bilmes, J. Optimal selection of limited
vocabulary speech corpora. In Interspeech, 2011a.

Lin, H. and Bilmes, J. A class of submodular functions
for document summarization. In ACL, 2011b.

McCormick, S Thomas. Submodular function mini-
mization. Discrete Optimization, 12:321-391, 2005.

McLachlan, G.J. and Krishnan, T. The EM algorithm
and extensions. New York, 1997.

Nagano, K., Kawahara, Y., and Iwata, S. Minimum
average cost clustering. In NIPS, 2010.

Narasimhan, M. and Bilmes, J. A submodular-
supermodular procedure with applications to dis-
criminative structure learning. In UAI 2005.

Narasimhan, M., Jojic, N., and Bilmes, J. Q-clustering.
NIPS, 18:979, 2006.

Nemhauser, G.L., Wolsey, L.A., and Fisher, M.L.. An
analysis of approximations for maximizing submodu-
lar set functions—i. Mathematical Programming, 14

(1):265-294, 1978,

Orlin, J.B. A faster strongly polynomial time algorithm
for submodular function minimization. Mathematical
Programming, 118(2):237-251, 2009.

Rousu, J. and Shawe-Taylor, J. Efficient computation of
gapped substring kernels on large alphabets. Journal
of Machine Learning Research, 6(2):1323, 2006.

Stobbe, P. and Krause, A. Efficient minimization of
decomposable submodular functions. In NIPS, 2010.

Svitkina, Z. and Fleischer, L. Submodular approxima-
tion: Sampling-based algorithms and lower bounds.
In FOCS, pp. 697-706, 2008.

Wan, P.-J., Calinescu, G., Li, X.-Y., and Frieder, O.
Minimum-energy broadcasting in static ad hoc wire-
less networks. Wireless Networks, 8:607-617, 2002.

Yuille, A.L. and Rangarajan, A. The concave-convex
procedure (CCCP). In NIPS, 2002.

	Introduction
	Motivation and Background
	Submodular semi-differentials
	The discrete MM framework
	Submodular function minimization
	Unconstrained Submodular Minimization
	Constrained submodular minimization
	Experiments

	Submodular maximization
	Unconstrained Maximization
	Constrained Maximization
	Generality
	Experiments

	Discussion and Conclusions

