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Abstract

We present a practical and powerful new
framework for both unconstrained and con-
strained submodular function optimization
based on discrete semidifferentials (sub- and
super-differentials). The resulting algorithms,
which repeatedly compute and then efficiently
optimize submodular semigradients, offer new
and generalize many old methods for sub-
modular optimization. Our approach, more-
over, takes steps towards providing a unifying
paradigm applicable to both submodular min-
imization and maximization, problems that
historically have been treated quite distinctly.
The practicality of our algorithms is impor-
tant since interest in submodularity, owing to
its natural and wide applicability, has recently
been in ascendance within machine learning.
We analyze theoretical properties of our al-
gorithms for minimization and maximization,
and show that many state-of-the-art maxi-
mization algorithms are special cases. Lastly,
we complement our theoretical analyses with
supporting empirical experiments.

1. Introduction

In this paper, we address minimization and maximiza-
tion problems of the following form:

Problem 1: min
X∈C

f(X), Problem 2: max
X∈C

f(X)

where f : 2V → R is a discrete set function on subsets
of a ground set V = {1, 2, · · · , n}, and C ⊆ 2V is a
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family of feasible solution sets. The set C could express,
for example, that solutions must be an independent set
in a matroid, a limited budget knapsack, or a cut (or
spanning tree, path, or matching) in a graph. Without
making any further assumptions about f , the above
problems are trivially worst-case exponential time and
moreover inapproximable.

If we assume that f is submodular, however, then in
many cases the above problems can be approximated
and in some cases solved exactly in polynomial time. A
function f : 2V → R is said to be submodular (Fujishige,
2005) if for all subsets S, T ⊆ V , it holds that f(S) +

f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). Defining f(j|S) , f(S ∪
j)− f(S) as the gain of j ∈ V with respect to S ⊆ V ,
then f is submodular if and only if f(j|S) ≥ f(j|T )
for all S ⊆ T and j /∈ T . Traditionally, submodularity
has been a key structural property for problems in
combinatorial optimization, and for applications in
econometrics, circuit and game theory, and operations
research. More recently, submodularity’s popularity in
machine learning has been on the rise.

On the other hand, a potential stumbling block is
that machine learning problems are often large (e.g.,
“big data”) and are getting larger. For general uncon-
strained submodular minimization, the computational
complexity often scales as a high-order polynomial.
These algorithms are designed to solve the most general
case and the worst-case instances are often contrived
and unrealistic. Typical-case instances are much more
benign, so simpler algorithms (e.g., graph-cut) might
suffice. In the constrained case, however, the problems
often become NP-complete. Algorithms for submod-
ular maximization are very different in nature from
their submodular minimization cohorts, and their com-
plexity too varies depending on the problem. In any
case, there is an urgent need for efficient, practical, and
scalable algorithms for the aforementioned problems if
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submodularity is to have a lasting impact on the field
of machine learning.

In this paper, we address the issue of scalability and
simultaneously draw connections across the apparent
gap between minimization and maximization problems.
We demonstrate that many algorithms for submodu-
lar maximization may be viewed as special cases of a
generic minorize-maximize framework that relies on
discrete semidifferentials. This framework encompasses
state-of-the-art greedy and local search techniques, and
provides a rich class of very practical algorithms. In
addition, we show that any approximate submodular
maximization algorithm can be seen as an instance of
our framework.

We also present a complementary majorize-minimize
framework for submodular minimization that makes
two contributions. For unconstrained minimization, we
obtain new nontrivial bounds on the lattice of minimiz-
ers, thereby reducing the possible space of candidate
minimizers. This method easily integrates into any
other exact minimization algorithm as a preprocessing
step to reduce running time. In the constrained case,
we obtain practical algorithms with bounded approx-
imation factors. We observe these algorithms to be
empirically competitive to more complicated ones.

As a whole, the semidifferential framework offers a new
unifying perspective and basis for treating submodu-
lar minimization and maximization problems in both
the constrained and unconstrained case. While it has
long been known (Fujishige, 2005) that submodular
functions have tight subdifferentials, our results rely on
a recently discovered property (Iyer & Bilmes, 2012a;
Jegelka & Bilmes, 2011b) showing that submodular
functions also have superdifferentials. Furthermore, our
approach is entirely combinatorial, thus complementing
(and sometimes obviating) related relaxation methods.

2. Motivation and Background

Submodularity’s escalating popularity in machine learn-
ing is due to its natural applicability. Indeed, instances
of Problems 1 and 2 are seen in many forms, to wit:

MAP inference/Image segmentation: Markov
Random Fields with pairwise attractive potentials are
important in computer vision, where MAP inference
is identical to unconstrained submodular minimization
solved via minimum cut (Boykov & Jolly, 2001). A
richer higher-order model can be induced for which
MAP inference corresponds to Problem 1 where V is
a set of edges in a graph, and C is a set of cuts in this
graph — this was shown to significantly improve many
image segmentation results (Jegelka & Bilmes, 2011b).
Moreover, Delong et al. (2012) efficiently solve MAP
inference in a sparse higher-order graphical model by

restating the problem as a submodular vertex cover,
i.e., Problem 1 where C is the set of all vertex covers
in a graph.

Clustering: Variants of submodular minimization
have been successfully applied to clustering problems
(Narasimhan et al., 2006; Nagano et al., 2010).

Limited Vocabulary Speech Corpora: The prob-
lem of finding a maximum size speech corpus with
bounded vocabulary (Lin & Bilmes, 2011a) can be
posed as submodular function minimization subject
to a size constraint. Alternatively, cardinality can
be treated as a penalty, reducing the problem to un-
constrained submodular minimization (Jegelka et al.,
2011).

Size constraints: The densest k-subgraph and size-
constrained graph cut problems correspond to submod-
ular minimization with cardinality constraints, prob-
lems that are very hard (Svitkina & Fleischer, 2008).
Specialized algorithms for cardinality and related con-
straints were proposed e.g. in (Svitkina & Fleischer,
2008; Nagano et al., 2011).

Minimum Power Assignment: In wireless net-
works, one seeks a connectivity structure that maintains
connectivity at a minimum energy consumption. This
problem is equivalent to finding a suitable structure
(e.g., a spanning tree) minimizing a submodular cost
function (Wan et al., 2002).

Transportation: Costs in real-world transportation
problems are often non-additive. For example, it may
be cheaper to take a longer route owned by one carrier
rather than a shorter route that switches carriers. Such
economies of scale, or “right of usage” properties are
captured in the “Categorized Bottleneck Path Prob-
lem” – a shortest path problem with submodular costs
(Averbakh & Berman, 1994). Similar costs have been
considered for spanning tree and matching problems.

Summarization/Sensor placement: Submodular
maximization also arises in many subset extraction
problems. Sensor placement (Krause et al., 2008), docu-
ment summarization (Lin & Bilmes, 2011b) and speech
data subset selection (Lin & Bilmes, 2009), for example,
are instances of submodular maximization.

Determinantal Point Processes: The Determi-
nantal Point Processes (DPPs) which have found nu-
merous applications in machine learning (Kulesza &
Taskar, 2012) are known to be log-submodular distri-
butions. In particular, the MAP inference problem is
a form of non-monotone submodular maximization.
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Indeed, there is strong motivation for solving Problems
1 and 2 but, as mentioned above, these problems come
not without computational difficulties. Much work has
therefore been devoted to developing optimal or near
optimal algorithms. Among the several algorithms
(McCormick, 2005) for the unconstrained variant of
Problem 1, where C = 2V , the best complexity to
date is O(n5γ + n6) (Orlin, 2009) (γ is the cost of
evaluating f). This has motivated studies on faster,
possibly special case or approximate, methods (Stobbe
& Krause, 2010; Jegelka et al., 2011). Constrained
minimization problems, even for simple constraints
such as a cardinality lower bound, are mostly NP-hard,
and not approximable to within better than a
polynomial factor. Approximation algorithms for these
problems with various techniques have been studied
in (Svitkina & Fleischer, 2008; Iwata & Nagano, 2009;
Goel et al., 2009; Jegelka & Bilmes, 2011a). Unlike
submodular minimization, all forms of submodular
maximization are NP-hard. Most such problems,
however, admit constant-factor approximations, which
are attained via very simple combinatorial algorithms
(Nemhauser et al., 1978; Buchbinder et al., 2012).

Majorization-minimization (MM)1 algorithms are
known to be useful in machine learning (Hunter &
Lange, 2004). Notable examples include the EM
algorithm (McLachlan & Krishnan, 1997) and the
convex-concave procedure (Yuille & Rangarajan, 2002).
Discrete instances have been used to minimize the
difference between submodular functions (Narasimhan
& Bilmes, 2005; Iyer & Bilmes, 2012b), but these
algorithms generally lack theoretical guarantees.
This paper shows, by contrast, that for submodular
optimization, MM algorithms have strong theoretical
properties and empirically work very well.

3. Submodular semi-differentials

We first briefly introduce submodular semidifferentials.
Throughout this paper, we assume normalized sub-
modular functions (i.e., f(∅) = 0). The subdifferential
∂f (Y ) of a submodular set function f : 2V → R for a
set Y ⊆ V is defined (Fujishige, 2005) analogously to
the subdifferential of a continuous convex function:

∂f (Y ) = {y ∈ Rn : (1)

f(X)− y(X) ≥ f(Y )− y(Y ) for all X ⊆ V }

For a vector x ∈ RV and X ⊆ V , we write x(X) =∑
j∈X x(j) — in such case, we say that x is a normal-

ized modular function. We shall denote a subgradient
at Y by hY ∈ ∂f (Y ). The extreme points of ∂f (Y )
may be computed via a greedy algorithm: Let σ be
a permutation of V that assigns the elements in Y to
the first |Y | positions (σ(i) ∈ Y if and only if i ≤ |Y |).

1MM also refers to minorization-maximization here.

Figure 1. Illustration of the chain of sets and permutation
sigma

Each such permutation defines a chain with elements
Sσ0 = ∅, Sσi = {σ(1), σ(2), . . . , σ(i)} and Sσ|Y | = Y .

This chain defines an extreme point hσY of ∂f (Y ) with
entries

hσY (σ(i)) = f(Sσi )− f(Sσi−1). (2)

Surprisingly, we can also define superdifferentials ∂f (Y )
of a submodular function (Jegelka & Bilmes, 2011b;
Iyer & Bilmes, 2012a) at Y :

∂f (Y ) = {y ∈ Rn : (3)

f(X)− y(X) ≤ f(Y )− y(Y ); for all X ⊆ V }

We denote a generic supergradient at Y by gY . It is
easy to show that the polyhedron ∂f is non-empty. We
define three special supergradients ĝY (“grow”), ǧY
(“shrink”) and ḡY as follows (Iyer & Bilmes, 2012a):

ĝY (j) = f(j | V \ {j}) ĝY (j) = f(j | Y )

ǧY (j) = f(j | Y \ {j}) ǧY (j) = f(j | ∅)
ḡY (j) = f(j | V \ {j})︸ ︷︷ ︸ ḡY (j) = f(j | ∅)︸ ︷︷ ︸

for j ∈ Y for j /∈ Y.

For a monotone submodular function, i.e., a function
satisfying f(A) ≤ f(B) for all A ⊆ B ⊆ V , the sub-
and supergradients defined here are nonnegative.

4. The discrete MM framework

With the above semigradients, we can define a generic
MM algorithm. In each iteration, the algorithm opti-
mizes a modular approximation formed via the current
solution Y . For minimization, we use an upper bound

mgY (X) = f(Y ) + gY (X)− gY (Y ) ≥ f(X), (4)

and for maximization a lower bound

mhY (X) = f(Y ) + hY (X)− hY (Y ) ≤ f(X). (5)

Both these bounds are tight at the current solution,
satisfying mgY (Y ) = mhY (Y ) = f(Y ). In almost all
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cases, optimizing the modular approximation is much
faster than optimizing the original cost function f .

Algorithm 1 Subgradient ascent [descent] algorithm
for submodular maximization [minimization]

1: Start with an arbitrary X0.
2: repeat
3: Pick a semigradient hXt [ gXt ] at Xt

4: Xt+1 := argmaxX∈CmhXt
(X)

[ Xt+1 := argminX∈Cm
gXt (X)]

5: t← t+ 1
6: until we have converged (Xi−1 = Xi)

Algorithm 1 shows our discrete MM scheme for maxi-
mization (MMax) [and minimization (MMin)] , and for
both constrained and unconstrained settings. Since we
are minimizing a tight upper bound, or maximizing a
tight lower bound, the algorithm must make progress.

Lemma 4.1. Algorithm 1 monotonically improves the
objective function value for Problems 1 and 2 at every
iteration, as long as a linear function can be exactly
optimized over C.

Proof. By definition, it holds that f(Xt+1) ≤
mgXt (Xt+1). Since Xt+1 minimizes mgXt , it follows
that

f(Xt+1) ≤ mgXt (Xt+1) ≤ mgXt (Xt) = f(Xt). (6)

The observation that Algorithm 1 monotonically in-
creases the objective of maximization problems follows
analogously.

Contrary to standard continuous subgradient descent
schemes, Algorithm 1 produces a feasible solution at
each iteration, thereby circumventing any rounding or
projection steps that might be challenging under certain
types of constraints. In addition, it is known that for
relaxed instances of our problems, subgradient descent
methods can suffer from slow convergence (Bach, 2011).
Nevertheless, Algorithm 1 still relies on the choice of the
semigradients defining the bounds. Therefore, we next
analyze the effect of certain choices of semigradients.

5. Submodular function minimization

For minimization problems, we use MMin with the su-
pergradients ĝX , ǧX and ḡX . In both the unconstrained
and constrained settings, this yields a number of new
approaches to submodular minimization.

5.1. Unconstrained Submodular Minimization

We begin with unconstrained minimization, where C =
2V in Problem 1. Each of the three supergradients

yields a different variant of Algorithm 1, and we will call
the resulting algorithms MMin-I, II and III, respectively.
We make one more assumption: of the minimizing
arguments in Step 4 of Algorithm 1, we always choose
a set of minimum cardinality.

MMin-I is very similar to the algorithms proposed
in (Jegelka et al., 2011). Those authors, however, de-
compose f and explicitly represent graph-representable
parts of the function f . We do not require or consider
such a restriction here.

Let us define the sets A = {j : f(j|∅) < 0} and B = {j :
f(j|V \ {j}) ≤ 0}. Submodularity implies that A ⊆ B,
and this allows us to define a lattice2 L = [A,B] whose
least element is the set A and whose greatest element
is the set is B. This sublattice L of [∅, V ] retains all
minimizers X∗ (i.e., A ⊆ X∗ ⊆ B for all X∗):

Lemma 5.1. (Fujishige, 2005) Let L∗ be the lattice
of the global minimizers of a submodular function f .
Then L∗ ⊆ L, where we use ⊆ to denote a sublattice.

Lemma 5.1 has been used to prune down the search
space of the minimum norm point algorithm from the
power set of V to a smaller lattice (Bach, 2011; Fujishige
& Isotani, 2011). Indeed, A and B may be obtained
by using MMin-III:

Lemma 5.2. With X0 = ∅ and X0 = V , MMin-III
returns the sets A and B, respectively. Initialized by
an arbitrary X0, MMin-III converges to (X0 ∩B) ∪A.

Proof. When using X0 = ∅, we obtain X1 =
argminX f(∅) +

∑
j∈X f(j) = A. Since A ⊆ B, the

algorithm will converge to X1 = A. At this point, no
more elements will be added, since for all i /∈ A we
have ḡX1(i) = f(i | ∅) > 0. Moreover, the algorithm
will not remove any elements: for all i ∈ A, it holds
that ḡX1(i) = f(i | V \ i) ≤ f(i) ≤ 0. By a similar
argumentation, the initialization X0 = V will lead to
X1 = B, where the algorithm terminates. If we start
with any arbitrary X0, MMin-III will remove the ele-
ments j with f(j|V \j) > 0 and add the element j with
f(j|∅) < 0. Hence it will add the elements in A that are
not in X0 and remove those element from X0 that are
not in B. Let the resulting set be X1. As before, for
all i ∈ A, it holds that ḡX1(i) = f(i | V \ i) ≤ f(i) ≤ 0,
so these elements will not be removed in any possible
subsequent iteration. The elements i ∈ X1 \A were not
removed, so f(i | V \ i) ≤ 0. Hence, no more elements
will be removed after the first iteration. Similarly, no
elements will be added since for all i /∈ X1, it holds
that f(i | ∅) ≥ f(i | V \ i) > 0.

Lemma 5.2 implies that MMin-III effectively provides
a contraction of the initial lattice to L, and, if X0

2This lattice contains all sets S satisfying A ⊆ S ⊆ B
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V BB+A+A X*

Figure 2. Venn diagram for the lattices obtained by MMin-I,
II and III. We are searching for the optimal set X∗ ⊆ V .
The lattice L contains all sets S “between” A and B, i.e.,
A ⊆ S ⊆ B. The lattice L+ uses the sets A+ and B+

instead (it contains all sets T with A+ ⊆ T ⊆ B+) and
therefore provides a tighter bound and smaller search space
around the optimal solution X∗.

is not in L, it returns a set in L. Henceforth, we
therefore assume that we start with a set X0 ∈ L.

While the known lattice L has proven useful for warm-
starts, MMin-I and II enable us to prune L even further.
Let A+ be the set obtained by starting MMin-I at
X0 = ∅, and B+ be the set obtained by starting MMin-
II at X0 = V . This yields a new, smaller sublattice
L+ = [A+, B+] that retains all minimizers:

Theorem 5.3. For any minimizer X∗ ∈ L, it holds
that A ⊆ A+ ⊆ X∗ ⊆ B+ ⊆ B. Hence L∗ ⊆ L+ ⊆ L.
Furthermore, when initialized with X0 = ∅ and X0 =
V , respectively, both MMin-I and II converge in O(n)
iterations to a local minimum of f .

By a local minimum, we mean a set X that satisfies
f(X) ≤ f(Y ) for any set Y that differs from X by
a single element. We point out that Theorem 5.3
generalizes part of Lemma 3 in (Jegelka et al., 2011).
For the proof, we build on the following Lemma:

Lemma 5.4. Every iteration of MMin-I can be writ-
ten as Xt+1 = Xt ∪ {j : f(j|Xt) < 0}. Simi-
larly, every iteration of MMin-II can be expressed as
Xt+1 = Xt\{j : f(j|Xt \ j) > 0}.

Proof. (Lemma 5.4) Throughout this paper, we as-
sume that we select only the minimal minimizer of the
modular function at every step. In other words, we do
not choose the elements that have zero marginal cost.
We observe that in iteration t+ 1 of MMin-I, we add
the elements i with ĝXt(i) < 0, i.e., Xt+1 = Xt ∪ {j :
f(j|Xt) < 0}. No element will ever be removed, since
ĝXt(i) = f(i | V \ i) ≤ f(i | Xt−1) ≤ 0. If we start
with X0 = ∅, then after the first iteration, it holds
that X1 = argminX f(∅) +

∑
j∈X f(j). Hence X1 = A.

MMin-I terminates when reaching a set A+, where
f(j|A+) ≥ 0, for all j /∈ A+.

The analysis of MMin-II is analogous. In iteration

t + 1, we remove the elements i with ǧXt(i) > 0,
i.e., Xt+1 = Xt\{j : f(j|Xt − j) > 0}. Similarly
to the argumentation above, MMin-II never adds any
elements. If we begin with X0 = V , then X1 =
arg minXf(V ) +

∑
j∈V \X f(j|V − {j}), and therefore

X1 = B. MMin-II terminates with a set B+.

Now we can prove Theorem 5.3.

Proof. (Thm. 5.3) Since, by Lemma 5.4, MMin-I only
adds elements and MMin-II only removes elements, at
least one in each iteration, both algorithms terminate
after O(n) iterations.

Let us now turn to the relation of X∗ to A and B.
Since f(i) < 0 for all i ∈ A, the set X1 = A found
in the first iteration of MMin-I must be a subset of
X∗. Consider any subset Xt ⊆ X∗. Any element j for
which f(j | Xt) < 0 must be in X∗ as well, because by
submodularity, f(j | X∗) ≤ f(j | Xt) < 0. This means
f(X∗ ∪ j) < f(X∗), which would otherwise contradict
the optimality of X∗. The set of such j is exactly Xt+1,
and therefore Xt+1 ⊆ X∗. This induction shows that
MMin-I, whose first solution is A ⊆ X∗, always returns
a subset of X∗. Analogously, B ⊇ X∗, and MMin-II
only removes elements j /∈ X∗.

Finally, we argue that A+ is a local minimum; the proof
for B+ is analogous. Algorithm MMin-I generates a
chain ∅ = X0 ⊆ X1 ⊆ X2 · · · ⊆ A+ = XT . For any
t ≤ T , consider j ∈ Xt \Xt−1. Submodularity implies
that f(j|A+ \ j) ≤ f(j|Xt−1) < 0. The last inequality
follows from the fact that j was added in iteration t.
Therefore, removing any j ∈ A+ will increase the cost.
Regarding the elements i /∈ A+, we observe that MMin-
I has terminated, which implies that f(i | A+) ≥ 0.
Hence, adding i to A+ will not improve the solution,
and A+ is a local minimum.

Theorem 5.3 has a number of nice implications. First,
it provides a tighter bound on the lattice of minimizers
of the submodular function f that, to the best of our
knowledge, has not been used or mentioned before.
The sets A+ and B+ obtained above are guaranteed
to be supersets and subsets of A and B, respectively,
as illustrated in Figure 2. This means we can start
any algorithm for submodular minimization from the
lattice L+ instead of the initial lattice 2V or L. When
using an algorithm whose running time is a high-order
polynomial of |V |, any reduction of the ground set V is
beneficial. Second, each iteration of MMin takes linear
time. Therefore, its total running time is O(n2). Third,
Theorem 5.3 states that both MMin-I and II converge
to a local minimum. This may be counter-intuitive
if one considers that each algorithm either only adds
or only removes elements. In consequence, a local
minimum of a submodular function can be obtained in
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O(n2), a fact that is of independent interest and that
does not hold for local maximizers (Feige et al., 2007).

The following example illustrates that L+ can be a
strict subset of L and therefore provides non-trivial
pruning. Let w1, w2 ∈ RV , w1 ≥ 0 be two vectors, each
defining a linear (modular) function. Then the func-

tion f(X) =
√
w1(X) +w2(X) is submodular. Specifi-

cally, let w1 = [3, 9, 17, 14, 14, 10, 16, 4, 13, 2] and w2 =
[−9, 4, 6,−1, 10,−4,−6,−1, 2,−8]. Then we obtain L
defined by A = [1, 6, 7, 10] and B = [1, 4, 6, 7, 8, 10].
The tightened sublattice contains exactly the mini-
mizer: A+ = B+ = X∗ = [1, 6, 7, 8, 10].

As a refinement to Theorem 5.3, we can show that
MMin-I and MMin-II converge to the local minima of
lowest and highest cardinality, respectively.

Lemma 5.5. The set A+ is the smallest local mini-
mum of f (by cardinality), and B+ is the largest. More-
over, every local minimum Z is in L+: Z ∈ L+ for
every local minimum Z.

Proof. The proof proceeds analogously to the proof of
Theorem 5.3. Let Ys be the local minimum of smallest-
cardinality, and Y` the largest one. First, we note
that X0 = ∅ ⊆ Ys. For induction, assume that Xt ⊆
Ys. For contradiction, assume there is an element
j ∈ Xt+1 that is not in Ys. Since j ∈ Xt+1 \ Xt, it
holds by construction that f(j | Ys) ≤ f(j | Xt) < 0,
implying that f(Ys ∪ j) < f(Ys). This contradicts the
local optimality of Ys, and therefore it must hold that
Xt+1 ⊆ Ys. Consequently, A+ ⊆ Ys. But A+ is itself
a local minimum, and hence equality holds. The result
for B+ follows analogously.

By the same argumentation as above for Ys and Y`, we
conclude that each local minimum Z satisfies A+ ⊆
Z ⊆ B+, and therefore Z ∈ L+ ⊆ L.

As a corollary, Lemma 5.5 implies that if a submodular
function has a unique local minimum, MMin-I and II
must find this minimum, which is a global one.

In the following we consider two extensions of MMin-I
and II. First, we analyze an algorithm that alternates
between MMin-I and MMin-II. While such an algorithm
does not provide much benefit when started at X0 = ∅
or X0 = V , we see that with a random initialization
X0 = R, the alternation ensures convergence to a
local minimum. Second, we address the question of
which supergradients to select in general. In particular,
we show that the supergradients ĝ and ǧ subsume
alternativee supergradients and provide the tightest
results with MMin. Hence, our results are the tight.

Alternating MMin-I and II and arbitrary ini-
tializations. Instead of running only one of MMin-I
and II, we can run one until it stops and then switch to

the other. Assume we initialize both algorithms with a
random set X0 = R ∈ L+. By Theorem 5.3, we know
that MMin-I will return a subset R1 ⊃ R (no element
will be removed because all removable elements are
not in B, and R ⊂ B by assumption). When MMin-I
terminates, it holds that ĝR1(j) = f(j|R1) ≥ 0 for all
j /∈ R1, and therefore R1 cannot be increased using
ĝR1 . We will call such a set an I-minimum. Similarly,
MMin-II returns a set R1 ⊆ R from which, considering
that ǧR1

(j) = f(j|R1 \ j) ≤ 0 for all j ∈ R1, no ele-
ments can be removed. We call such a non-decreasable
set a D-minimum. Every local minimum is both an
I-minimum and a D-minimum.

We can apply MMin-II to the I-minimum R1 returned
by MMin-I. Let us call the resulting set R2. Analo-
gously, applying MMin-I to R1 yields R2 ⊇ R1.

Lemma 5.6. The sets R2 and R2 are local optima.
Furthermore, R1 ⊆ R2 ⊆ R2 ⊆ R1.

Proof. It is easy to see that A ⊆ R1 ⊆ B, and A ⊆
R1 ⊆ B. By Lemma 5.4, MMin-I applied to R1 will
only add elements, and MMin-II on R1 will only remove
elements. Since R1 is an I-minimum, adding an element
j ∈ V \R1 to any set X ⊂ R1 never helps, and therefore
R1 contains all of R1, R2 and R2. Similarly, R1 is
contained in R2, R2 and R1. In consequence, it suffices
to look at the contracted lattice [R1, R

1], and any local
minimum in this sublattice is a local minimum on [∅, V ].
Theorem 5.3 applied to the sublattice [R1, R

1] (and
the submodular function restricted to the sublattice)
yields the inclusion R2 ⊆ R2, so R1 ⊆ R2 ⊆ R2 ⊆ R1,
and both R2 and R2 are local minima.

The following lemma provides a more general view.

Lemma 5.7. Let S1 ⊆ S1 be such that S1 is an I-
minimum and S1 is a D-minimum. Then there exist
local minima S2 ⊆ S2 in [S1, S

1] such that initializing
with any X0 ∈ [S1, S

1], an alternation of MMin-I and
II converges to a local minimum in [S2, S

2], and

min
X∈[S1,S1]

f(X) = min
X∈[S2,S2]

f(X). (7)

Proof. Let S2, S
2 be the smallest and largest local min-

ima within [S1, S
1]. By the same argumentation as

for Lemma 5.6, using X0 ∈ [S1, S
1] leads to a local

minimum within [S2, S
2]. Since by definition all lo-

cal optima in [S1, S
1] are within [S2, S

2], the global
minimum within [S1, S

1] will also be in [S2, S
2].

The above lemmas have a number of implications for
minimization algorithms. First, many of the properties
for initializing with V or the empty set can be trans-
ferred to arbitrary initializations. In particular, the
succession of MMin-I and II will terminate in O(n2) it-
erations, regardless of what X0 is. Second, Lemmas 5.6
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and 5.7 provide useful pruning opportunities: we can
prune down the initial lattice to [R2, R

2] or [S2, S
2],

respectively. In particular, if any global optimizer of
f is contained in [S1, S

1], it will also be contained in
[S2, S

2].

Choice of supergradients. We close this section
with a remark about the choice of supergradients. The
following Lemma states how ĝX and ǧX subsume al-
ternative choices of supergradients and MMin-I and II
lead to the tightest results possible.

Lemma 5.8. Initialized with X0 = ∅, Algorithm 1
will converge to a subset of A+ with any choice of
supergradients. Initialized with X0 = V , the algorithm
will converge to a superset of B+ with any choice of
supergradients. If X0 is a local minimum, then the
algorithm will not move with any supergradient.

The proof of Lemma 5.8 is very similar to the proof of
Theorem 5.3.

5.2. Constrained submodular minimization

MMin straightforwardly generalizes to constraints more
complex than C = 2V , and Theorem 5.3 still holds for
more general lattices or ring family constraints.

Beyond lattices, MMin applies to any set of constraints
C as long as we have an efficient algorithm at hand that
minimizes a nonnegative modular cost function over
C. This subroutine can even be approximate. Such
algorithms are available for cardinality bounds, inde-
pendent sets of a matroid and many other combinatorial
constraints such as trees, paths or cuts.

As opposed to unconstrained submodular minimization,
almost all cases of constrained submodular minimiza-
tion are very hard (Svitkina & Fleischer, 2008; Jegelka
& Bilmes, 2011a; Goel et al., 2009), and admit at most
approximate solutions in polynomial time. The next
theorem states an upper bound on the approximation
factor achieved by MMin-I for nonnegative, nonde-
creasing cost functions. An important ingredient in the
bound is the curvature (Conforti & Cornuejols, 1984)
of a monotone submodular function f , defined as

κf = 1−minj∈V f(j | V \j) / f(j) (8)

Theorem 5.9. Let X∗ ∈ argminX∈C f(X). The solu-

tion X̂ returned by MMin-I satisfies

f(X̂) ≤ |X∗|
1 + (|X∗| − 1)(1− κf )

f(X∗) ≤ 1

1− κf
f(X∗)

If the minimization in Step 4 is done with approxima-

tion factor β, then f(X̂) ≤ β/(1− κf )f(X∗).

Before proving this result, we remark that a similar,
slightly looser bound was shown for cuts in (Jegelka &

Bilmes, 2011b), by using a weaker notion of curvature.
Note that the bound in Theorem 5.9 is at most

n
1+(n−1)(1−κf ) , where n = |V | is the dimension of the

problem.

Proof. We will use the shorthand g , ĝ∅. To prove The-
orem 5.9, we use the following result shown in (Jegelka,
2012):

f(X̂) ≤ g(X∗)/f(i)

1 + (1− κf )(g(X∗)/f(i)− 1)
f(X∗) (9)

for any i ∈ V . We now transfer this result to curvature.
To do so, we use i′ ∈ arg maxi∈V f(i), so that g(X∗) =∑

j∈X∗ f(j) ≤ |X∗|f(i′). Observing that the function

p(x) = x
1+(1−κf )(x−1) is increasing in x yields that

f(X̂) ≤ |X∗|
1 + (1− κf )(|X∗| − 1)

f(X∗). (10)

For problems where κf < 1, Theorem 5.9 yields a
constant approximation factor and refines bounds for
constrained minimization that are given in (Goel et al.,
2009; Svitkina & Fleischer, 2008). To our knowledge,
this is the first curvature dependent bound for this
general class of minimization problems.

A class of functions with κf = 1 are matroid rank
functions, implying that these functions are difficult
instances the MMin algorithms. But several classes
of functions occurring in applications have more be-
nign curvature. For example, concave over modular
functions were used in (Lin & Bilmes, 2011b; Jegelka
& Bilmes, 2011b). These comprise, for instance, func-
tions of the form f(X) = (w(X))a, for some a ∈ [0, 1]
and a nonnegative weight vector w, whose curvature

is κf ≈ 1 − a(
minj w(j)
w(V ) )1−a > 0. A special case is

f(X) = |X|a, with curvature κf = 1 − ana−1, or

f(X) = log(1 + w(X)) satisfying κf ≈ 1− minj w(j)
w(V ) .

The bounds of Theorem 5.9 hold after the first iter-
ation. Nevertheless, empirically we often found that
for problem instances that are not worst-case, subse-
quent iterations can improve the solution substantially.
Using Theorem 5.9, we can bound the number of iter-
ations the algorithm will take. To do so, we assume
an η-approximate version, where we proceed only if
f(Xt+1) ≤ (1 − η)f(Xt) for some η > 0. In practice,
the algorithm usually terminates after 5 to 10 iterations
for an arbitrarily small η.

Lemma 5.10. MMin-I runs in
O( 1

ηT log n
1+(n−1)(1−κf ) ) time, where T is the

time for minimizing a modular function subject to
X ∈ C.
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Proof. At the end of the first iteration, we obtain a
set X1 such that f(X1) ≤ n

1+(n−1)(1−κf )f(X∗). The η-

approximate assumption implies that f(Xt+1) ≤ (1−
η)f(Xt) ≤ (1− η)tf(X1). Using that log(1− η) ≤ η−1

and Theorem 5.9, we see that the algorithm terminates
after at most O( 1

η log n
1+(n−1)(1−κf ) ) iterations.

5.3. Experiments

We will next see that, apart from its theoretical proper-
ties, MMin is in practice competitive to more complex
algorithms. We implement and compare algorithms
using Matlab and the SFO toolbox (Krause, 2010).

Unconstrained minimization We first study the
results in Section 5.1 for contracting the lattice of
possible minimizers. We measure the size of the new
lattices relative to the ground set. Applying MMin-I
and II (lattice L+) to Iwata’s test function (Fujishige
& Isotani, 2011), we observe an average reduction of
99.5% in the lattice. MMin-III (lattice L) obtains only
about 60% reduction. Averages are taken for n between
20 and 120.

In addition, we use concave over modular functions√
w1(X) + λw2(V \X) with randomly chosen vectors

w1, w2 in [0, 1]n and n = 50. We also consider the
application of selecting limited vocabulary speech cor-
pora. Lin & Bilmes (2011a); Jegelka et al. (2011) use

functions of the form
√
w1(Γ(X)) + w2(V \X), where

Γ(X) is the neighborhood function of a bipartite graph.
Here, we choose n = 100 and random vectors w1 and
w2. For both function classes, we vary λ such that the
optimal solution X∗ moves from X∗ = ∅ to X∗ = V .
The results are shown in Figure 3. In both cases, we ob-
serve a significant reduction of the search space. When
used as a preprocessing step for the minimum norm
point algorithm (MN) (Fujishige & Isotani, 2011), this
pruned lattice speeds up the MN algorithm accord-
ingly, in particular for the speech data. The dotted
lines represent the relative time of MN including the
respective preprocessing, taken with respect to MN
without preprocessing. Figure 3 also shows the average
results over 10 random choices of weights in both cases.
In order to obtain accurate estimates of the timings,
we run each experiment 5 times and take the minimum
of these timing valuess.

Constrained minimization. For constrained mini-
mization, we compare MMin-I to two methods: a sim-
ple algorithm (MU) that minimizes the upper bound
g(X) =

∑
i∈X f(i) (Goel et al., 2009) (this is identical

to the first iteration of MMin-I), and a more complex
algorithm (EA) that computes an approximation to the
submodular polyhedron (Goemans et al., 2009) and in
many cases yields a theoretically optimal approxima-
tion. MU has the theoretical bounds of Theorem 5.9,
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Figure 3. Lattice reduction (solid line), and runtime (%) of
MMin+min-norm relative to unadorned min-norm (dotted).

while EA achieves a worst-case approximation factor
of O(

√
n log n). We show two experiments: the theo-

retical worst-case and average-case instances. Figure 4
illustrates the results.

Worst case. We use a very hard cost function (Goe-
mans et al., 2009)

f(X) = min{|X|, |X ∩ R̄|+ β, α}, (11)

where α = n1/2+ε and β = n2ε, and R is a random
set such that |R| = α. This function is the theoretical
worst case. Figure 4 shows results for cardinality lower
bound constraints; the results for other, more complex
constraints are similar. As ε shrinks, the problem
becomes harder. In this case, EA and MMin-I achieve
about the same empirical approximation factors, which
matches the theoretical guarantee of n1/2−ε.

Average case. We next compare the algorithms on
more realistic functions that occur in applications. Fig-
ure 4 shows the empirical approximation factors for
minimum submodular-cost spanning tree, bipartite
matching, and shortest path. We use four classes of
randomized test functions: (1) concave (square root
or log) over modular (CM), (2) clustered CM (CCM)

of the form f(X) =
∑k
i=1

√
w(X ∩ Ck) for clusters

C1, · · · , Ck, (3) Best Set (BS) functions where the
optimal feasible set R is chosen randomly (f(X) =
I(|X ∩R| ≥ 1) +

∑
j∈R\X wj) and (4) worst case-like

functions (WC) similar to equation (11). Functions of
type (1) and (2) have been used in speech and com-
puter vision (Lin & Bilmes, 2011b; Jegelka & Bilmes,
2011b; Iyer & Bilmes, 2012b) and have reduced cur-
vature (κf < 1). Functions of type (3) and (4) have
κf = 1. In all four cases, we consider both sparse
and dense graphs, with random weight vectors w. The
plots show averages over 20 instances of these graphs.
For sparse graphs, we consider grid like graphs in the
form of square grids, grids with diagonals and cubic
grids. For dense graphs, we sparsely connect a few
dense cluster subgraphs. For matchings, we restrict
ourselves to bipartite graphs, and consider both sparse
and dense variants of these.
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Figure 4. Constrained minimization for worst-case (a) and average-case (b-d) instances. In (a), Dashed lines: MMin,
dotted lines: EA, solid lines: theoretical bound. In (b - d), bars are average approximation factors and crosses worst
observed results. CM - Concave over Mod., CCM - Clust. Concave Mod., BS - Best Set and WC - Worst Case

First, we observe that in many cases, MMin clearly
outperforms MU. This suggests the practical utility of
more than one iteration. Second, despite its simplicity,
MMin performs comparably to EA, and sometimes even
better. In summary, the experiments suggest that the
complex EA only gains on a few worst-case instances,
whereas in many (average) cases, MMin yields near-
optimal results (factor 1–2). In terms of running time,
MMin is definitely preferable: on small instances (for
example n = 40), our Matlab implementation of MMin
takes 0.2 seconds, while EA needs about 58 seconds.
On larger instances (n = 500), the running times differ
on the order of seconds versus hours.

6. Submodular maximization

Just like for minimization, for submodular maximiza-
tion too we obtain a family of algorithms where each
member is specified by a distinct schedule of subgradi-
ents. We will only select subgradients that are vertices
of the subdifferential, i.e., each subgradient corresponds
to a permutation of V . For any of those choices, MMax
converges quickly. To bound the running time, we
assume that we proceed only if we make sufficient
progress, i.e., if f(Xt+1) ≥ (1 + η)f(Xt).

Lemma 6.1. MMax with X0 = argmaxj f(j) runs in
time O(T log1+η n), where T is the time for maximizing
a modular function subject to X ∈ C.

Proof. Let X∗ be the optimal solution, then

f(X∗) ≤
∑
i∈X∗

f(j) ≤ nmax
j∈V

f(j) = nf(X0). (12)

Furthermore, we know that f(Xt) ≥ (1 + η)tf(X0).
Therefore, we have reached the maximum function
value after at most (log n)/ log(1 + η) iterations.

In practice, we observe that MMax terminates within
3-10 iterations. We next consider specific subgradients
and their theoretical implications. For unconstrained
problems, we assume the submodular function to be
non-monotone (the results trivially hold for monotone

functions too); for constrained problems, we assume
the function f to be monotone nondecreasing. Our
results rely on the observation that many maximization
algorithms actually compute a specific subgradient and
run MMax with this subgradient. To our knowledge,
this observation is new.

6.1. Unconstrained Maximization

Random Permutation (RA/RP). In iteration t,
we randomly pick a permutation σ that defines a sub-
gradient at Xt−1, i.e., Xt−1 is assigned to the first
|Xt−1| positions. At X0 = ∅, this can be any permuta-
tion. Stopping after the first iteration (RP) achieves an
approximation factor of 1/4 in expectation, and 1/2 for
symmetric functions. Making further iterations (RA)
only improves the solution.

Lemma 6.2. When running Algorithm RP with X0 =
∅, it holds after one iteration that E(f(X1)) ≥ 1

4f(X∗)
if f is a general non-negative submodular function, and
E(f(X1)) ≥ 1

2f(X∗) if f is symmetric.

Proof. Each permutation has the same probability 1/n!
of being chosen. Therefore, it holds that

E(f(X1)) = Eσ(max
X⊆V

hσ∅ (X)) (13)

=
1

n!

∑
σ

max
X⊆V

hσ∅ (X) (14)

Let ∅ ⊆ Sσ1 ⊆ Sσ2 · · ·Sσn = V be the chain correspond-
ing to a given permutation σ. We can bound

max
X⊆V

hσ∅ (X) ≥
n∑
k=0

(
n
k

)
2n

f(Sσk ) (15)

because maxX⊆V h
σ
∅ (X) ≥ f(Sσk ),∀k and

∑n
k=0

(nk)
2n =
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Constraints Subgradient Approximation bound Lower bound
Unconstrained Random 1/4 1/2
Unconstrained Local Optimal Random 1/3 1/2
Unconstrained Bi-directional greedy 1/2 1/2

Cardinality Greedy 1
κf

(1− e−κf ) 1
κf

(1− e−κf )

Matroid Greedy 1/(1 + κf ) 1
κf

(1− e−κf )

Knapsack Greedy 1− 1/e 1− 1/e

Table 1. Approximation factors obtained through specific subgradients for submodular maximization (see text for details).

1. Together, Equations (14) and (15) imply that

E(f(X1)) ≥ Eσ(max
X⊆V

hσ∅ (X)) (16)

=
∑
σ

n∑
k=0

(
n
k

)
2n

f(Sσk )
1

n!
(17)

=

n∑
k=0

(
n
k

)
n!2n

∑
σ

f(Sσk ) (18)

=

n∑
k=0

(
n
k

)
n!2n

k!(n− k)!
∑

S:|S|=k

f(S) (19)

=
∑
S

f(S)

2n
(20)

= ES(f(S)) (21)

By ES(f(S)), we denote the expected function value
when the set S is sampled uniformly at random, i.e.,
each element is included with probability 1/2. Feige
et al. (2007) shows that ES(f(S)) ≥ 1

4f(X∗). For

symmetric submodular functions, the factor is 1
2 .

Randomized local search (RLS). Instead of using
a completely random subgradient as in RA, we fix the
positions of two elements: the permutation must satisfy
that σt(|Xt| + 1) ∈ argmaxj f(j|Xt) and σt(|Xt| −
1) ∈ argminj f(j|Xt\j). The remaining positions are
assigned randomly. An η-approximate version of MMax
with such subgradients returns an η-approximate local
maximum that achieves an improved approximation

factor of 1/3− η in O(n
2 logn
η ) iterations.

Lemma 6.3. Algorithm RLS returns a local maximum
X that satisfies max{f(X), f(V \X)} ≥ ( 1

3 − η)f(X∗)

in O(n
2 logn
η ) iterations.

Proof. At termination (t = T ), it holds that
maxj f(j|XT ) ≤ 0 and minj f(j|XT \ j) ≥ 0; this
implies that the set Xt is local optimum.

To show local optimality, recall that the subgradi-

ent hσ
T

XT satisfies hσ
T

XT (XT ) = f(XT ), and hσ
T

XT (Y ) ≥
hσ

T

XT (XT ) for all Y ⊆ V . Therefore, it must hold

that maxj /∈XT f(j|XT ) = maxj /∈XT h
σT

XT (j) ≤ 0, and

minj∈XT f(j|XT \j) = hσ
T

XT (j) ≥ 0, which implies that

the set XT is a local maximum.

We now use a result by Feige et al. (2007) showing that
if a set X is a local optimum, then f(X) ≥ 1

3f(X∗) if
f is a general non-negative submodular set function
and f(X) ≥ 1

2f(X∗) if f is a symmetric submodular
function. If the set is an η-approximate local optimum,
we obtain a 1

3 − η approximation (Feige et al., 2007).
A complexity analysis similar to Theorem 6.1 reveals
that the worst case complexity of this algorithm is

O(n
2 logn
η ).

Note that even finding an exact local maximum is
hard for submodular functions (Feige et al., 2007), and
therefore it is necessary to resort to an η-approximate
version, which converges to an η-approximate local
maximum.

Deterministic local search (DLS). A completely
deterministic variant of RLS defines the permutation
by an entirely greedy ordering. We define permutation

σt used in iteration t via the chain ∅ = Sσ
t

0 ⊂ Sσ
t

1 ⊂
. . . ⊂ Sσ

t

n it will generate. The initial permutation is

σ0(j) = argmax
k/∈Sσ0j−1

f(k|Sσ0

j−1) for j = 1, 2, . . .. In

subsequent iterations t, the permutation σt is

σt(j) =


σt−1(j) if t even, j ∈ Xt−1

argmaxk f(k|Sσtj−1) if t even, j /∈ Xt−1

argmink f(k|Sσtj+1\k) if t odd, j ∈ Xt−1

σt−1(j) if t odd, j /∈ Xt−1.

This schedule is equivalent to the deterministic local
search (DLS) algorithm by Feige et al. (2007), and
therefore achieves an approximation factor of 1/3− η.

Bi-directional greedy (BG). The procedures
above indicate that greedy and local search algorithms
implicitly define specific chains and thereby subgradi-
ents. Likewise, the deterministic bi-directional greedy
algorithm by Buchbinder et al. (2012) induces a dis-
tinct permutation of the ground set. It is therefore
equivalent to MMax with the corresponding subgradi-
ents and achieves an approximation factor of 1/3. This
factor improves that of the local search techniques by
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removing η. Moreover, unlike for local search, the 1/3
approximation holds already after the first iteration.

Lemma 6.4. The set X1 obtained by Algorithm 1
with the subgradient equivalent to BG satisfies that
f(X) ≥ 1

3f(X∗).

Proof. Given an initial ordering τ , the bi-directional
greedy algorithm by Buchbinder et al. (2012) generates
a chain of sets. Let στ denote the permutation defined
by this chain, obtainable by mimicking the algorithm.
We run MMax with the corresponding subgradient. By
construction, the set Sτ returned by the bi-directional
greedy algorithm is contained in the chain. Therefore,
it holds that

f(X1) ≥ max
X⊆V

hσ
τ

∅ (X) (22)

≥ max
k

f(Sσ
τ

k ) (23)

≥ f(Sτ ) (24)

≥ 1

3
f(X∗). (25)

The first inequality follows since the subgradient is
tight for all sets in the chain. For the second inequality,
we used that Sτ belongs to the chain, and hence Sτ =
Sσ

τ

j for some j. The last inequality follows from the
approximation factor satisfied by Sτ (Buchbinder et al.,
2012). We can continue the algorithm, using any one
of the adaptive schedules above to get a locally optimal
solution. This can only improve the solution.

Randomized bi-directional greedy (RG). Like
its deterministic variant, the randomized bi-directional
greedy algorithm by Buchbinder et al. (2012) can be
shown to run MMax with a specific subgradient. Start-
ing from ∅ and V , it implicitly defines a random chain of
subsets and thereby (random) subgradients. A simple
analysis shows that this subgradient leads to the best
possible approximation factor of 1/2 in expectation.

Like its deterministic counterpart, the Randomized
bi-directional Greedy algorithm (RG) by Buchbinder
et al. (2012) induces a (random) permutation στ based
on an initial ordering τ .

Lemma 6.5. If the subgradient in MMax is determined
by στ , then the set X1 after the first iteration satisfies
E(f(X1)) ≥ 1

2f(X∗), where the expectation is taken
over the randomness in στ .

Proof. The permutation στ is obtained by a random-
ized algorithm, but once στ is fixed, the remainder of
MMax is deterministic. By an argumentation similar

to that in the proof of Lemma 6.4, it holds that

E(f(X)) ≥ E(max
X

hσ
τ

∅ (X)) (26)

≥ E(max
k

f(Sσ
τ

k )) (27)

≥ E(f(Sσ
τ

)) (28)

≥ 1

2
f(X∗) (29)

The last inequality follows from a result in (Buchbinder
et al., 2012).

6.2. Constrained Maximization

In this final section, we analyze subgradients for max-
imization subject to the constraint X ∈ C. Here we
assume that f is monotone. An important subgradient
results from the greedy permutation σg, defined as

σg(i) ∈ argmax
j /∈Sσgi−1 and Sσ

g
i−1∪{j}∈C

f(j|Sσ
g

i−1). (30)

This definition might be partial; we arrange any remain-
ing elements arbitrarily. When using the corresponding
subgradient hσ

g

, we recover a number of approximation
results already after one iteration:

Lemma 6.6. Using hσ
g

in iteration 1 of MMax yields
the following approximation bounds for X1:

• 1
κf

(1− e−κf ), if C = {X ⊆ V : |X| ≤ k}

• 1
p+κf

, for the intersection C=∩pi=1Ii of p matroids

• 1
κf

(1− (
K−κf
K )k), for any down-monotone constraint

C, where K and k are the maximum and minimum
cardinality of the maximal feasible sets in C.

Proof. We prove the first result for cardinality con-
straints. The proofs for the matroid and general down-
monotone constraints are analogous. By the construc-
tion of σg, the set Sσ

g

k is exactly the set returned by
the greedy algorithm. This implies that

f(X1) ≥ argmax
X:|X|≤k

hσ
g

∅ (X) (31)

≥ hσ
g

∅ (Sσ
g

k ) (32)

= f(Sσ
g

k ) (33)

≥ (1− e−κf )

κf
f(X∗). (34)

The last inequality follows from (Nemhauser et al.,
1978; Conforti & Cornuejols, 1984).

A very similar construction of a greedy permutation
provides bounds for budget constraints, i.e., c(S) ,
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i∈S c(i) ≤ B for some given nonnegative costs c. In

particular, define a permutation as:

σg(i) ∈ argmax
j /∈Sσgi−1,c(S

σg
i−1∪{j})≤B

f(j|Sσgi−1)

c(j)
. (35)

The following result then follows from (Lin & Bilmes,
2010; Sviridenko, 2004).

Lemma 6.7. Using σg in MMax under the budget
constraints yields:

max{ max
i:c(i)≤B

f(i), f(X1)} ≥ (1− 1/
√
e)f(X∗). (36)

Let σijk be a permutation with i, j, k in the first three
positions, and the remaining arrangement greedy. Run-
ning O(n3) restarts of MM yields sets Xijk (after one
iteration) with

max
i,j,k∈V

f(Xijk) ≥ (1− 1/e)f(X∗). (37)

The proof is analogous to that of Lemma 6.6. Table 1
lists results for monotone submodular maximization
under different constraints.

It would be interesting if some of the constrained vari-
ants of non-monotone submodular maximization could
be naturally subsumed in our framework too. In partic-
ular, some recent algorithms (Lee et al., 2009a;b) pro-
pose local search based techniques to obtain constant
factor approximations for non-monotone submodular
maximization under knapsack and matroid constraints.
Unfortunately, these algorithms require swap opera-
tions along with inserting and deleting elements. We
do not currently know how to phrase these swap oper-
ations via our framework and leave this relation as an
open problem.

While a number of algorithms cannot be naturally seen
as an instance of our framework, we show in the follow-
ing section that any polynomial time approximation
algorithm for unconstrained or constrained variants
of submodular optimization can be ultimately seen as
an instance of our algorithm, via a polynomial-time
computable subgradient.

6.3. Generality

The correspondences between MMax and maximization
algorithms hold even more generally:

Theorem 6.8. For any polynomial-time unconstrained
submodular maximization algorithm that achieves an
approximation factor α, there exists a schedule of sub-
gradients (obtainable in polynomial time) that, if used
within MMax, leads to a solution with the same approx-
imation factor α.

The proof relies on the following observation.

Lemma 6.9. Any submodular function f satisfies

max
X∈C

f(X) = max
X∈C,h∈Pf

h(X) = max
X∈C,σ∈Σ

hσ∅ (X). (38)

Lemma 6.9 implies that there exists a permutation (and
equivalent subgradient) with which MMax finds the
optimal solution in the first iteration. Known hardness
results (Feige, 1998) imply that this permutation may
not be obtainable in polynomial time.

Proof. (Lemma 6.9) The first equality in Lemma 6.9
follows from the fact that any submodular function f
can be written as

f(X) = max
h∈Pf

h(X). (39)

For the second equality, we use the fact that a linear
program over a polytope has a solution at one of the
extreme points of the corresponding polytope.

We can now prove Theorem 6.8

Proof. (Thm. 6.8) Let Y be the set returned by the
approximation algorithm; this set is polynomial-time
computable by definition. Let τ be an arbitrary per-
mutation that places the elements in Y in the first
|Y | positions. The subgradient hτ defined by τ is a
subgradient both for ∅ and for Y . Therefore, using
X0 = ∅ and hτ in the first iteration, we obtain a set
X1 with

f(X1) ≥ hτ∅(X
1) ≥ hτ∅(Y ) = f(Y ) ≥ αf(X∗). (40)

The equality follows from the fact that Y belongs to
the chain of τ .

While the above theorem shows the optimality of MMax
in the unconstrained setting, a similar result holds for
the constrained case:

Corollary 6.10. Let C be any constraint such that a
linear function can be exactly maximized over C. For
any polynomial-time algorithm for submodular maxi-
mization over C that achieves an approximation factor
α, there exists a schedule of subgradients (obtainable
in polynomial time) that, if used within MMax, leads
to a solution with the same approximation factor α.

The proof of Corollary 6.10 follows directly from the
Theorem 6.8. Lastly, we pose the question of se-
lecting the optimal subgradient in each iteration. An
optimal subgradient h would lead to a function mh

whose maximization yields the largest improvement.
Unfortunately, obtaining such an “optimal” subgradi-
ent is impossible:
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Theorem 6.11. The problem of finding the optimal
subgradient σOPT = argmaxσ,X⊆V h

σ
Xt(X) in Step 4 of

Algorithm 1 is NP-hard even when C = 2V . Given such
an oracle, however, MMax using subgradient σOPT

returns a global optimizer.

Proof. Lemma 6.9 implies that an optimal subgradient
at X0 = ∅ or X0 = V is a subgradient at an optimal
solution. An argumentation as in Equation (40) shows
that using this subgradient in MM leads to an optimal
solution. Since this would solve submodular maximiza-
tion (which is NP-hard), it must be NP-hard to find
such a subgradient.

To show that this holds for arbitrary Xt (and corre-
spondingly at every iteration), we use that the sub-
modular subdifferential can be expressed as a direct
product between a submodular polyhedron and an anti-
submodular polyhedron (Fujishige, 2005). Any problem
involving an optimization over the sub-differential, can
then be expressed as an optimization over a submodu-
lar polyhedron (which is a subdifferential at the empty
set) and an anti-submodular polyhedron (which is a
subdifferential at V ) (Fujishige, 2005). Correspond-
ingly, Equation (38) can be expressed as the sum of
two submodular maximization problems.

6.4. Experiments

We now empirically compare variants of MMax
with different subgradients. As a test function,
we use the objective of Lin & Bilmes (2009),
f(X) =

∑
i∈V

∑
j∈X sij − λ

∑
i,j∈X sij , where λ is a

redundancy parameter. This non-monotone function
was used to find the most diverse yet relevant subset
of objects in a large corpus. We use the objective with
both synthetic and real data. We generate 10 instances
of random similarity matrices {sij}ij and vary λ from
0.5 to 1. Our real-world data is the Speech Training
data subset selection problem (Lin & Bilmes, 2009)
on the TIMIT corpus (Garofolo et al., 1993), using
the string kernel metric (Rousu & Shawe-Taylor, 2006)
for similarity. We use 20 ≤ n ≤ 30 so that the exact
solution can still be computed with the algorithm of
Goldengorin et al. (1999).

We compare the algorithms DLS, BG, RG, RLS, RA
and RP, and a baseline RS that picks a set uniformly
at random. RS achieves a 1/4 approximation in expec-
tation (Feige et al., 2007). For random algorithms, we
select the best solution out of 5 repetitions. Figure 5
shows that DLS, BG, RG and RLS dominate. Even
though RG has the best theoretical worst-case bounds,
it performs slightly poorer than the local search ones
and BG. Moreover, MMax with random subgradients
(RP) is much better than choosing a set uniformly at
random (RS). In general, the empirical approximation
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Figure 5. Empirical approximation factors for variants of
MMax. See Section 6.1 for legend details.

factors are much better than the theoretical worst-case
bounds. Importantly, the MMax variants are extremely
fast, about 200-500 times faster than the exact branch
and bound technique of (Goldengorin et al., 1999).

7. Discussion and Conclusions

In this paper, we introduced a general MM framework
for submodular optimization algorithms. This
framework is akin to the class of algorithms for
minimizing the difference between submodular func-
tions (Narasimhan & Bilmes, 2005; Iyer & Bilmes,
2012b). In addition, it may be viewed as a special
case of a proximal minimization algorithm that
uses Bregman divergences derived from submodular
functions (Iyer et al., 2012). To our knowledge
this is the first generic and unifying framework of
combinatorial algorithms for submodular optimization.

An alternative framework relies on relaxing the discrete
optimization problem by using a continuous extension
(the Lovász extension for minimization and multilinear
extension for maximization). Relaxations have been
applied to some constrained (Iwata & Nagano, 2009)
and unconstrained (Bach, 2011) minimization problems
as well as maximization problems (Buchbinder et al.,
2012). Such relaxations, however, rely on a final round-
ing step that can be challenging — the combinatorial
framework obviates this step. Moreover, our results
show that in many cases, it yields good results very
efficiently.
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