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Abstract

Existing dictionary learning algorithms are
based on the assumption that the data are
vectors in an Euclidean vector space Rd,
and the dictionary is learned from the train-
ing data using the vector space structure of
Rd and its Euclidean L2-metric. However,
in many applications, features and data of-
ten originated from a Riemannian manifold
that does not support a global linear (vector
space) structure. Furthermore, the extrin-
sic viewpoint of existing dictionary learning
algorithms becomes inappropriate for model-
ing and incorporating the intrinsic geometry
of the manifold that is potentially important
and critical to the application. This paper
proposes a novel framework for sparse cod-
ing and dictionary learning for data on a Rie-
mannian manifold, and it shows that the ex-
isting sparse coding and dictionary learning
methods can be considered as special (Eu-
clidean) cases of the more general framework
proposed here. We show that both the dic-
tionary and sparse coding can be effectively
computed for several important classes of
Riemannian manifolds, and we validate the
proposed method using two well-known clas-
sification problems in computer vision and
medical imaging analysis.

1. Introduction

Dictionary learning has been widely used in machine
learning applications such as classification, recogni-
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tion, image restoration and others (e.g., (Aharon et al.,
2006)). Under this model, each data point is as-
sumed to be generated linearly using only a small
number of atoms, and this assumption of linear spar-
sity is responsible for much of its generalization power
and success. The underlying linear process requires
that the data points as well as the atoms are vectors
in a vector space Rd, and the dictionary is learned
from the input data using the vector space structure
of Rd and its metric (typically the L2-norm). How-
ever, for many applications such as those in direc-
tional statistics (e.g., (Mardia & Jupp, 1999)), ma-
chine learning (e.g., (Yu & Zhang, 2010)), computer
vision (e.g., (Turaga et al., 2008)), and medical im-
age analysis, data and features are often presented as
points on known Riemannian manifolds, e.g., the space
of symmetric positive-definite matrices (Fletcher &
Joshi, 2007), hyperspheres for parameterizing square-
root densities (Srivastava et al., 2007), Stiefel and
Grassmann manifolds (Mardia & Jupp, 1999), etc..
While these manifolds are equipped with metrics, their
lack of vector space structures is a significant hin-
drance for dictionary learning, and primarily because
of this, it is unlikely that the existing dictionary learn-
ing methods can be extended to manifold-valued data
without serious modifications and injections of new
ideas. This paper takes a small step in this direction
by proposing a principled extension of the linear sparse
dictionary learning in Euclidean space Rd to general
Riemannian manifolds.

By the Nash embedding theorem (Nash, 1956), any
abstractly-defined Riemannian (data) manifoldM can
be isometrically embedded in some Euclidean space
Rd, i.e., M can be considered as a Riemannian sub-
manifold of Rd. It is tempting to circumvent the lack
of linear structure by treating points inM as points in
the embedding space Rd and learning the dictionary in
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Rd. Unfortunately, this immediately raises two thorny
issues regarding the suitability of this approach. First,
for most manifolds, such as Grassmann and Stiefel
manifolds, there simply does not exist known canoni-
cal embedding into Rd (or such embedding is difficult
to compute), and although Nash’s theorem guarantees
the existence of such embedding, its non-uniqueness is
a difficult issue to resolve as different embeddeings are
expected to produce different results. Second, even in
the case when the existing methods can be applied, due
to their extrinsic nature (both the vector space struc-
ture and metric structure in Rd are extrinsic to M),
important intrinsic properties of the data manifold are
still very difficult to capture using an extrinsic dictio-
nary. For example, a linear combination of atoms in Rd
does not in general define a proper feature (a point in
M), and the inadequacy can be further illustrated by
another simple example: it is possible that two points
x, y ∈ M have a large geodesic distance separating
them but under an embedding i :M→ Rd, i(x), i(y)
are near each other in Rd. Therefore, sparse coding us-
ing dictionary learned in Rd is likely to code i(x), i(y)
(and hence x, y) using the same set of atoms with sim-
ilar coefficients. This is undesirable for classification
and clustering applications that use sparse coding co-
efficients as discriminative features, and for dictionary
learning to be useful for manifold-valued data, sparse
coding must reflect some degree of similarity between
the two samples x, y ∈M as measured by the intrinsic
metric of M.

While the motivation for seeking an extension of the
existing dictionary learning framework to the more
general nonlinear (manifold) setting has been outlined
above, it is by no means obvious how the extension
should be correctly formulated. Let x1, · · · , xn denote
a collection of data points on a Riemannian manifold
M. An important goal of dictionary learning onM is
to compute a collection of atoms {a1, · · · , am} ⊂ M,
also points inM, such that each data point xi can be
generated using only a small number of atoms (spar-
sity). In the Euclidean setting, this is usually formu-
lated as

min
D,w1,··· ,wn

n∑
i=1

‖xi −Dwi‖2 + Sp(wi), (1)

where D is the matrix with columns composed of the
atoms ai, wi the sparse coding coefficients for xi and
Sp(w) the sparsity-promoting regularizer. One im-
mediate technical hurdle that any satisfactory gener-
alization must overcome is the generalization of the
corresponding sparse coding problem (with a fixed
D above), and in particular, the crucial point is the
proper generalization of linear combination xi = Dwi

for data and atoms belonging to the manifoldM that
does not support a (global) vector space structure.

Once the nonlinear sparse coding has been properly
generalized (Section 3), the dictionary learning algo-
rithm can then be formulated by formally modifying
each summand in Equation 1 so that the sparse coding
of a data xi with respect to the atoms {a1, · · · , am} ⊂
M is now obtained by minimizing (log denoting the
Riemannian logarithm map (do Carmo, 1992))

min
wi

‖
m∑
j=1

wij logxi
aj‖2xi

+ Sp(wi), (2)

with the important affine constraint that
∑m
j=1 wij =

1, where wi = (wi1, . . . , wim)T . Mathematically, the
lack of global vector space structure onM is partially
compensated by the local tangent space TxM at each
point x, and global information can be extracted from
these local tangent spaces using Riemannian geometry
operations such as covariant derivatives, exponential
and logarithm maps. We remark that this formula-
tion is completely coordinate-independent since each
logxi

aj is coordinate-independent, and Equation 2 is
a direct generalization of its Euclidean counterpart this
is the individual summand in Equation 1. Computa-
tionally, the resulting optimization problem given by
Equation 2 can be effectively minimized. In partic-
ular, the gradient of the objective function in some
cases admits a closed-form formula, and in general, it
can be evaluated numerically to provide the input for
gradient-based optimization algorithms on manifolds,
e.g., (Edelman et al., 1998).

Before moving onto the next section, we remark that
our context is very different from the context of man-
ifold learning that is perhaps better known in the ma-
chine learning community. For the latter, the manifold
M on which the data reside is not known and the focus
is on estimating this unknown M and characterizing
its geometry. For us, however, M and its geometry
(Riemannian metric) are known, and the goal is not
to estimateM from the data but to compute a dictio-
nary as a finite subset of points in M.

2. Preliminaries

This section presents a brief review of the necessary
background material from Riemannian geometry that
are needed in the later sections and we refer to (Spi-
vak, 1979) for more details. A manifold M of dimen-
sion d is a topological space that is locally homeo-
morphic to open subsets of the Euclidean space Rd.
With a globally defined differential structure, mani-
fold M becomes a differentiable manifold. The tan-
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gent space at x ∈ M, denoted by TxM, is a vector
space that contains all the tangent vectors to M at
x. A Riemannian metric on M associates to each
point x ∈ M an inner product 〈·, ·〉x in the tangent
space TxM. Let xi, xj be two points on the mani-
fold M. A geodesic γ : [0, 1] →M is a smooth curve
with vanishing covariant derivative of its tangent vec-
tor field, and in particular, the Riemannian distance
between two points xi, xj ∈ M, dist2M(xi, xj), is the
infimum of the lengths of all geodesics joining xi, xj .
Let v ∈ TxM be a tangent vector at x. There exists
a unique geodesic γv satisfying γv(0) = x with ini-
tial tangent vector v, and the Riemannian exponential
map (based at x) is defined as expx(v) = γv(1). The
inverse of the exponential map expx is the log map,
denoted as logx : M → TxM. We remark that in
general the domain of expx is not the entire tangent
space TxM and similarly, logx is not defined on all of
M. However, for technical reasons, we will assume in
the following sections that M is a complete Rieman-
nian manifold (Spivak, 1979) such that logx is defined
everywhere in M for all x ∈ M, and the subtle tech-
nical point when exp, log are not defined everywhere
will be addressed in a future work. Under this as-
sumption, there are two important consequences: 1)
the geodesic distance between xi and xj can be com-
puted by the formula distM(xi, xj) = ‖ logxi

(xj)‖xi
,

and 2) the squared distance function dist2M(x,−) is a
smooth function for all x ∈M.

3. Nonlinear Sparse Coding

In linear sparse coding, a collection of m atoms
a1, · · · , am, are given that form the columns of the
(overcomplete) dictionary matrix D. The sparse cod-
ing of a feature vector x ∈ Rd is determined by the
following l0-minimization problem:

min
w∈Rm

‖w‖0, s.t. x = FD(w), (3)

where the function FD : Rm → Rd is defined as
FD(w) = Dw. In the proposed nonlinear generaliza-
tion of sparse coding to a Riemannian manifold M,
the main technical difficulty is the proper interpreta-
tion of the function FD(w) : Rm →M in the manifold
setting, where the atoms a1, · · · , am are now points in
M and D now denotes the set of atoms since it is no
longer possible to stack together the atoms to form a
matrix as in the linear case.

Moving to the more general manifold setting, we have
forsaken the vector space structure in Rd, and at the
same time, we are required to work only with notions
that are coordinate independent (do Carmo, 1992).
This latter point is related to the fact that onM there

does not have a special point such as the origin (zero
vector) in Rd, and the subtlety of this point seems to
have been under-appreciated. In particular, the notion
of sparsity that we are accustomed to is very much de-
pendent on the choice (location) of the origin.

Sparsity, Coordinate Invariance and Affine
Constraint To illustrate the above point, let x ∈ Rd
be a sparse vector (according to D) such that x =
a1 + a2 + a3, i.e., x can be reconstructed using only
three atoms in D. Changing the coordinates by trans-
lating the origin to a new vector t, each atom ai be-
comes ai− t, and similarly for x, we have x− t. Under
this new coordinates with a different origin, x− t can
no longer be reconstructed using the three (translated)
atoms a1− t, a2− t, a3− t, and most likely, in this new
coordinates, the same point cannot be reconstructed
by a small number of atoms, i.e., it is not a sparse
vector with respect to the dictionary D. This is not
surprising because linear sparse coding considers each
point in Rd as a vector whose specification requires
a reference point (the origin). However, in nonlinear
setting, each point cannot be considered as a vector
and therefore, must be considered as a point, and this
particular viewpoint is the main source of differences
between linear and nonlinear sparse coding.

Fortunately, we can modify the usual notion spar-
sity using affine constraint to yield a coordinate-
independent notion of sparsity: a vector is a (affine)
sparse vector if it can be written as an affine linear
combination of a small number of vectors:

x = w1a1 + w2a1 + ...+ wsas, w1 + ...+ ws = 1.

It is immediately clear that that the notion of affine
sparsity is a coordinate-independent notion as the lo-
cation of the origin is immaterial (thanks to the affine
constraint), and it is this notion of affine sparsity that
will be generalized. We note that the affine constraint
was also used in (Yu et al., 2009; Yu & Zhang, 2010) for
a related but different reason. We also remark that the
usual exact recovery results (e.g., (Elad, 2010)) that es-
tablish the equivalence between the l0-problem above
and its l1-relaxation remain valid for affine sparsity
since the extra constraint introduced here is convex.

Re-interpreting FD It is natural to require that
our proposed definition for FD on a manifoldM must
reduce to the usual linear combination of atoms ifM =
Rd. Furthermore, it is also necessary to require that
FD(w) ∈ M and it is well-defined and computable
with certain intrinsic properties ofM playing a crucial
role. An immediate candidate would be

FD(w) = argminx∈MΨD,w(x), (4)
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where ΨD,w(x) is the function of weighted sum of
squared distances to the atoms:

ΨD,w(x) =

m∑
i=1

wi dist2M(x, ai).

While this definition uses the Riemannian geodesic dis-
tances, the intrinsic quantities that the learning algo-
rithm is supposed to incorporate, it suffers from two
main shortcomings. First, since there is no guarantees
that the global minimum of ΨD,w must be unique,
FD(w) is no longer single-valued but a multi-valued
function in general. Second, much more importantly,
FD(w) may not exist at all for some w (e.g., when it
contains both positive and negative weights wi). How-
ever, if we are willing to accept a multi-valued gener-
alization FD(w), then the second shortcoming can be
significantly remedied by defining

FD(w) = CP(ΨD,w(x)), (5)

where CP(ΨD,w(x)) denotes the set of critical points
of ΨD,w(x), points y ∈ M with vanishing gradient:
∇ΨD,w(y) = 0.

We remark that under the affine constraint w1 + · · ·+
wm = 1, not all wi can be zero simultaneously; there-
fore, ΨD,w(x) cannot be a constant (zero) function,
i.e., ΨD,w(x) 6= M. Since a global minimum of a
smooth function must also be its critical point, this
implies that the existence of critical points is less of
a problem than the existence of a global minimum.
This can be illustrated using the simplest nontrivial
Riemannian manifold of positive reals M = R+ con-
sidered as the space of 1× 1 positive-definite matrices
equipped with its Fisher Information metric (see next
section): for x, y ∈M,

dist2M(x, y) = log2(
x

y
).

For any two atoms a1, a2 ∈M, the function

ΨD,w(x) = w1 dist2M(x, a1) + w2 dist2M(x, a2)

does not have a global minimum if w1w2 < 0. How-
ever, it has one unique critical point aw1

1 aw2
2 ∈ M.

In particular, for any number of atoms a1, ..., am and
w ∈ Rm satisfying the affine constraint, ΨD,w(x) has
one unique critical point

FD(w) = aw1
1 · · · awm

m .

Furthermore, we have

Proposition 1 If M = Rd, then FD(w) is single-
valued for all w such that w1 + · · ·+ wm = 1 and

FD(w) = w1a1 + · · ·+ wmam.

The proof is straightforward since the unique critical
point y is defined by the condition ∇ΨD,w(y) = 0 and
ΨD,w(y) = w1‖y− a1‖2 + · · ·+wm‖y− am‖2. Thanks
to the affine constraint, we have

y = w1a1 + · · ·+ wmam,

and FD(w) = y.

While the acceptance of multi-valued FD(w) may be
a source of discomfort or even annoyance at first, we
list the following five important points that strongly
suggest the correctness of our generalization:

1. FD(w) = y incorporates the geometry of M in
the form of geodesic distances to the atoms, and
in particular, for two nearby points x, y ∈ M,
their sparse codings are expected in general to be
similar.

2. The generalization reduces to the correct form for
Rd.

3. FD(w) is effectively computable because any crit-
ical point of a smooth function (e.g., ΨD,w) can
be reached via gradient decent or ascent with ap-
propriate initial point.

4. The above point also shows the viability of us-
ing FD(w) as an approximation to a data x. Es-
sentially, the approximation looks for the critical
point of ΨD,w that is near x, and such critical
point, if exists, can be obtained by gradient de-
scent or ascent from x.

5. While FD(w) is multi-valued, it is continuous in
the following sense: let t1, t2, ... ∈ Rm be a se-
quence such that tn → tRm and y1, y2, ... ∈ M
such that yi ∈ FD(ti) for each i and yn → y ∈M
as n → ∞. Then, y ∈ FD(t). This follows from
interpreting the gradient∇ΨD,ti as a smooth fam-
ily of vector fields on M and yi are the zeros of
these vector fields.

We believe that in generalizing sparse coding to Rie-
mannina manifolds, it is not possible to preserve every
desirable property enjoyed by the sparse coding in the
Euclidean space. In particular, in exchange for the
multi-valued FD(w), we have retained enough useful
features and properties that will permit us to pursuit
dictionary learning on Riemannian manifolds.

4. Dictionary Learning on Riemannian
Manifolds

In this section, we present a dictionary learning al-
gorithm based on the nonlinear sparse coding frame-
work described above. Given a collection of features
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x1, . . . , xn ∈ Rd, existing dictionary learning meth-
ods such as (Olshausen & Field, 1997; Lewicki & Se-
jnowski, 2000; Aharon et al., 2006) compute a dictio-
nary D ∈ Rd×m with m atoms such that each feature
xi can be represented as a sparse linear combination
of these atoms xi ≈ Dwi, where wi ∈ Rm. Using l1
regularization on wi, the learning problem can be suc-
cinctly formulated as an optimization problem (Mairal
et al., 2010; Yang et al., 2009):

min
D,wi

n∑
i=1

(
‖xi −Dwi‖22 + λ‖wi‖1

)
, (6)

where λ is a regularization parameter. There are
several notable recent extensions of this well-known
formula, and they include online dictionary learning
(Mairal et al., 2010) and dictionary learning using dif-
ferent regularization schemes such as group-structured
sparsity (Szabo et al., 2011; Huang et al., 2011) and
local-coordinate constraints (Wang et al., 2010). For
our nonlinear generalization, the main point is to make
sense of the data fidelity term ‖xi−Dwi‖22 in the man-
ifold setting. Formally, this is not difficult because,
using previous notations, the data fidelity term can be
defined analogously using

distM(xi,FD(w))2.

We remark that FD(wi) is a multi-valued function and
the above equation should be interpreted as finding an
point x̂i ∈ FD(wi) such that distM(xi, x̂i)

2 is small,
i.e., x̂i is a good approximation of xi. However, the dis-
tance distM(xi, x̂i) is generally difficult to compute,
and to circumvent this difficulty, we propose a heuris-
tic argument for approximating this distance using a
readily computable function. The main idea is to note
that x̂i a critical point of the function ΨD,wi(x) and
the equation ∇ΨD,wi

(x̂i) = 0 implies that

m∑
j=1

wij logx̂i
(aj) = 0

since the LHS is precisely the gradient
∇ΨD,wi

(x̂i) (Spivak, 1979). Therefore, if xi is a point
near x̂i, the tangent vector (at xi)

∑m
j=1 wij logxi

(aj)
should be close to zero. In particular, this immediately
suggests1 using

‖
m∑
j=1

wij logxi
(aj)‖2xi

as a substitute for the distance distM(xi, x̂i)
2.

1The validity of this approximation and the heuristic
argument will be examined more closely in a future work.

This heuristic argument readily leads to the following
optimization problem for dictionary learning on M:

min
W,D

n∑
i=1

‖
m∑
j=1

wij logxi
(aj)‖2xi

+ λ‖W‖1

s.t.

m∑
j=1

wij = 1, i = 1, . . . , n,

(7)

where W ∈ Rn×m and wij denotes its (i, j) compo-
nent. Similar to Euclidean dictionary learning, the
optimization problem can be solved using an iterative
algorithm that iteratively performs

1. Sparse Coding: fix the dictionary D and opti-
mize the sparse coefficients W.

2. Codebook Optimization: fix the sparse coeffi-
cients W and optimize the dictionary D.

The first step is the regular sparse coding problem, and
because the optimization domain is in Rn×m, many
fast algorithms are available. The codebook optimiza-
tion step is considerably more challenging for two rea-
sons. First, the optimization domain is no longer Eu-
clidean but the manifoldM. Second, for a typical Rie-
mannian manifold M, its Riemannian logarithm map
is very difficult to compute. Nevertheless, there are
also many Riemannian manifolds that have been ex-
tensively studied by differential geometers with known
formulas for their exp/log maps, and these results sub-
stantially simplify the computational details. The fol-
lowing two subsection will present two such examples.
For optimization on the manifold M, we use a line
search-based algorithm to update the dictionary D,
and the main idea is to determine a descent direction
v (as a tangent vector at a point x ∈M) and perform
the search on a geodesic in the direction v. The for-
mal similarity between Euclidean and Riemannian line
search is straightforward and tansparent, and the main
complication in the Riemannian setting is the compu-
tation of geodesics. We refer to (Absil et al., 2008) for
more algorithm details and convergence analysis.

4.1. Symmetric Positive-Definite Matrices

Let P (d) denote the space of d×d symmetric positive-
definite (SPD) matrices. The tangent space TXP (d)
at every point X ∈ P (d) can be naturally identified
with Sym(d), the space of d × d symmetric matrices.
The general linear group GL(d) acts transitively on
P (d) : X −→ GXGT , where X ∈ P (d) and G ∈ GL(d)
is a d × d invertible matrix. Let Y,Z ∈ TMP (d) be
two tangent vectors at M ∈ P (d), and define an inner-
product in TMP (d) using the formula

〈Y,Z〉M = tr(YM−1ZM−1), (8)
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where tr is the matrix trace. This above formula de-
fines a Riemannian metric on P (d) that is invariant un-
der the GL(d)-action (Pennec et al., 2006; Fletcher &
Joshi, 2007), and the corresponding geometry on P (d)
has been studied extensively by differential geometers
(see (Helgason, 2001) and (Terras, 1985)), and in
information geometry, this is the Fisher Information
metric for P (d) considered as the domain for parame-
terizing zero-mean normal distributions on Rd (Amari
& Nagaoka, 2007). In particular, the formulas for com-
puting geodesics, Riemannian exponential and log-
arithm maps are well-known: The geodesic passing
through M ∈ P (d) in the direction of Y ∈ TMP (d)
is given by the formula

γ(t) = GExp
(
G−1Y G−T t

)
GT , t ∈ R, (9)

where Exp denotes the matrix exponential and G ∈
GL(d) is a square root of M such that M = GGT .
Consequently, the Riemannian exponential map at M
which maps Y ∈ TMP (d) to a point in P (d) is given
by the formula

expM (Y ) = GExp
(
G−1Y G−T

)
GT ,

and given two positive-definite matrices X,M ∈ P (d),
the Riemannian logarithmic map logM : P (d) →
TMP (d) is given by

LogM (X) = GLog(G−1XG−T )GT ,

where Log denotes the matrix logarithm. Finally, the
geodesic distance between M and X is given by the
formula

dist(M,X) = ‖ logM (X)‖ =

√
tr(Log2(G−1XG−T )).

The above formulas are useful for specializing Equa-
tion 7 to P (d): let X1, . . . , Xn ∈ P (d) denote a collec-
tion of d × d SPD matrices, and A1, . . . , Am ∈ P (d)
the m atoms in the dictionary D. We have

m∑
j=1

wij logXi
(Aj) =

m∑
j=1

wij Gi Log(G−1i AjG
−T
i )GTi ,

where Gi ∈ GL(d) such that GiG
T
i = Xi. With l1

regularization, dictionary learning using Equation 7
now takes the following precise form for P (d):

min
W,D

n∑
i=1

m∑
j=1

m∑
k=1

wijwiktr(LijLik) + λ‖W‖1

s.t.

m∑
j=1

wij = 1, i = 1, . . . , n,

where Lij = log(G−1i AjG
−T
i ). The resulting optimiza-

tion problem can be solved using the method outlined
previously.

4.2. Spheres and Square-Root Density
Functions

We next study dictionary learning on spheres, the most
well-known class of closed manifolds. In the context of
machine learning and vision applications, spheres can
be used to parameterize the square roots of density
functions. More specifically, for a probability density
function p and its (continuous) square root ψ =

√
p,

we have ∫
S

ψ2ds = 1.

By expanding ψ using orthonormal basis functions
(e.g., spherical harmonics if S is a sphere), the above
equation allows us to identify ψ as a point on the unit
sphere in a Hilbert space (see e.g., (Srivastava et al.,
2007)). In other words, for a collection of density func-
tions, we can consider them as a collection of points
in some high-dimensional sphere, a finite-dimensional
sphere spanned by these points in the unit Hilbertian
sphere. Under this identification, the classical Fisher-
Rao metric (Rao, 1945) for the density functions p cor-
responds exactly to the canonical metric on the sphere,
and the differential geometry of the sphere is straight-
forward: Given two points ψi, ψj on a d-dimensional
unit sphere Sd, the geodesic distance is just the angle
between ψi and ψj considered as vectors in Rd+1

dist(ψi, ψj) = cos−1(〈ψi, ψj〉). (10)

The geodesic started at ψi in the direction v ∈ Tψi
(Sd)

is given by the formula

γ(t) = cos(t)ψi + sin(t)
v

|v|
, (11)

and the exponential and logarithm maps are given by
the formulas:

expψi
(v) = cos(|v|)ψi + sin(|v|) v

|v|
,

logψi
(ψj) = u cos−1(〈ψi, ψj〉)/

√
〈u, u〉,

where u = ψj − 〈ψi, ψj〉ψi. We remark that in order
to ensure that the exponential map is well-defined, we
require that |v| ∈ [0, π), and similarly, the log map
logψi

(x) is defined on the sphere minus the antipodal
point of ψi (x 6= −ψi).

Using these formulas, we can proceed as before to spe-
cialize Equation 7 to the sphere Sd: Let x1, . . . , xn de-
note a collection of square-root density functions con-
sidered as points in a high-dimensional sphere Sd, and
ai, . . . , am ∈ Sd the atoms in the dictionary D. W is
an n×m matrix. Using l1 regularization, Equation 7
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takes the following form for Sd:

min
W,D

n∑
i=1

‖
m∑
j=1

wij cos−1(〈xi, aj〉)
uij
|uij |
‖2xi

+ λ‖W‖1

s.t.

m∑
j=1

wij = 1, i = 1, . . . , n,

where uij = aj − 〈xi, aj〉xi. The resulting optimiza-
tion problem can be efficiently solved using the method
outlined earlier.

5. Experiments

This section presents the details of the two classifica-
tion experiments used in evaluating the proposed dic-
tionary learning and sparse coding algorithms. The
main idea of the experiments is to transform each
(manifold) data point xi into a feature vector wi ∈ Rm
using its sparse coefficients wi encoded with respect to
the trained dictionary. In practice, this approach offers
two immediate advantages. First, the sparse feature
wi is encoded with respect to a dictionary that is com-
puted using the geometry of M, and therefore, it is
expected to be more discriminative and hence useful
than the data themselves (Yang et al., 2009). Sec-
ond, using wi as the discriminative feature allows us
to train a classifier in the Euclidean space Rm, avoid-
ing the more difficult problem of training the classi-
fier directly on M. Specifically, let x1, . . . , xn ∈ M
denote the n training data. A dictionary (or code-
book) D = {a1, . . . , am} with m atoms is learned from
the training data using the proposed method, and for
each xi, we compute its sparse feature wi ∈ Rm us-
ing the learned dictionary D. For classification, we
train a linear Support Vector Machine (SVM) using
w1, ..., wn as the labelled features. During testing, a
test feature y ∈M is first sparse coded using D to ob-
tain its sparse feature w, and the classification result
is computed by applying the trained SVM classifier to
the sparse feature w. The experiments are performed
using two public available datasets: Brodatz texture
dataset and OASIS brain MRI dataset, and training
and testing data are allocated by a random binary par-
tition of the available data giving the same number of
training and testing data.

For comparison, we use the following three alternative
methods: 1) Geodesic K-nearest neighbor (GKNN),
2) SVM on vectorized data and 3) SVM on fea-
tures sparse coded using a dictionary trained by
KSVD (Aharon et al., 2006). GKNN is a K-nearest
neighbor classifier that uses Riemannian distance on
M for determining neighbors, and it is a straight-
forward method for solving classification problems on

Figure 1. Samples of Brodatz textures used in the first ex-
periment.

Table 1. The texture classification accuracy for different
methods on the Brodatz dataset.

Class SVM KSVD+SVM GKNN Proposed

16 93.36 94.92 95.70 99.02
32 88.67 90.82 91.11 95.70

manifolds. In the experiments, K is set to 5. For the
second method (SVM), we directly vectorize the man-
ifold data xi to form their Euclidean features (without
sparse coding) w̃i and an SVM is trained using these
Euclidean features. The third method (SVM+KSVD)
applies the popular KSVD method to train a dictio-
nary using the Euclidean features w̃i, and it uses a
linear SVM on the sparse features encoded used this
dictionary. All SVMs used in the experiments are
trained using the LIBSVM package (Chang & Lin,
2011). We remark that the first method (GKNN) uses
the distance metric intrinsic to the manifold M with-
out sparse feature transforms. The second and third
methods are extrinsic in nature and they completely
ignore the geometry of M.

5.1. Brodatz Texture Dataset

In this experiment, we evaluate the dictionary learn-
ing algorithm for SPD matrices using Brodatz texture
dataset (Brodatz, 1966). Using a similar experimen-
tal setup as in (Sivalingam et al., 2010), we construct
16-texture and 32-texture sets using the images from
Brodatz dataset. Some sample textures are shown in
Figure 1. Each 256× 256 texture image is partitioned
into 64 non-overlapping blocks of size 32 × 32. In-
side each block, we compute a 5 × 5 covariance ma-
trix FF> (Tuzel et al., 2006) summing over the block,

where F =
(
I,
∣∣ ∂I
∂x

∣∣ , ∣∣∣ ∂I∂y ∣∣∣ , ∣∣∣ ∂2I
∂x2

∣∣∣ , ∣∣∣ ∂2I
∂y2

∣∣∣)T . To ensure

that each covariance matrix is positive-definite, we use
FF> + σE, where σ is a small positive constant and
E is the identity matrix. For k-class problem, where
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Figure 2. From left to right, three sample images from the
OASIS dataset belonging to the Young, Middle-aged and
Old groups, respectively.

Table 2. The classification accuracy for different methods
on the OASIS dataset. There are three binary classifica-
tions (YM: Young vs Middle-aged, MO: Middled-aged vs
Old and YO: Young vs Old), and YMO is three-class clas-
sification (Young, Middle-aged and Old).

SVM KSVD+SVM GKNN Proposed

YM 90.04 91.29 91.84 98.34
MO 97.32 98.08 100 100
YO 98.12 99.46 100 100
YMO 91.97 94.04 93.18 98.62

k=16 or 32, the size of the dictionary D is set to 5k.
The texture classification results are reported in Ta-
ble 1. Our method outperforms the three compara-
tive methods. Among the three comparative methods,
sparse feature transform outperforms the one without
(KSVD+SVM vs SVM) and the intrinsic method has
advantage over extrinsic ones (GKNN vs. SVM and
KSVD+SVM). Not surprisingly, our method utilizing
both intrinsic geometry and sparse feature transform
outperforms all three comparative methods.

5.2. OASIS Dataset

In this experiment, we evaluate the dictionary learn-
ing algorithm for square-root densities using the OA-
SIS database (Marcus et al., 2007). OASIS dataset
contains T1-weighted MR brain images from a cross-
sectional population of 416 subjects. Each MRI scan
has a resolution of 176 × 208 × 176 voxels. The ages
of the subjects range from 18 to 96. We divide the
OASIS population into three (age) groups: young sub-
jects (40 or younger), middle-aged subjects (between
40 and 60) and old subjects (60 or older), and the
classification problem is to classify each MRI image
according to its age group. Sample images from the
three age groups are shown in Figure 2, and the subtle
differences in anatomical structure across different age
groups are apparent. The MR images in the OASIS
dataset are first aligned (with respect to a template)
using the nonrigid group-wise registration method de-

scribed in (Joshi et al., 2004). For each image, we
obtain a displacement field, and the histogram of the
displacement vectors is computed for each image as
the feature for classification (Chen et al., 2010). In
our experiment, the number of bins in each direction
is set to 4, and the resulting 64-dimensional histogram
is used as the feature vector for the SVM+KSVD and
SVM methods, while the square root of the histogram
is used in GKNN and our method. The dictionar-
ies (KSVD+SVM and our method) in this experi-
ment have 100 atoms. We use five-fold cross valida-
tion and report the classification results in Table 2.
The pattern among the three comparative methods in
the previous experiment is also observed in this ex-
periment, confirming the importance of intrinsic ge-
ometry and sparse feature transform. We note that
all four methods produce good results for the two bi-
nary classifications involving Old group, which can be
partially explained by the clinical observation that re-
gional brain volume and cortical thickness of adults are
relatively stable prior to reaching age 60 (Mortamet
et al., 2005). For the more challenging problem of clas-
sifying young and middle-aged subjects, our method
significantly outperforms the other three, demonstrat-
ing again the effectiveness of combining intrinsic geom-
etry and sparse feature transform for classifying man-
ifold data.

6. Summary and Conclusions

We have proposed a novel dictionary learning frame-
work for manifold-valued data. The proposed dic-
tionary learning is based on a novel approach to
sparse coding that uses the critical points of functions
constructed from the Riemannian distance function.
Compared with the existing (Euclidean) sparse cod-
ing, the loss of the global linear structure is compen-
sated by the local linear structures given by the tan-
gent spaces of the manifold. In particular, we have
shown that using this generalization, the nonlinear dic-
tionary learning for manifold-valued data shares many
formal similarities with its Euclidean counterpart, and
we have also shown that the latter can be considered
as a special case of the former. We have presented
two experimental results that validate the proposed
method, and the two classification experiments pro-
vide a strong support for the viewpoint advocated in
this paper that for manifold-valued data, their sparse
feature transforms should be formulated in the context
of an intrinsic approach that incorporates the geome-
try of the manifold.
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