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Abstract

Many real-world networks exhibit both tem-
poral evolution and multiscale structure. We
propose a model for temporally correlated
multifurcating hierarchies in complex net-
works which jointly capture both effects. We
use the Gibbs fragmentation tree as prior
over multifurcating trees and a change-point
model to account for the temporal evolution
of each vertex. We demonstrate that our
model is able to infer time-varying multiscale
structure in synthetic as well as three real
world time-evolving complex networks. Our
modeling of the temporal evolution of hier-
archies brings new insights into the changing
roles and position of entities and possibilities
for better understanding these dynamic com-
plex systems.

1. Introduction

Complex networks play a central role in the study of
many complex systems. Most networks in practically
all fields of research are dynamic. In biology tempo-
ral organizations arise in protein networks by mech-
anisms as diverse as their evolutionary history and
cell cycle dynamics (Pastor-Satorras et al., 2003), and
the functional connectivity of the brain changes dur-
ing maturation and fluctuate spontaneously in awake
rest (Dosenbach et al., 2010; Fox & Raichle, 2007).
In social networks ties between individuals play dif-
ferent roles over the course of time: People move,
change workplace as well as interests and these changes
in turn affect how we interact with each other (Dor-
eian, 1997), and global trends affect the fabric of so-
ciety at the macro-scale. While networks tradition-
ally have been modelled as static aggregated graphs,
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their temporal evolution carries important informa-
tion about the structure of the system that is missed
when considering only the time-aggregated network of
interactions (Holme & Saramäki, 2012; Perra et al.,
2012). Figure 1 illustrate some of the temporal effects
presently considered.
In this work we explore two modelling assumptions:

Networks are organized at multiple scales
Studies in network science suggest networks often ex-
hibit multi-scale organization (represented as hierar-
chies over vertices), in which vertices are divided into
groups which are further divided into subgroups. It
has been shown that multiscale organization of net-
works account well for various network statistics such
as scale-invariance, short paths lengths and a high
degree of clustering (Clauset et al., 2008; Fortunato,
2010; Ravasz & Barabási, 2003), and by modeling net-
works in terms of hierarchies it is possible to account
for the structures emerging at different scales (Her-
lau et al., 2012; Meunier et al., 2010; Ravasz et al.,
2002; Roy & Teh, 2009; Roy et al., 2007; Sales-Pardo
et al., 2007; Simon, 1962). Furthermore, cognitive sci-
ence has long suggested that semantic knowledge is
hierarchically organized, making it an attractive rep-
resentation from an unsupervised learning perspec-
tive (Collins & Quillian, 1969)

Networks are temporally organized The study
of dynamic networks has been at the forefront of sta-
tistical mechanics for more than a decade, focusing on
network models which can take network growth into
account. Common growth models have focussed on
popularity (Barabási, 1999) or on how node similar-
ity (McPherson et al., 2001; Watts et al., 2002) can
explain the emergence of particular scaling properties
ubiquitous in real networks (Dorogovtsev et al., 2000;
Redner, 1998). Recent research has pointed out tem-
poral evolution at two levels: The connectivity-level
at which vertices enter or leave the system (i.e. cap-
turing network growth), and at the interaction-level
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Figure 1. Four examples of temporal effect: Upheaval,network is reconfigured, Birth, where a new community emerges,
Flip-Flop where a few members jump between communities and Drift where vertices consistently drift between commu-
nities. For each is shown snapshots of the actual network for times t = 1, 3, 5, 7 (left), the true community structure
(top,right),average of inferred change point matrix 〈J〉 (middle,right) and the inferred temporal hierarchical structure
(bottom) where movement of vertices between time slices is indicated by gray lines. As can be seen from 〈J〉 THRM
recover each type of event (see section 4).

capturing processes whose timing and duration takes
place at a shorter scale, typically reflecting interaction
between the units forming the network (Albert et al.,
1999; Holme & Saramäki, 2012; Perra et al., 2012).
These effects can often be motivated on purely physi-
cal grounds (networks between physical entities do not
form spontaneously), and compiling network datasets
often involve the explicit removal of temporal infor-
mation by edge aggregation or windowing (Holme &
Saramäki, 2012).

Motivated by these two properties we propose the tem-
poral hierarchical relational model (THRM) which de-
scribe the data by a temporally evolving multifurcat-
ing hiearchy. The THRM model assumes the temporal
network data are organized in epochs indexed by t such
that each epoch corresponds to the network observed
at that time point.

At each epoch the multiscale relational structure is
modelled using a hierarchical latent structure, and as
a prior over hierarchies the Gibbs fragmentation tree
(GFT) (McCullagh et al., 2008; Schmidt et al., 2012)
is used.

Changes at the connectivity-level such as birth and
death of vertices is accounted for by allowing vertices
to be present or not at different epochs, while at the
interaction-level nodes can change role and function
in the multiscale organization to capture temporal ef-
fects at a shorter timing. To accomplish this each ver-
tex has a change-point model that governs when ver-
tices changes their placement in the hierarchical struc-
ture, see figure 1 for examples of inferred change-point

structures. The model supports two limits: If no ver-
tices have change-points the model reduces to a single,
shared hierarchy for all vertices, and if all vertices have
change-points at each epoch there is no temporal or-
dering in the hierarchical structure of each network.

In between these two extremes the model captures
temporally evolving hierarchical network structures,
sharing statistical strength between time epochs such
that the closer two time instances are the more cor-
related their hierarchical structure will be. Inference
in the model is performed using a distributed Gibbs
sampler.

1.1. Related work

Time-evolving relational data has previously been con-
sidered with a variety of methods including multi-
way models (Peng & Li, 2010), information-theoretic
approaches (Rosvall & Bergstrom, 2010), block-type
models (Ishiguro et al., 2010) and change-point pro-
cesses for edges (Vu et al., 2011). There is a grow-
ing literature on creating nonparametric priors for
temporally evolving cluster structures using for in-
stance connections between Dirichlet and Gamma pro-
cesses (Lin et al., 2010) or fragmentation-coagulation
processes (Teh et al., 2011). However, none of these
works consider hierarchies as the organizational prin-
ciple.

Our model most closely relate to existing Bayesian ap-
proaches to the modeling of hierarchical structure in
networks, however these past models have not consid-
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ered temporal evolution. In (Clauset et al., 2008) a
network model with uniform prior over binary trees is
proposed where the probability of generating an edge
between two nodes is specified by a parameter at the
level of their nearest common ancestor. In (Roy et al.,
2007) each edge in the binary tree includes a weight
defining the extend to which the network complies with
the split, and in (Roy & Teh, 2009) the Mondrian pro-
cess is proposed which for bipartite networks randomly
bisects the nodes of the two modes until a stopping
criterion is met, and parameters are then assigned to
model the probability of links between each of the
resulting pairs defined by the bisections. In (Herlau
et al., 2012) a uniform prior over multifurcating trees
is proposed where the leafs of the tree terminate at
clusters generated from a Chinese Restaurant Process
(CRP). In (Schmidt et al., 2012) the Gibbs fragmenta-
tion tree process is used as prior over trees when mod-
eling relational data (in the following denoted HRM).
The THRM currently proposed can be considered an
extension of this framework to the modeling of time-
evolving networks.

2. Methods

Before introducing our proposed model, we briefly re-
view the infinite relational model (IRM). We then in-
troduce relevant results for Gibbs fragmentation trees
(GFT) and show how they can model networks in the
hierarchical relational model (HRM). Using properties
of Gibbs fragmentation trees we introduce temporal
correlation to the HRM, leading to the proposed Tem-
poral Hierarchical Relational Model (THRM).

2.1. Network models

As the simplest case, consider a simple graph of n ver-
tices represented by the binary adjacency matrix A
such that Aij = 1 iff. there is an edge between vertex
i and j. In the stochastic blockmodel (Holland et al.,
1983) it is assumed that each vertex is assigned to one
of k labelled communities, and the probability of an
edge between vertex in community µ and community
ν is given by the number ηµν . In a non-parametric
Bayesian formulation (the IRM (Kemp et al., 2006))
the number of clusters is a priori unbounded and in-
ferred from data.
Letting zi = µ ∈ {1, . . . , k} indicate the assignment to
clusters, the IRM become

z ∼ CRP(ϑ) Assigment to clusters,

ηµν ∼ Beta(η+0 , η
−
0 ) interactions,

Aij ∼ Bernoulli
(
ηzizj

)
links.

where CRP(ϑ) is the Chinese Restaurant Pro-
cess (Kemp et al., 2006) with parameter ϑ and Beta is
the beta distribution. Intuitively the infinite relational
model divides the adjacency matrix A into blocks (see
figure 2 top,left), and each block is assigned a number
ηµν that determines the probability of forming edges
on that region of the adjacency matrix (see figure 2).
By conjugacy the η-parameters may be integrated out

p(A|z) =
∏
µ≤ν

B
(
N+
µν + η+0 , N

−
µν + η−0

)
B
(
η+0 , η

−
0

) , (1)

where N+
µν =

∑
ij Aijδµ,ziδν,zj (and similar for N−µν

with Aij replaced by (1 − Aij)) are called the pseudo
counts, indicating the number of links (or nonlinks) in
each block. B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta
function.

2.2. Multiscale Network Modelling

Multiscale network structure is naturally modelled us-
ing hierarchies over vertices: The root of the hierarchy
corresponds to the coarsest resolution level indicating
the large-scale structure, and moving further down the
hierarchy corresponds to finer-scale structure between
the fewer vertices partaking in the sub-hierarchies An
intuitive view of this process is illustrated in figure 2,
where the construction corresponds to modelling the
entire network (at the top-level) by an IRM model,
and then introducing new IRM models on the clusters
along the diagonal in a recursive fashion. The con-
struction is easiest formalized using notation from the
GFT prior (McCullagh et al., 2008) reviewed below.

Gibbs Fragmentation Tree Prior Consider a
rooted multifurcating tree TB with leaf-set B. The
leafs will later corresponds to vertices in the net-
work so we write n = |B|. Each vertex b ∈ TB
can be identified with the set of leafs off the subtree
rooted at b, Tb, so without loss of generality we write
TB = {leafs Tb|b ∈ TB}. Notice the collection contains
B (corresponding to the root) and |B| singleton sets
corresponding to the leafs and is also called a frag-
mentation (McCullagh et al., 2008) of B, see figure 2
(top,right) for an illustration of a fragmentation of the
set {A,B1, B2, C1, C2, D,E}.

For any subset A of B, consider the new tree TA ob-
tained by removing all leafs not in A, and then remov-
ing all vertices of degree 1. We call this operation the
projection onto A written projA TB . In set notation
it is given as TB 7→ TA = {b ∩ A | b ∈ TB , b ∩ A 6= ∅}.
In figure 2 (bottom,right) is seen two projections onto
the sets A,B1, C1, D,E and A,B2, C2, D,E. Also, for
a vertex b ∈ TB such that |b| ≥ 2, let b1, b2, . . . , bk be
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Figure 2. Left panel: Illustration of block-structure in-
duced by IRM and HRM models. Right panel: The
THRM for a system of 5 vertices at 2 time points where
vertices B and C change hierarchical organization between
time t = 1 and t = 2. In the middle is shown the change-
point matrix J and the corresponding unique temporal
states C, and further to the right the giant tree TGT hav-
ing the unique temporal states as leafs. At the bottom is
shown the induced hierarchies at time t = 1 and t = 2
obtained by projecting onto the temporal states present at
those epochs.

b’s k children in TB and ni = |bi| their size. Defining
the partition πb = {b1, . . . , bk}, we say TB fragments b
into πb.

A random fragmentation model is a family of distribu-
tions over GFTs defined for all finite B ⊂ N having the
following properties: exchangeable, meaning the distri-
bution of TB is invariant to labelling of B, Markovian,
meaning for all partitions B = B1 ∪ B2 ∪ · · · ∪ Bk,
the k tree {projBi TB} are independently distributed
as T1, . . . , Tk, and finally consistent, meaning for all
A ⊂ B, projA TB is distributed as TA.

McCullagh et al. (McCullagh et al., 2008) show all
random fragmentation models have a representation
as p(TB) =

∏
b∈TB q(b1, b2, . . . , bk) and while the exact

normalization is not given in the reference, for all but
a few degenerate cases q takes the form

q(n1, n2, . . . , nk) =
gk,α(β)

gn,1(β)− gn,1(−α)

k∏
i=1

gni,1(−α)

(2)
for prior parameters 0 ≤ α < 0, β < −2α (multifurcat-
ing trees with arbitrary block number) or α < 1, β =
−2α (binary trees). We have introduced the notation

gk,α(β) =
∏k−1
i=2 (β + iα) and for leafs we simply have

q(1) = 1. The two-parameter fragmentation process
given by eq. (2) is denoted by GFP(α, β).

The Hierarchical Relational Model Returning
to relational modelling, we can formalize the construc-
tion as follows. Consider again a network A and as-
sume the n vertices B = [n] are arranged in a GFT
TB .

At the root, TB fragments B into a partition πB =

{B1, B2, · · · , Bk}. Defining z by zi = µ iff. i ∈ Bµ
induces a block-structure on A. Since each of the sets
Bµ corresponding to diagonal elements in the block-
structure (communities) these are further fragmented
by TBµ . The construction can be applied recursively to
each of these blocks creating a recursive refinement of
the block-structure of A. The construction continues
over all vertices of TB , see figure 2 (bottom,left). Under
this model the likelihood becomes

p(A|η, T ) =
∏

b∈TB , |b|≥2

fb(A,η
b, b). (3)

Assume TB fragments b into πb = {b1, . . . , bk} and
let µ, ν denote indices of each fragment. Using the
Bernoulli likelihood we obtain the following form,

fb(A,ηb, πb) =
∏

bµ,bν∈πb
µ<ν

∏
i∈bµ,j∈bν

Bernoulli(Aij |ηbµν),

where ηbµν ∼ Beta(η+0 , η
−
0 ).

2.3. Temporal Hierarchical Relational Model

Returning to temporal modelling, assume we are given
a set of coordinates (i, t) (vertex observations) indicat-
ing vertex i was participating in the network at epoch
t. All vertex observations are collected in a binary lat-
tice S, ie. if Sit = 1 vertex i was present at epoch t
and otherwise Sit = 0. Sit is assumed to be known.

Next we encode if vertices between epochs t and
t+ 1 may change their hierarchical organization. This
is done using the binary change-point matrix Jit
(jumps), defined for vertex observations (it) where
Sit = 1, with the interpretation that if Jit = 0 ver-
tex i do not change hierarchical organization between
time t and t + 1. In this case we say vertex i do not
change temporal state, and if Jit = 1 vertex i is said to
change temporal state. It is assumed different vertices
are always in different temporal states and an exited
temporal state cannot be reentered. We use the con-
vention Jit = 1 if vertex i is not present at t− 1.

The collection of all temporal states is denoted by
C. See figure 2 for illustration of J and C for a sys-
tem of 5 vertices A,B,C,D,E, where vertex B and
C change temporal states between epoch 1 and 2 giv-
ing the unique temporal states A = 1, B1 = 2, B2 =
3, C1 = 4, C2 = 5, D = 6 and E = 7.

To model the correlated hierarchical organization, all
unique temporal states of the vertices according to
their change-points are organized in a single hierar-
chy, the giant tree, denoted by TGT (see figure 2
(top,right)). By projecting this tree to the set of tem-
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poral states at each epoch, we arrive at the hierarchi-
cal organization for each observed network which can
be modelled by an ordinary HRM. In figure 2 (bot-
tom,right) we illustrate projections onto epoch t = 1
(states A,B1, C1, D,E) and t = 2 (A,B2, C2, D,E)
corresponding to vertices B and C changing hierarchi-
cal organization.
For simplicity we consider simple life spans where each
vertex has a single birth and death.

To formalize the construction, again let n denote the
total number of vertices and T the total number of
epochs. The network at epoch t is indicated by At

(forming a simple graph) and all T networks simply
by A. Notice it is possible that no single vertex is
present at all epochs, and that all networks contain
less than n vertices.
Define Jit for vertex observations (it) st. Sit = 1 as

Jit ∼
{

1 if Si,t−1 = 0
Bernoulli(γ) otherwise

(4)

where γ is a parameter affecting the rate of change.
The change-point deterministically give rise to the
unique temporal states of all vertices: Different ver-
tices i 6= j are always in different temporal states:
cit1 6= cjt2 , temporal states change (cit 6= ci,t+1) if and
and only if Jij = 1, and finally once a state is ex-
ited it can never be reentered later (if cit1 = cit2 and
t1 < t < t2 then cit1 = cit).

Let C = ∪it{cit} be the set of unique temporal
states. Notice |C| = |J |. We let the elements in
C form the leafs of a hierarchy TGT

C (i.e., the giant
tree) distributed as a GFT(α, β). It is this hierar-
chy that induces the hierarchies used for each epoch
simply by projecting the giant tree onto the tempo-
ral observations at that epoch. Formally, defining
Ct = {cit| i st.Sit = 1}, the hierarchy at time epoch
t is found as projCtT

GT
C , see figure 2. Conditional on

these hierarchies we simply model each network ac-
cording to a HRM. Generatively the model becomes

γ ∼ Beta(γ+0 , γ
−
0 ) Change rate,

Jit|S ∼ According to eq. (4) change points,

cit = Deterministically given J giant tree leafs,

TGT
C ∼ GFT(α, β) giant tree,

T t = projCt T
GT
C tree at each epoch,

At|T t ∼ According to eq.(3) edges. (5)

To put the model in words, we first generate the change
points independently, thus determining when vertices
may change roles in the network. Next all unique tem-
poral states are arranged in a giant Gibbs fragmenta-
tion tree, and by projecting this tree onto each epoch

the networks at each epoch is conditionally indepen-
dently generated using the HRM.
The hyperparameters were selected as η+0 = η−0 =
γ+0 = γ−0 = 1 and α = β = 0.5 and ϑ = 1 reflecting
uniform beta distributions. Preliminary experiments
suggest the results are robust to these choices.

Properties of the model Consider a family of
models pn of n parameters x1, . . . , xn. Such a family is
simply exchangeable if it is invariant under relabelling
and marginally consistent if∑

xn+1

pn+1(x1, . . . , xn, xn+1) = pn(x1, . . . , xn) (6)

and a family of models having these properties is
said to be completely exchangeable (McCullagh et al.,
2008).

Qualitatively, marginal consistency means inference is
not affected by knowing there exists additional data
which is unobserved. This is particulary important
for temporal models, since the number of observed ver-
tices at each epoch may be very different, and we do
not wish this fact alone to drive the marginal distri-
butions. While there may be other ways to correlate
hierarchical structure, we take marginal consistency to
be a primary goal of a temporal hierarchical models in
general and the primary justification for our choice of
prior.

With respect to full exchangeability, one should not
hope the model to be fully invariant under relabelling,
since that would imply no causal structure across time.
With these comments in mind we summarize the prop-
erties of our model in the following claims:

c1 invariance under relabeling of vertices.
c2 invariance under temporal translation of all vertex

observations, (it) 7→ (i, t+ ∆t).
c3 marginal consistency when integrating over a single

temporal observation (it), see eq.(6).
c4 correlation of induced hierarchies at epochs t and

s decrease as |t− s| increase.
c5 marginally distributed as the HRM at each epoch.

The last property implies if there are several epochs
in a model, but we only observe one, it is distributed
as a single HRM. Proofs of the claims can be found in
the supplementary material.

2.4. Evaluation method

A principal quantitative way of evaluating network
models is by link prediction (Clauset et al., 2008;
Miller et al., 2009; Mørup & Schmidt, 2012). Con-
sider a triplet (i, j, t) indicating a potential edge ob-
servation between vertex i and j at time t. Let
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Figure 3. US Senate voting record data for 101st seating to 111th seating. In the middle is shown the temporal hierarchy
for all senators, each senator corresponds to a leaf and party membership is indicated by blue/red as democrat/republican
and ”others” are green. To illustrate factions within parties, for each epoch t we restricted the giant tree to the demo-
cratic/republican senators, grouped senators within parties according to how they were fragmented by the giant tree and
assigned each a color depending on the (horizontal) position of the group in the giant tree (see inserted colorbar). This
was used to color their home state. Thus the colors on the US map do not indicate party membership, but illustrate
factions within the two parties for republicans (top,left) and democrats (bottom,right). The bottom histograms show the
probability of changing position in the giant tree for each of the senators seated at least 8 epochs.

Emis be a set of such triplets and A the connectiv-
ity matrix with Emis treated as missing. We con-
sider both the accuracy and log-loss which for every
e = (ijt) ∈ Emissing is 〈Atijηtij + (1−Atij)(1−ηtij)〉p(·|A)

and 〈Atij log ηtij+(1−Atij) log(1−ηtij)〉p(·|A) respectivtely

with ηtij = p(Atij=1|·).

To overcome class imbalance Emis consists of 5% of the
edges in each epoch and a similar number of non-edges.
We also include AUC score of the ROC characteristics
for the test data (Clauset et al., 2008; Miller et al.,
2009; Mørup & Schmidt, 2012).

3. Implementation

Inference in the model was performed by Gibbs sam-
pling. Both the change rate γ and the η-parameters
for the networks at each epoch can be integrated
out (Schmidt et al., 2012). This leaves only the gi-
ant tree TGT and the change points J to be sampled
since the other operations in eqn. (5) are determinis-
tic. Sampling is done using two Gibbs-type operations.

Subtree regrafting A vertex in the giant tree b ∈
TGT is selected at random conditional on b not being
a leaf. Denote by TGT

\b the giant tree with b removed

and Tb the subtree rooted at b. Tb is now inserted at
all possible sites in TGT, that is, (i) as a child to all
vertices with at least two children and (ii) by selecting
a vertex a ∈ TGT

\v and replacing the subtree rooted at
a with a new tree having Ta and Tb as it’s two children,
ie. Ta ∪ Tb ∪ {a∪ b} in fragmentation-notation. There
are as many potential moves of the first type as there
are vertices which are not leafs in TGT

\b , and as many of

the later type as there are vertices in TGT
\b . All moves

of both types is considered as a single Gibbs update.

Change-point estimation The sampler first se-
lects a temporal observation (it). The sampler now
consider all transitions which can be obtained by set-
ting Jit = 1 and considering all moves of the previous
type for the vertex b = {cit} ∈ TGT, and if Si,t−1 = 1
also the move obtained by letting Jit = 0, ie. the state
now inherits it’s position in the giant tree from ci,t−1.
Again all possible moves are computed and sampled
from.

Both of these moves were implemented using a two-
stage procedure: First, the Gibbs move at the giant-
tree level is translated into a set of moves on the projec-
tion of TGT onto the temporal epochs. These moves
may be computed independently, and the transition
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probabilities are combined to form the set of transi-
tion probabilities relevant for operations on the giant
tree.

When combining the transition probability in the giant
tree (requiring computation of the likelihood, eq. (2))
and when computing the contributions to the likeli-
hood at each subtree (eq. (3)), the changes to the like-
lihood can be reused according to the tree-structure: If
b1 is an ancestor of b2 and b2 is an ancestor of b3, per-
forming a change (for instance insertion of subtree) at
b2 requires changes at the level of b1, but these changes
can be reused when computing changes to the tree at
level b3. In our implementation the parallel compu-
tations at the level of epochs were performed using
distributed computing resources.

Previous work in HRMs (Schmidt et al., 2012) only
considered Metropolis-Hastings pruning and regraft-
ing. To compare to the THRM, consider the total
number of (new) states considered by the Gibbs sam-
pler in one sweep. If there are n = 200 vertices
observed over T = 30 time-steps and a change rate
γ = 1

3 , there will be ∼200 ·30/3 leafs in the giant tree.
Including internal vertices this give ∼ 3000 vertices
in total and considering only Gibbs sampling of leafs
(3000 + 1000)2000 = 8 · 106 regrafting steps at each
sweep due to the 2 types of regraft moves (not con-
sidering regrafting of subtrees and changes in J). 100
sweeps is then ∼ 109 regrafting operations, compared
to about ∼ 106 subtree regrafting operations consid-
ered by Schmidt et.al.(Schmidt et al., 2012). Despite
these efforts, neither the IRM or THRM mix well on
the larger datasets.

4. Results

The synthetic datasets shown in figure 1 were created
by planting each of the four cluster structures using
a simple model with within-cluster edge density 0.9
and between-cluster edge density 0.1. All networks
had n = 42 and T = 8. The sampler was evalu-
ated for 80 iterations (random initialization, half of
which were discarded as burn-in. Shown are the true
cluster-membership matrices and inferred J-matrices
averaged over 10 networks. For upheaval and flip-flop
the average can be expected to be less clear due to
different sets of vertices participating for different net-
works, but as can be seen the sampler correctly in-
fers the timing and allows identification of the type of
change.
In addition, we also analyzed three larger datasets.

Enron email network: The Enron email net-
work(Cohen, 2009) consists of the email communica-

tion of 184 Enron executives. The email communica-
tion was binned into months giving 44 epochs corre-
sponding to 1st November, 1998 to 1st July, 2002. For
each epoch directed edges was added between execu-
tive i and j if i send j an email in that month. The re-
sulting network was directed and all simulations were
performed using directed versions of the models, ie.
both using the upper and lower parts of the η-matrix
as individually defined entries. The edge-density was
2.3%.

US Senate voting records: The US senate vot-
ing records dataset (Lewis et al., 2010) covers voting
records for 235 senators in the 101st congress (1989-
1991, first two years of the presidency of G.W. Bush),
to the 111th congress (2009-2011,first 2 years of the
B.H. Obama presidency). Senators were included from
their first registered votes to their last, and at each
epoch the network was constructed by computing the
Jaccard index between each senators binary yes/no
voting record in the particular senate seating and in-
cluding the top 20% values as edges.

NIPS author collaboration: The NIPS
dataset (Roweis, 2002) covers co-authorship of the
1-12th NIPS conference. Edges indicate co-authorship
and authors were included who participated in at least
3 conferences giving 360 authors. The edge-density
was 0.9%.

As comparison we considered two ways for applying
the IRM and HRM to temporal data. One was sim-
ply modelling each time epoch independently (Sliced),
and the other was fixing cluster-assignments/hierarchy
in the IRM/HRM across all epochs (Joint), forcing all
temporal epochs to share structure while ηt is epoch
specific. In the later case we treated all edges inci-
dent to vertices not present at the given epoch as un-
observed to avoid bias. Finally as a base reference
we considered a naive model (Past) which predicted
edges based on them being present in the previous time
epoch, p(Atij = At−1ij ) = 1.

In table 1 is shown results of all three scores for the
three considered datasets. For each entry the appro-
priate sampler was evaluated for 2000 Gibbs sweeps in
case of the IRM and 100 sweeps for the hierarchical-
based models. Half the samples were discarded as
burn-in and 10 equidistant samples was used. Shown
is the mean and standard deviation of the mean for
four simulation, and for the naive model the standard
deviation of the mean was computed based on splitting
the (balanced) set of edges/non-edges into four.

Focusing on AUC, for Enron and NIPS all methods
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Table 1. Results for the considered models on the Enron, US Senate and NIPS author collaboration networks.

IRM (Sliced) IRM (Joint) HRM (Sliced) HRM (Joint) THRM Past

E
n
ro

n

Accur. 0.567(08) 0.515(10) 0.630(09) 0.625(09) 0.631(10) −
log-loss −1.422(40) −1.842(75) −1.312(54) −1.157(44) −1.274(49) −
AUC 0.870(03) 0.823(12) 0.855(13) 0.884(06) 0.859(09) 0.742(03)

U
S

S
e
n
a
te Accur. 0.865(03) 0.577(02) 0.865(02) 0.840(03) 0.872(03) −

log-loss −0.208(04) −1.011(11) −0.257(06) −0.265(04) −0.239(06) −
AUC 0.973(01) 0.955(01) 0.977(02) 0.972(02) 0.981(02) 0.822(02)

N
IP

S

Accur. 0.544(06) 0.502(01) 0.633(12) 0.658(08) 0.685(10) −
log-loss −2.169(27) −3.245(17) −1.793(84) −1.224(72) −1.127(44) −
AUC 0.621(13) 0.633(23) 0.762(05) 0.891(18) 0.908(12) 0.708(10)

perform well, joint IRM perhaps slightly underper-
forming. The NIPS network shows more variation,
with hierarchical methods outperforming IRM meth-
ods and THRM scoring higher than sliced HRM, pos-
sibly also better than joint HRM. Model-wise, the hi-
erarchical models seem to perform more consistently
than the IRM. The NIPS network is very sparse, and
results are indicative that hierarchical methods are
better suited for this type of data. This is of par-
ticular interest from the perspective of temporal net-
work modelling, since in the very sparse limit shared
information across epochs can be expected to have the
largest effect. All models (except IRM on NIPS) out-
perform the naive link prediction method, indicating
methods based on inferring structure carry good ex-
planatory power.

In figure 3 is shown the temporal hierarchy for the
MAP sample of the US Senate dataset. The giant tree
is first laid out and then projected onto each epoch
while keeping the leaf-locations fixed. Gray lines indi-
cate movement across epochs and vertices are colored
according to party. Republicans and democrats are
consistently split, showing a strong tendency to vote
similarly along these two factions.

To better illustrate the multi-scaled structure of voting
patterns, for each epoch the set of democrats and re-
publicans was fragmented according to the tree struc-
ture into sets of size less than 30. We used the set
of senators mean location on the inserted color-bar
to color-code their home states. The results indi-
cate some consistency, for the projection of repub-
licans notice California, Arizona and Utah Arkansas
and Alabama seem to form a consistent pattern across
all epochs contrasted to a faction consisting of Texas
along with several central states. For democrats the
CA,AZ,UT,AL,AB pattern seem to be present during
the first three epochs and then become less consistent
during the B. Clinton presidency.

To illustrate the possibility for the model to explain

faction changes, we extracted the senators present dur-
ing at least 8 epochs and plotted the fraction of times
they change position in the tree as well as standard
deviations. Care need to be taken for this result due
to the multiple-comparison problem, but notice the
high value for J. Lieberman (D) who became an inde-
pendent democrat during the 111th senate. Mind this
is not indicating lower or higher degree of similarity
of voting pattern, but that the voting pattern is not
stable.

5. Conclusion

We have proposed the temporal hierarchical relational
model which incorporates two important aspects of
complex networks: Temporal evolution and multiscale
structure. The model is thereby able to express a num-
ber of important dynamic network effects such as the
emergence of new factions or vertices changing from
one faction to another at multiple scales. The model
is invariant under relabeling of vertices, invariant un-
der temporal translation of all coordinates, marginal
consistent, and marginally distributed as the HRM at
each epoch.
We further described how inference in the model can
make use of distributed Gibbs sampling where compu-
tations are reused by exploiting computational aspects
of the inferred hierarchical structure during inference.
Experiments on real datasets demonstrate that hierar-
chical models perform on par or better than the IRM
model, while the proposed THRM provides a novel
dynamic description of the data.

References

Albert, Reka, Jeong, Hawoong, and Barabasi, Albert-
Laszlo. Internet: Diameter of the World-Wide Web. 401
(6749):130–131, September 1999. ISSN 0028-0836.

Barabási, A. Emergence of Scaling in Random Net-
works. Science, 286(5439):509–512, October 1999. ISSN
00368075.

Clauset, A., Moore, C., and Newman, M.E.J. Hierarchical



Modeling Temporal Evolution and Multiscale Structure in Networks

structure and the prediction of missing links in networks.
Nature, 453(7191):98–101, 2008.

Cohen, William W. Enron Dataset, 2009. URL http:
//www.cs.cmu.edu/~enron/.

Collins, Allan M. and Quillian, M. Ross. Retrieval time
from semantic memory. Journal of Verbal Learning
and Verbal Behavior, 8(2):240–247, April 1969. ISSN
00225371.

Doreian, P. Evolution of social networks, volume 1. Rout-
ledge, 1997.

Dorogovtsev, S., Mendes, J., and Samukhin, A. Structure
of Growing Networks with Preferential Linking. Physical
Review Letters, 85(21):4633–4636, November 2000. ISSN
0031-9007.

Dosenbach, N.U.F., Nardos, B., Cohen, A.L., Fair, D.A.,
Power, J.D., Church, J.A., Nelson, S.M., Wig, G.S., Vo-
gel, A.C., Lessov-Schlaggar, C.N., et al. Prediction of in-
dividual brain maturity using fmri. Science, 329(5997):
1358–1361, 2010.

Fortunato, S. Community detection in graphs. Physics
Reports, 486(3-5):75–174, 2010.

Fox, M.D. and Raichle, M.E. Spontaneous fluctuations in
brain activity observed with functional magnetic reso-
nance imaging. Nature Reviews Neuroscience, 8(9):700–
711, 2007.

Herlau, T., Mørup, M., Schmidt, M. N., and Hansen, L. K.
Detecting hierarchical structure in networks. Proceedings
of Cognitive Information Processing, 2012.

Holland, Paul W., Laskey, Kathryn Blackmond, and Lein-
hardt, Samuel. Stochastic blockmodels: First steps. So-
cial Networks, 5(2):109 – 137, 1983.
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