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Abstract

We develop spectral learning algorithms for
Hidden Markov Models that learn not only
from time series, or dynamic data but also
static data drawn independently from the
HMM’s stationary distribution. This is moti-
vated by the fact that static, orderless snap-
shots are usually easier to obtain than time
series in quite a few dynamic modeling tasks.
Building on existing spectral learning algo-
rithms, our methods solve convex optimiza-
tion problems minimizing squared loss on the
dynamic data plus a regularization term on
the static data. Experiments on synthetic
and real human activities data demonstrate
better prediction by the proposed method
than existing spectral algorithms.

1. Introduction and Related Work

Hidden Markov Models (HMMs) (Rabiner, 1989) are
a useful class of tools for analyzing time series data
whose dynamic behavior depends on some unobserved
variables, referred to as hidden states, and have found
many applications. Due to the hidden states, the
widely-used Expectation-Maximization (EM) based
estimation has long suffered from ambiguities caused
by highly multi-modal estimation objectives. Recently
there has been an emerging line of work that pro-
poses spectral algorithms for learning HMMs with dis-
crete (Hsu et al., 2009; Siddiqi et al., 2010) and con-
tinuous observations (Siddiqi et al., 2010; Song et al.,
2010). In contrast to EM, these algorithms give unique
and, under mild conditions, provably consistent esti-
mates of the full joint distribution of an observation
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sequence, as well as the predictive distribution. They
have also been shown to outperform EM-based learn-
ing methods in some challenging dynamic modelling
tasks (Song et al., 2010).

While good models and learning algorithms play a
crucial role in time series analysis, a major challenge
in quite a few scientific dynamic modeling tasks, as
pointed out by Huang and Schneider (2011), turns
out to be collecting reliable time series data. In
some situations, the dynamic process of interest may
evolve slowly over time, such as the progression of
Alzheimer’s disease, and it may take months or even
years to obtain enough time series data for analysis.
In other situations, it may be very difficult to measure
the dynamic process of interest repetitively, due to the
destructive nature of the measurement technique. One
such example is gene expression time series. Although
obtaining reliable time series, or dynamic data, can
be difficult, it is often easier to collect static, order-
less snapshots of the dynamic process of interest. For
example, doctors can collect many samples from a cur-
rent pool of Alzheimer’s patients in possibly different
stages of the disease, and scientists can easily obtain
large amounts of static gene expression data from mul-
tiple experiments. Huang and Schneider (2011) pro-
pose an estimator for the vector autoregressive (VAR)
model that uses both dynamic and static data, and de-
rive a simple gradient-descent algorithm to minimize
its non-convex estimation objective. Through simula-
tions and experiments on video data, they demonstrate
that static data does help to improve estimation, es-
pecially when the amount of dynamic data is small.

We propose to incorporate static data into spectral
learning algorithms for HMMs, following a similar
principle: minimizing a squared error function on the
dynamic data augmented with a regularization term
based on static data. Somewhat surprisingly, the pro-
posed optimization problems for estimation turn out to
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be convex, thanks to the unique estimates from spec-
tral algorithms. We conduct simulations and exper-
iments on real Inertia-Measurement Unit recordings
of human activities, and demonstrate that, as with
VARs, static data also improves estimation of HMMs.

Unlike most spectral algorithms which rely only on
Singular Value Decomposition (SVD), our method
uses both SVD and convex optimization. Similar ideas
have been proposed recently. Among others, Balle et
al. (2012) solve a convex program in place of SVD,
while Balle and Mohri (2012) use convex optimization
to obtain input matrices to spectral algorithms.

We organize the paper as follows. Section 2 briefly re-
views spectral learning algorithms, and Section 3 de-
tails the proposed algorithms, followed by experiments
and results in Section 4 and conclusions in Section 5.

2. Spectral Learning of HMMs

We begin with discrete observations, and mainly fol-
low the exposition by Siddiqi et al. (2010). Instead
of learning the original model parameters, i.e., initial
state probabilities, state transition probabilities, and
state-conditioned observation probabilities, the spec-
tral algorithm learns an observable representation of
the HMM, which consists of the following parameters:

b1 := U⊤p, (1)

b∞ := (P⊤
2,1U)†p, (2)

Bx := (U⊤P3,x,1)(U
⊤P2,1)

†, 1 ≤ x ≤ N, (3)

where † denotes the pseudo inverse, N is the number of
observation symbols, p is the stationary distribution of
observations, and P2,1 and P3,x,1 are joint observation
probability matrices such that for 1 ≤ i, x, j ≤ N ,

(P2,1)ij := Prob(xt+1 = i, xt = j),

(P3,x,1)ij := Prob(xt+1 = i, xt = x, xt−1 = j),
(4)

xt being the observation symbol at time t, and U ∈
RN×k is column concatenation of the top k left singu-
lar vectors of P2,1. As the name suggests, the observ-
able representation parameters (1) to (3) only depend
on observable quantities, leading naturally to the esti-
mates b̂1, b̂∞, and B̂x based on empirical averages p̂,
P̂2,1, P̂3,x,1, and Û , the top-k left singular vectors of

P̂2,1. These estimates allow us to perform inferences
on a new sequence of observations y1, . . . , yt:

• Predict whole sequence probability:

P̂rob(y1, . . . , yt) = b̂⊤
∞B̂yt

· · · B̂y1
b̂1. (5)

• Internal state update: b̂t+1 := B̂yt
b̂t/(b̂⊤

∞B̂yt
b̂t).

• Conditional probability of yt given y1, . . . , yt−1:

P̂rob(yt|y1, . . . , yt−1) :=
b̂⊤
∞B̂yt

b̂t∑
x b̂⊤

∞B̂xb̂t

. (6)

Under some mild conditions, of which the most crit-
ical being that both the state transition and state-
conditioned observation probability matrices are of
rank k, Siddiqi et al. (2010) showed that the whole
sequence probability estimate (5) is consistent (with
high probability) and gives a finite-sample bound on
the estimation error.

Based on the same idea, Song et al. (2010) developed a
spectral algorithm for learning HMMs with continuous
observations. Instead of operating on probability dis-
tributions directly, their algorithm operates on Hilbert
space embeddings of distributions of observable quan-
tities (assuming stationarity of the HMM):

µ1 := Ext
[φ(xt)], (7)

C2,1 := Ext+1xt
[φ(xt+1) ⊗ φ(xt)], (8)

C3,x,1 := Ext+2(xt+1=x)xt
[φ(xt+2) ⊗ φ(xt)]

= P(xt = x)C3,1|2φ(x), (9)

where xt denotes the continuous observation vector at
time t, φ(·) maps the real observation space to a Repro-
ducing Kernel Hilbert Space (RKHS), ⊗ denotes the
tensor product, and C3,1|2 := Cxt+2xt|xt+1

is a condi-
tional embedding operator (Song et al., 2009). Using
these embeddings, they derived an observable repre-
sentation of the embedded HMM, which consists of
the following parameters:

β1 := U⊤µ1, (10)

β∞ := C2,1(U
⊤C2,1)

†, (11)

Bx := (U⊤C3,x,1)(U
⊤C2,1)

†, (12)

where U is the top-k left singular vectors of C2,1.
They then showed that the embedding of the pre-
dictive distribution P(xt|x1, . . . ,xt−1) takes the form
µxt|x1,...,xt−1

= β∞Bx1
· · · Bxt−1

β1 and, as in the case
of discrete observations, proposed estimates based on
empirical averages µ̂1, Ĉ2,1, Ĉ3,x,1, and Û , which is the

top-k left singular vectors of Ĉ2,1. Using the kernel
trick and techniques from Kernel Principle Compo-
nent Analysis (Schölkopf et al., 1998), they gave an
estimation procedure that operates solely on finite-
dimensional quantities. Moreover, to avoid the diffi-
culty of partitioning the observation space required by
estimation of Bx, they proposed to estimate instead

B̄x := (U⊤C3,1|2φ(x))(U⊤C2,1)
†, (13)

which is only a fixed multiplicative factor P(x) away
from Bx, and have µxt|x1,...,xt−1

proportional to
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β∞B̄x1
· · · B̄xt−1

β1. Under some mild conditions, they
established the consistency (with high probability) of
their estimator for µxt|x1,...,xt−1

and gave a finite-
sample bound on the estimation error.

In addition to estimation, Song et al. (2010) also dis-
cussed possible ways to carry out prediction. In par-
ticular, they showed that in the case of Gaussian RBF
kernel, µ̂xt|x1,...,xt−1

takes the form of a nonparametric
density estimator after proper normalization, and one
may choose, from training data or a pool of samples,
the observation with the highest predictive density as
the prediction.

3. Spectral Learning of HMMs from

Dynamic and Static Data

Suppose in addition to dynamic data, which can be
time series of observations or triples of consecutive ob-
servations, we also have a set of static data points,
which are drawn independently from the stationary
distribution of the underlying HMM. We propose to
improve the estimation of the observable representa-
tion of HMMs by solving regularized least square prob-
lems, which minimize a squared error term on the dy-
namic data and a regularization term based on the
static data. As in existing work on spectral learning
of HMMs, we assume that the dynamic data are ob-
served after the HMM has fully mixed.

3.1. Discrete Observations

Our method has two main steps. We first estimate
P2,1, and then b1,b∞, and Bx’s. Let N denote the
number of unique observation symbols. To make use
of static data in estimating P2,1, we note that the
marginal of P2,1 is the stationary distribution of the
discrete HMM. Moreover, from spectral learning meth-
ods we have the assumption of P2,1 being low-rank. We

thus propose the following estimator P̃2,1 defined as

arg min
P

1

2
‖W ⊙ (P − P̂2,1)‖

2
F + τ‖P‖∗+

u

2

(
‖p̃ − P1‖2

2 + ‖p̃ − P⊤1‖2
2

)
,

s.t. 1⊤P1 = 1, Pij ≥ 0,

(14)

where p̃ is the empirical observation distribution of
both the dynamic and the static data, W is an indi-
cator matrix such that Wij = 1 ⇐⇒ (P̂2,1)ij > 0,
⊙ denotes the Hadamard product, ‖ · ‖∗ denotes the
matrix nuclear norm, a standard convex relaxation of
matrix rank, 1 is a vector of ones, and u, τ > 0 are
regularization parameters. The objective in (14) min-
imizes the squared error from the dynamic-only esti-
mate P̂2,1 while penalizing the rank and the deviation

from the marginal p̃. It is easy to see that (14) is
a convex but non-smooth problem due to the matrix
nuclear norm. Projected sub-gradient descent meth-
ods are a common way to solve such problems, but
are known to suffer from slow convergence (Bertsekas,
1999). We solve (14) by a variant of the smoothing
proximal gradient (SPG) method proposed by Chen
et al. (2012), which achieves a provably faster conver-
gence rate than projected sub-gradient methods but
has a similar per-iteration time complexity. In Section
3.2 we use SPG to solve the continuous version of the
estimation problem, which has a more general form,
and hence describe more details there.

To set τ in the right scale, we use the following fact
about matrix norms:

‖P2,1‖∗/N ≤ (r/N)
√

‖P2,1‖∞‖P2,1‖1, (15)

where r is the rank of P2,1, and ‖ · ‖∞ and ‖ · ‖1 de-
note matrix ∞-norm and 1-norm, respectively. As-
suming stationarity, we have ‖P2,1‖∞ = ‖P2,1‖1 =
maxi pi, where p is the stationary distribution of ob-
servations. Therefore, P2,1’s average singular value is
O((maxi pi)/N). As shown by Cai et al. (2010), τ has
an effect of soft-thresholding singular values of P2,1, so
we let τ = λ maxi p̃i/N and tune λ instead.

We then compute the SVD of P̃2,1, denoting its top-k

left singular vectors as an N -by-k matrix Ũ , and obtain
estimates of b1 and b∞ in the same ways as (1) and

(2) using P̃2,1, Ũ , and p̃. To derive our estimator of
Bx, we first note that the original estimator based on
(3) is the solution to the following problem:

B̂x := arg min
B

‖P̂3,x,1 − ÛBÛ⊤P̂2,1‖
2
F , (16)

showing that B̂x is a low-dimensional representation of
P̂3,x,1. As in (14), we aim to regularize the least-square
problem (16) with static data. Instead of construct-
ing a regularization term directly from static data,
we use our new estimator P̃2,1 based on the fact that
(1⊤P3,x,1)j = (P2,1)xj and (P3,x,11)i = (P2,1)ix, i.e.,
the marginals of {P3,x,1} are equal to P2,1. We thus

propose the following estimator {B̃x} defined as

arg min
{Bx}

∑

x

1

2
‖Wx ⊙ (ŨBxṼ ⊤ − P̂3,x,1)‖

2
F +

u

2

∑

x,i

(
(P̃2,1)ix − (ŨBxṼ ⊤1)i

)2

+

u

2

∑

x,i

(
(P̃2,1)xi − (1⊤ŨBxṼ ⊤)i

)2

,

s.t. (ŨBxṼ ⊤)ij ≥ 0,
∑

x

1⊤ŨBxṼ ⊤1 = 1,

(17)
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where Wx is an indicator matrix such that (Wx)ij >

0 ⇐⇒ (P̂3,x,1)ij > 0 and Ṽ := Ũ⊤P̃2,1. Note that we
not only add regularization terms but also constrain
the fitted matrices {ŨBxṼ ⊤} to lie on a simplex1,
aiming to reduce negative values in the predictive dis-
tribution (6) during inference.

Eq. (17) is a quadratic program of k2N variables
under one linear equality constraint and N3 linear
inequality constraints. When N is on the order of
a few hundreds and k is a few tens, a reformula-
tion that takes advantage of the block-diagonal struc-
ture in the Hessian of (17) can be solved quite ef-
ficiently with state-of-the art optimization software,
such as MOSEK (www.mosek.com). For larger prob-
lems, one possible solution is the Alternating Direc-
tion Method of Multipliers (Boyd et al., 2011), which
handles constraints by minimizing the original objec-
tive augmented with a iteratively-refined constraint vi-
olation term. Our experiments in Section 4.1 have
N = 100, so we solve (17) with MOSEK.

3.2. Continuous Observations

Our method for continuous observations builds on
the Hilbert space embedding approach by Song et al.
(2010), and consists of two main steps: estimating the
feature covariance C2,1 and then the observable repre-
sentation β1, β∞, and Bx. Let the feature mappings
of the dynamic data be organized into three matrices
Φ1,Φ2, and Φ3 such that their i-th columns Φi

1,Φ
i
2,

and Φi
3 are consecutive and going forward in time. By

the definition of the feature covariance (8), we have
C2,1 :=

∫
φ(x)⊗φ(y)pXt+1Xt

(x,y)dxdy. If we have a
set of feature points grouped column-wise as a feature
matrix Φ, and know exactly which pairs of points are
consecutive in time via a (normalized) temporal adja-
cency matrix T2,1, we may then compute the quantity
ΦT2,1Φ

⊤ as an unbiased estimator of C2,1 It is easy to

see that Ĉ2,1 := 1
nΦ2Φ

⊤
1 is one special case of such

an estimator. To incorporate static data into our esti-
mation procedure, we denote its feature matrix by Z
and consider another special case:

C̃2,1 := Z2PZ⊤
1 , (18)

where Z1 := [Φ1 Z] and Z2 := [Φ2 Z]. It then suffices
to estimate P subject to 1⊤P1 = 1 and Pij ≥ 0.

Similar to Section 3.1, our estimation objective con-
sists of three terms: the squared error between C̃2,1

and Ĉ2,1, penalization on C̃2,1’s rank, and deviation of

1These constraints may be infeasible if k is too small,
but in our experiments we did not encounter this issue.
When this happens one may choose the smallest k that
makes the constraints feasible, and then solve (17).

C̃2,1’s marginal from the mean of the stationary dis-
tribution. The last term is based on the fact that, un-
der the assumption of stationarity, C2,1f = E[φ(X)]
holds for some constant function f in G such that
f(x) = f⊤φ(x) = 1 ∀x. Formally, our estimator P̃
is the solution to the following convex program:

min
P

1

2
‖Z2PZ⊤

1 − Ĉ2,1‖
2
G⊗G + τ‖Z2PZ⊤

1 ‖∗+

u

2

(∥∥∥Z2P1 −
S1

mS

∥∥∥
2

G
+

∥∥∥Z1P
⊤1 −

S1

mS

∥∥∥
2

G

)

s.t. 1⊤P1 = 1, Pij ≥ 0,

(19)

where we introduce S and mS to denote the feature
matrix and the size of the entire set of static data and
let Z denote a sub-sample of it, mainly to limit the
number of variables when the static dataset is very
large. As shown in Appendix A, using the kernel trick
and properties of the matrix trace and nuclear norm,
we re-write the objective function in (19) as follows
(dropping constants):

1

2
Tr(P⊤M2PM1) − Tr(P⊤F ) + τ‖L⊤

2 PL1‖∗+ (20)

u

2
1⊤(P⊤M2P + PM1P

⊤)1 − u1⊤(P⊤µ2 + Pµ1),

where Tr(·) is the matrix trace, Mi := Z⊤
i Zi,µi :=

Z⊤

i
S1

mS
, F := Z⊤

2 Ĉ2,1Z1, and Li is a finite matrix such

that Mi = LiL
⊤
i . To set τ in a proper scale, we

use an inequality similar to (15) to upper-bound the
average singular value of L⊤

2 PL1, and then replace
the unknown P by the uniform distribution to have
τ := (λ/m3)(‖L⊤

2 11⊤L1‖∞‖L⊤
2 11⊤L1‖1)

1/2, where m
is the size of P and λ > 0 takes values in some reason-
able range.

As mentioned in Section 3.1, we solve (19) with a vari-
ant of the smoothing proximal gradient (SPG) method
outlined in Algorithm 1, which minimizes fµ(P ), a
smooth approximation of (20) that approximates the
non-smooth regularization τ‖L⊤

2 PL1‖∗ by

gµ(P ) := max
‖Y ‖2≤1

τTr(Y ⊤L⊤
2 PL1) −

µ

2
‖Y ‖2

F , (21)

where µ ≥ 0 is a smoothing parameter, ‖ ·‖2 and ‖ ·‖F

denote the matrix spectral and Frobenius norms, re-
spectively. Nesterov (2005) shows that (21) is contin-
uously differentiable in P and ∇gµ(P ) = τL2Y

∗L⊤
1 ,

where Y ∗ is the optimal solution to (21) obtained by
projecting (τ/µ)L⊤

2 PL1 to the unit spectral-norm ball,
i.e., truncating its singular values at 1. The update
(22) for P (t+1) requires projection onto a simplex, for
which several efficient algorithms exist, such as the
sorting-based method proposed by Duchi et al. (2008).

www.mosek.com
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Algorithm 1 Smoothing Proximal Gradient for (19)

Initialize Y (0) = P (0) to some feasible point.
Set t := 0, θ(0) := 1, η := 10, and γ(0) := 1.
repeat

Find the smallest κ ∈ {0, 1, · · · } that satisfies

fµ(P (t+1)) − fµ(Y (t)) ≤
γ(t+1)

2
‖P (t+1) − Y (t)‖2

F

+ Tr
(
(P (t+1) − Y (t))⊤∇fµ(Y (t))

)

where γ(t+1) := ηκγ(t) and

P (t+1) := arg min
P

‖Y (t) −∇fµ(Y (t))/γ(t+1) − P‖2
F

s.t. Pij ≥ 0,1⊤P1 = 1. (22)

θ(t+1) := (1 +
√

1 + 4(θ(t))2)/2.

Y (t+1) := P (t+1) + θ(t)−1
θ(t+1) (P (t+1) − P (t)).

t := t + 1.
until convergence or t = Tmax, an iteration limit.

The convergence theory of Chen et al. (2012) sug-
gests setting2 µ = ǫ/m, m being the column dimen-
sion of Z2, so that the objective values (20) converge
in O(1/ǫ2) iterations to at most ǫ plus the minimum.

We then compute the top k left singular vectors of
C̃2,1 in a similar way to Kernel Principle Component
Analysis (Schölkopf et al., 1998), starting with the fact

that any left singular vector of C̃2,1 = Z2P̃Z⊤
1 can

be expressed as Z2α for some α ∈ Rm, and any left
singular vector of C̃2,1 is an Eigenvector of C̃2,1C̃

⊤
2,1

and vice versa. Thus we have

Z2P̃M1P̃
⊤M2α = Z2P̃Z⊤

1 Z1P̃
⊤Z⊤

2 (Z2α) = ωZ2α

⇐⇒ M2P̃M1P̃
⊤M2α = ωM2α, (23)

which is a generalized Eigensystem. Let Ω denote the
diagonal matrix formed by the top k generalized Eigen-
values of (23), and A denote the column concatenation
of the corresponding generalized Eigenvectors. It is
then clear that D := (A⊤M2A)−1/2 is diagonal, and

we obtain a concise form of C̃2,1’s top k left singular

vectors Ũ = Z2AD. We also have the following useful
identity:

M2P̃M1P̃
⊤M2A = M2AΩ. (24)

Next we describe our estimators for the observable rep-

2For solving (14) we set µ = ǫ/N .

resentation. First we have

β̃1 := Ũ⊤S1/mS = DA⊤µ2, (25)

β̃∞ := C̃2,1(Ũ
⊤C̃2,1)

† = Z2P̃M1P̃
⊤M2ADΩ−1 (26)

by using the identity (Ũ⊤C̃2,1)
† = Z1P̃

⊤M2ADΩ−1

established from properties of pseudo inverse, (24),
and the definition of D. To derive our estimator for
B̄x defined in (13), we start from the conditional co-
variance operator defined by Song et al. (2009)

C3,1|2 := C3,1,2C
−1
2,2φ(x), where

C3,1,2 := EXt+2XtXt+1
[φ(Xt+2) ⊗ φ(Xt) ⊗ φ(Xt+1)],

C2,2 := EXt+1
[φ(Xt+1) ⊗ φ(Xt+1)].

Using a similar idea to (18), we encode the empirical
distribution of triples of consecutive observations by a
third-order tensor Q and have the following estimator

C̃3,1|2 :=




∑

i,j,l

QijlZ
i
3 ⊗Zj

1 ⊗Z l
2




(
1

m
Z2Z

⊤
2 + νI

)−1

,

where Z3 := [Φ3 Z], ν > 0 is a regularization parame-
ter, and superscripts denote column indices. We then
define our estimator for B̄x as

B̃x := (Ũ⊤(C̃3,1|2φ(x)))(Ũ⊤C̃2,1)
† (27)

= m
∑

l

Bl

((
M2 + νmI

)−1
Z⊤

2 φ(x)
)

l
, (28)

where Bl ∈ Rk×k is a linear transformation of Q··l ∈
Rm×m, the lth slice of Q along the third dimension:

Bl := Ũ⊤Z3Q··lZ
⊤
1 (Ũ⊤C̃2,1)

†. (29)

Note that in the usual setting of learning from dy-
namic data, the third-order tensor Q is diagonal and
Bl becomes a rank-one matrix, so (28) reduces to the
estimator proposed by Song et al. (2010).

The definitions above naturally lead to an estimation
procedure that first estimates Q and then applies (29)
to estimate Bl. However, such a procedure involves
m3 variables when the quantities of interest consist of
only km2 variables. We thus propose to estimate Bl’s
directly. Viewing (29) as the solution to

arg min
Bl

‖Q··l − ŨBlṼ
⊤‖2

F , where

Ũ := (Ũ⊤Z3)
† = (DA⊤Z⊤

2 Z3)
† = (DA⊤M23)

†,

Ṽ ⊤ := (Z⊤
1 (Ũ⊤C̃2,1)

†)† = (M1P̃
⊤M2ADΩ−1)†,

we propose to estimate Bl’s by the following:

arg min
{Bl}

1

2
‖C̃3,1,2({Bl}) − Ĉ3,1,2‖

2
G⊗G⊗G+ (30)

u

2

(
‖C̃3,·,2({Bl}) − C̃2,1‖

2
G⊗G + ‖C̃·,1,2({Bl})

⊤ − C̃2,1‖
2
G⊗G

)
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Figure 1. Discrete HMM model parameters

in which

C̃3,1,2({Bl}) :=
∑

i,j,l

(ŨBlṼ
⊤)ijZ

i
3 ⊗Zj

1 ⊗Z l
2, (31)

C̃3,·,2({Bl}) :=
∑

i,j,l

(ŨBlṼ
⊤)ijZ

i
3 ⊗ f⊤Zj

1 ⊗Z l
2, (32)

C̃·,1,2({Bl}) :=
∑

i,j,l

(ŨBlṼ
⊤)ijf

⊤Zi
3 ⊗Zj

1 ⊗Z l
2. (33)

Again, our estimation objective consists of a squared
error term on the observed tri-variance and two reg-
ularization terms on the deviation of the marginals
C̃3,·,2 and C̃⊤

·,1,2 from our estimated co-variance C̃2,1.
As shown in Appendix B, we use kernel tricks to re-
write the objective function (30) in terms of finite-
dimensional quantities. Moreover, by re-defining the
notation B to be a k2-by-m matrix whose l-th column
denotes the column concatenation of the k-by-k ma-
trix Bl, we obtain the following succinct form of (30)
(dropping constants):

min
B

1

2
Tr(B⊤CBM2) − Tr(J⊤B) (34)

with an analytical solution C−1JM−1
2 , where C and

J are defined3 in Appendix B.

4. Experiments

We compare our proposed methods with the original
spectral algorithms (Section 2) that only use dynamic
data. In the case of discrete observations we conduct a
simulation study, and we apply the algorithms for con-
tinuous observations to an activity monitoring dataset.

4.1. Simulation

We create a discrete HMM with 20 states and 100
observation symbols. The state transition probabil-
ity matrix is of rank nearly 7. The heatmaps of the

3When the kernel is positive definite, it is easy to verify
that both C and M2 are invertible.

Figure 2. Median testing log-likelihood. The y-axis lower
limit is set to -6 for better visualization; the red dashed
line actually takes values as small as -17.

state transition probability and the state-conditioned
observation probability matrices are in Figures 1(a)
and 1(b). From this HMM we generate 50 datasets,
each containing a training sequence of length 1000
initialized from the stationary distribution as the dy-
namic data, a set of 10000 observations independently
drawn from the stationary distribution as the static
data, and a testing sequence of length 1000, also ini-
tialized from the stationary distribution. We set the
dimension k = 7, and for the proposed estimate set
u = 100 and λ = 15. We then perform filtering and
prediction along the testing sequence. To give bounds
on the prediction performance, we also give prediction
results by the true observable representation and the
stationary distribution.

Figure 2 shows the median testing log-likelihood over
50 experiments at each testing time point. The pro-
posed estimator outperforms the dynamic-only esti-
mator at most time points. For each pair among the
four predictions, we performed paired t-tests of their
testing likelihoods at all time points, and counted the
number of time points at which one prediction outper-
forms the other statistically significantly. The results
are in Table 1. The proposed estimator predicts bet-
ter than the dynamic-only estimator at all time points
and the stationary distribution at many time points,
but these two other methods never predict significantly
better than the proposed method. It is surprising that
the dynamic-only estimator performs even worse than
the stationary distribution. As pointed out by Siddiqi
et al. (2010), the filtering and prediction steps (6) do
not guarantee non-negativity of the probability esti-
mates, especially when, as in the current experiment,
there is few dynamic data. Indeed, we observe quite a
few negative values in the dynamic-only estimates and
replace them with 10−12. This is an indication of un-
reliable estimates leading to poor prediction. On the
contrary, the proposed estimates almost always take
non-negative values.
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Table 1. Paired t tests results. Each cell shows the number
of testing time points at which the row method outperforms
the column method statistically significantly. The total
number of testing time points is 999.

true proposed dynamic stationary
true 827 999 975

proposed 0 999 470
dynamic 0 0 0

stationary 0 0 999

4.2. IMU Measurements of Human Activities

The PAMAP2 physical activity monitoring dataset
(Reiss & Stricker, 2012) contains recordings of 18 dif-
ferent physical activities performed by 9 subjects wear-
ing 3 inertial measurement units (IMUs) and a heart-
rate monitor. Each subject follows a protocol to per-
form a sequence of activities with breaks in between.
For our experiment we use data collected from subject
101 while walking and running. We focus our experi-
ment on recordings from the three IMUs, and for each
IMU only use the 3D-acceleration data (ms−2) with
scale ±16g, as recommended by the authors, and the
3D-gyroscope data (rad/s), resulting in an observation
space of 6 × 3 = 18 dimensions. Subject 101 performs
walking and running for approximately 3.5 minutes
each, and we discard the first and the last 10 seconds
of data to remove transitioning between activities. To
make the experiment more interesting, we break the
IMU recordings into short segments of 10 seconds each
and interleave the walking segments with the running
ones to generate a sequence of alternating activities.
The IMUs operate at a sampling frequency of 100Hz,
so each segment has 1000 data points and the entire
sequence has 39265 data points. We normalize each of
the 18 dimensions to be zero-mean and standard devi-
ation 1. Figure 3 shows one of the dimensions from the
first 2000 data points, revealing significant differences
between walking and running.

We take the last 4256 data points as the testing se-
quence, and generate 10 training datasets as follows.
We randomly sample n triples of consecutive observa-
tions from the first 35000 data points as the dynamic
data, and another non-overlapping set of m + mS sin-
gle observations as the static data, in which m points
are used to form Z and the rest mS points consti-
tute S in the proposed algorithm. The values of n,m,
and mS are: n ∈ {25, 50, 100, 200}, m ∈ {500, 1000},
and mS = 4000. We use the Gaussian RBF kernel
κ(x,x′) := exp(‖x − x′‖2/σ2), and set σ2 to be half
of the median squared pairwise distances of the dy-
namic data. The dimension k, i.e., the number of top
left singular vectors, is set to 20 for n = 25 and 50
for the rest. The proposed algorithm has three reg-

Figure 3. First-axis acceleration from the wrist IMU

ularization parameters: uP and λ in (19) and uB

in (34). We determine these parameters by mini-
mizing 5-fold4 cross validation error on the dynamic
data over a cube of values (log2 uP , log2 λ, log2 uB) ∈
{−8,−6, . . . , 6} × {−9,−7, . . . , 1} × {−5,−3, . . . , 9}.

After learning the model parameters, we perform fil-
tering and prediction along the testing sequence. As
mentioned in Section 2, the Hilbert space embedding
of the predictive distribution takes the form of a non-
parametric density estimator thanks to the Gaussian
RBF kernel, and we predict the next observation by
selecting from S, the mS static data points, the one
with the highest predictive density. For each predicted
observation we compute the squared error against the
true observation, and for each predicted sequence we
take the median and the mean of the squared predic-
tion errors as sequence-wise performance indicators.
Figure 4(a) gives the boxplot of the 10 median pre-
diction errors, showing that the proposed method of
incorporating static data improves on the prediction
performance more significantly when the dynamic data
size n is small. Figure 4(b) gives the boxplot of the 10
means, demonstrating a similar trend of improvement
except when n = 50. Looking more into that result,
we find that it is the running part of the testing se-
quence the proposed method fails to predict better,
possibly due to the more extreme values and changes
in its IMU readings, as shown in Figure 3.

5. Conclusions

We propose spectral learning algorithms for HMMs
that incorporate static data as regularization. Exper-
iments on synthetic and real human activities data
demonstrate a clear advantage of using static data
when dynamic data is limited. Theoretical guarantees
for our methods are still unclear and worth further in-
vestigation. Also interesting is applying the proposed
methods to dynamic modeling tasks where dynamic
data is much more difficult to obtain than static data.

4We only split the dynamic data but not the static data.
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(a) Boxplots of median prediction errors (b) Boxplots of mean prediction errors

Figure 4. Prediction performance on the IMU data. The black-dashed line is obtained by using n = 5000 dynamic data
points, serving as a performance limit.

A. Derivation of (20)

Using properties of the matrix trace and the kernel
trick, we immediately have

1

2
‖Z2PZ⊤

1 − Ĉ2,1‖
2
G⊗G ∝

1

2
Tr(P⊤M2PM1) − Tr(P⊤F ),

u

2

(
‖Z2P1 −

S1

mS
‖2
G + ‖Z1P

⊤1 −
S1

mS
‖2
G

)

∝
u

2
1⊤(P⊤M2P + PM1P

⊤)1 − u1⊤(P⊤µ2 + Pµ1).

Let λi(·) denotes the i-th Eigenvalue of a matrix. We
then rewrite the nuclear norm term:

τ‖Z2PZ⊤
1 ‖∗ = τ

∑

i

√
λi

(
Z2PL⊤

1 L1P⊤Z⊤
2

)

= τ
∑

i

√
λi

(
L⊤

1 P⊤L2L⊤
2 PL1

)
= τ‖L⊤

2 PL1‖∗,

B. Derivation of (34)

We begin by defining some notations:

H := Ũ⊤M3Ũ , R := Ṽ ⊤M1Ṽ , u := Ũ⊤1, v := Ṽ ⊤1,

F1 := Φ⊤
1 Z1Ṽ , F2 :=

Φ⊤
2 Z2

n
, F3 := Φ⊤

3 Z3Ũ .

Let vec(X) be the vector resulting from column con-
catenation of a matrix X, diag(x) be the diagonal ma-
trix with the vector x being its main diagonal. Super-
scripts denote column indices. Using properties of the
matrix trace and the kernel trick, we re-write the three
terms in (34) as follows. For the first term we have

‖C̃3,1,2({Bl}) − Ĉ3,1,2‖
2
G⊗G⊗G

∝
∑

d

Tr
(∑

l,l′

(Z l
2)d(Z

l′

2 )dṼ B⊤
l Ũ⊤M3ŨBl′ Ṽ

⊤M1

)
−

2
∑

d

Tr
( ∑

l

Ṽ B⊤
l Ũ⊤(Z l

2)dZ
⊤
3 Φ3

diag((Φ2)d·)

n
Φ⊤

1 Z1

)

=Tr
(∑

ll′

(M2)ll′B
⊤
l HBl′R − 2

∑

l

B⊤
l F⊤

3 diag(F l
2)F1

)
,

and then for the second term

‖C̃3,·,2({Bl}) − C̃2,1‖
2
G⊗G ∝

Tr
([

B1v · · · Bmv
]⊤

H
[
B1v · · · Bmv

]
M2

)
−

2Tr
([

B1v · · · Bmv
]⊤

Ũ⊤M32P̃M12

)
=

Tr
( ∑

il

(M2)ilB
⊤
i HBlvv⊤ − 2

∑

i

B⊤
i Ũ⊤M32P̃M i

12v
⊤

)
,

and finally for the third term

‖C̃·,1,2({Bl})
⊤ − C̃2,1‖

2
G⊗G ∝

Tr
([

B⊤
1 u · · · B⊤

mu
]
M2

[
B⊤

1 u · · · B⊤
mu

]⊤
R

)
−

2Tr
([

B⊤
1 u · · · B⊤

mu
]
M2P̃M1Ṽ

)
=

Tr
( ∑

ij

(M2)ijB
⊤
i uu⊤BjR − 2

∑

i

B⊤
i u(M i

2)
⊤P̃M1Ṽ

)
.

To further simplify these expressions, we re-define the
notation B to be a k2-by-m matrix whose l-th column
Bl denotes column concatenation of the k-by-k matrix
Bl in the above expressions. With the new notation
and the identity:

vec(XY Z) = (Z⊤ ◦ X)vec(Y ) (35)

where ◦ denotes the Kronecker product, we obtain the
succinct form (34) in which

C := R ◦ H + u((vv⊤) ◦ H + R ◦ (uu⊤)),

J := (F1 ◦ F3)
⊤

[
vec(diag(F 1

2 )) · · · vec(diag(Fm
2 ))

]

+ u
((

v ◦ (Ũ⊤M32P̃ )
)
M12 +

(
(Ṽ ⊤M1P̃

⊤) ◦ u
)
M2

)
.
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