
Fast Probabilistic Optimization from Noisy Gradients

Philipp Hennig philipp.hennig@tuebingen.mpg.de

Max Planck Institute for Intelligent Systems, Dpt. of Empirical Inference, Spemannstr. Tübingen, Germany

Abstract

Stochastic gradient descent remains popular
in large-scale machine learning, on account of
its very low computational cost and robust-
ness to noise. However, gradient descent is
only linearly efficient and not transformation
invariant. Scaling by a local measure can sub-
stantially improve its performance. One natu-
ral choice of such a scale is the Hessian of the
objective function: Were it available, it would
turn linearly efficient gradient descent into
the quadratically efficient Newton-Raphson
optimization. Existing covariant methods,
though, are either super-linearly expensive
or do not address noise. Generalising recent
results, this paper constructs a nonparametric
Bayesian quasi-Newton algorithm that learns
gradient and Hessian from noisy evaluations
of the gradient. Importantly, the resulting al-
gorithm, like stochastic gradient descent, has
cost linear in the number of input dimensions.

1. Introduction

Much of machine learning involves nonlinear optimiza-
tion of a negative log likelihood, loss, energy, or other
objective function

f(Z;x) = 1

N

N∑
i=1 f(zi;x) (1)

of the data set Z = {z1, . . . , zN} and the parameters x
to be optimized. All efficient optimization algorithms
require the gradient ∇xf of the objective function
(shortened to ∇f from here). But if the dataset is very
large it can be impossible to evaluate the loss on the
entire dataset, and subsets ζj = {zj1 , zj2 , . . . , zjNj

} ⊂ Z
Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

known as mini-batches are used instead.

f(ζj ;x) = 1

Nj

Nj∑
i=1 f(zji ;x) (2)

If the mini-batches are chosen iid from the dataset, the
result is a stochastic gradient ∇f(ζj ;x) = ∇f(Z,x)+ξj
whose value corresponds to the true gradient ∇f(Z,x)
up to some noise ξj , which, by the central limit theo-
rem, is approximately Gaussian distributed. A typical
example of this setup is the training of neural networks
by back-propagation (Rumelhart et al., 1986).

The most straightforward, but not the most efficient
use of the gradient for optimization is gradient descent—
iteratively updating the parameters according to xt+1 =
xt−αt∇f(Z;xt), or, in the mini-batch version, stochas-
tic gradient descent, xt+1 = xt − αt∇f(zi;xt). In each
case, αt ∈ R+ is a learning rate. There is some basic
theory on setting α (e.g. Robbins & Monro, 1951). For
example, choosing ∑t αt =∞ and ∑t α

2
t <∞ guarantees

convergence in the limit t _ ∞. But it does not yield
efficiency. In fact, it is clear from inspection that the
gradient descent learning rule is not invariant under
even linear changes of measure: The units of measure
of ∇f are those of f/x, not those of x. If the task
were to minimize potential energy density by skiing
down a slope, a European gradient descent algorithm
(∇f = 5J/[kg ⋅m]) would move in increments of me-
tres, while it’s American cousin would be much more
cautious on the same slope (∇f ≈ 10−5Cal/[oz ⋅ ft]),
moving only in increments of ten-thousandths of a foot
(3µm). Simple standardisation does not solve this fun-
damental problem: what is a “standard” gradient at
initiation may turn out to be a steep or flat gradient
in other regions. In particular, gradient descent can be
very slow in plateau regions, and stochastic gradient
descent can effectively get stuck in diffusion in such
areas. The long established solution to this problem
is to correct the gradient descent direction relative to
a local measure of f of the right units [f/x2]. A clas-
sic, though not unique, choice is the Newton-Raphson
algorithm, which corrects by the local curvature, the

Fast Probabilistic Optimization from Noisy Gradients

Hessian B(x) = ∇∇⊺f(Z;x):
xt+1 = xt −B−1(xt)∇f(Z;xt). (3)

This algorithm is often described as efficient, both in
the sense that, if L were a quadratic, it would reach
the minimum in one step, and in the sense that there is
a neighbourhood around each local minimum x∗ such
that, if the algorithm reaches this neighbourhood, the
estimate xt converges to x∗ quadratically fast (Dennis
& Morée, 1977) – although this neighbourhood can be
arbitrarily small. Unfortunately, Newton’s algorithm is
too expensive for high-dimensional problems: If x ∈ RN ,
constructing the Hessian has general cost O(N2), its
inversion O(N3). An elegant way to address this is-
sue is offered by quasi-Newton algorithms (Fletcher
& Powell, 1963; Broyden, 1965), which are learning
methods constructing low-rank estimators for B−1 from
observations of only the gradient. A particularly cost-
efficient member of this class is the L-BFGS algorithm
(Nocedal, 1980; Broyden, 1969; Fletcher, 1970; Gold-
farb, 1970; Shanno, 1970), which can construct such
an estimator in O(N), linear in the input dimension-
ality. Unfortunately, though, quasi-Newton methods
do not apply to noisy gradient observations. Several
authors have proposed computationally elegant ways
of re-scaling the gradient using the Hessian (Pearlmut-
ter, 1994; Schraudolph, 2002; Martens, 2010; Martens
& Sutskever, 2011), sometimes leveraging the struc-
ture (e.g. sparsity) of specific optimization problems
(Bordes et al., 2009). But, again, these “Hessian-free”
approaches do not properly account for noise. Their
cost is also not usually O(N) in a strict sense, or they
involve sampling (Byrd et al., 2011).

Quasi-Newton methods are touchstones of numerical
analysis. Decades after their invention, they remain
state of the art in nonlinear optimization. Recently,
work by Hennig & Kiefel (2012) has provided novel, uni-
fying insight into this family of methods, casting them
as an approximation to Bayesian linear regression. The
cited work established that the low computational cost
of algorithms like BFGS is achieved by deliberately
ignoring or weakening prior knowledge, such as the
symmetry of the Hessian, whose exact encoding would
have at least cubic cost. These authors then focussed
on extending the classic algorithms to a nonparamet-
ric paradigm, which increases performance in various
ways. This paper generalises these results to noisy ob-
servations. This is nontrivial, because the noisy setting
requires a more detailed study of the information con-
tent of each observation. As Hennig & Kiefel showed,
classic quasi-Newton methods can be interpreted as
using each observation twice, in two independent likeli-
hood terms. When considering noisy observations, we

thus have to make sure that these observations do not
amount to double counting. This paper shows that
quasi-Newton methods are in fact more cautious than
necessary. The guiding insight is that they deliberately
ignore structural knowledge, in exchange for low com-
putational cost, to a surprisingly extreme extent: the
algorithms ignore the isomorphism between vectors and
co-vectors. Where much of machine learning is about
using structure to increase learning efficiency, here the
approach is to remove structure to decrease cost. The
final result is a nonparametric Bayesian quasi-Newton
algorithm for noisy observations. Its most important
feature is that it is O(N), linear in the number of
parameters to optimize. So, although the new algo-
rithm is more expensive than gradient descent by a
considerable factor, its cost scales like that of gradient
descent. The new algorithm can thus be applied to very
high-dimensional optimization problems, including the
training of neural networks (Section 3.2).

2. Methods

Since Hennig & Kiefel (2012) focussed on unifying a
group of classic algorithms, their nonparametric deriva-
tion started from a parametric viewpoint. Here, a
nonparametric model is derived from scratch, which
allows a more direct exposition. The following section
constructs related priors over f , ∇f , and the Hessian
B. The model is interesting less for what it encodes
than for what it does not encode.

2.1. Prior

The objective function f is defined over an input
space RN . This could be the vector space RN×1 of
N -dimensional real vectors, or just as well its dual vec-
tor space R1×N , the space of linear maps from RN×1 to
R. This distinction is usually irrelevant, because these
spaces are isomorphic: There is a bijection between
x ∈ RN×1 and x⊺ ∈ R1×N—transposition—preserving
the vector space structure. The following derivations
deliberately ignore this structural knowledge, and define
the objective function over a 2N dimensional vector
space R1×N × RN×1 (isomorphic to R2N). To avoid
accidentally using the isomorphism between vectors
and co-vectors, I introduce the new notation x⊺ ≡ x◁
and x ≡ x▷. Thence, consider a Gaussian process prior
over f

p(f(x◁,x▷)) = GP(f ;µf , k) with (4)

k([x¾◁,x¾▷], [x¼◁,x¼▷]) ≡ k◁
x¾
◁
x¼
◁

⋅ k▷
x¾
▷
x¼
▷

, (5)

with mean function µf ∶ R1×N × RN×1 _ R and co-
variance functions (kernels) k◁ ∶ R1×N × R1×N _ R;

Fast Probabilistic Optimization from Noisy Gradients

k▷ ∶ RN×1 ×RN×1 _ R. The notation x¼ and x¾ (read
“x up” and “x down”) denotes two arbitrary separate
N -dimensional inputs. It is a variant of the more com-
monly used notation x∗ and x∗, which will not be used
here to prevent confusion over the use of sub- and
superscripts. The product form of the covariance as-
sumes independent behaviour of the function in the
two N -dimensional sub-spaces. It is thus strictly more
conservative than a classic N -dimensional prior (which
implicitly assumes that x◁ and x▷ are the same thing,
so the function values must be perfectly correlated
between those two sub-spaces). For a concrete imple-
mentation, consider the popular squared exponential
(SE) kernels, which contain a further independence
assumption about the function’s form in each of the
input dimensions:

k◁
x¾
◁
x¼
◁

= θ2◁ exp [−1

2

N∑
n

(x¾◁ −x¼◁)2n
λ2◁n

] (6)

k▷
x¾
▷
x¼
▷

= θ2▷ exp [−1

2

N∑
n

(x¾▷ −x¼▷)2n
λ2▷n

] . (7)

A weak encoding of the relation between x◁ and x▷ can
be achieved by setting λ◁ = λ▷ ≡ λ and θ◁ = θ▷ ≡ θ.
Since we have artificially separated vectors and co-
vectors, there are now actually two gradients: ∇▷f
and ∇◁f , the vectors of derivatives of f with respect
to the elements of x▷ and x◁, respectively. Of course,
these are identical up to transposition; but the model
does not encode this knowledge. The following deriva-
tion is symmetric under transposition, so it suffices to
consider only one case. The Gaussian family is closed
under linear maps, and differentiation is linear. So
the prior over ∇▷f is also a Gaussian process (Ras-
mussen & Williams, 2006, §9.4), with mean function
µ▷(x◁,x▷) = ∇▷µ(x◁,x▷), and covariance function
(δab is Kronecker’s symbol, the second line uses the
explicit SE kernel of Eq. (6))

cov
⎡⎢⎢⎢⎣
∂f(x¼◁,x¼▷)

∂x¼▷,j

,
∂f(x¾◁,x¾▷)

∂x¾▷,`

⎤⎥⎥⎥⎦ = k◁x¼◁x¾
◁

∂2k▷
x¼
▷
x¾
▷

∂x¼▷,j∂x
¾▷,`

= k◁
x¼
◁
x¾
◁

k▷
x¼
▷
x¾
▷

[δj`
λ2j

+ (x¾▷ −x¼▷)j(x¾▷ −x¼▷)`
λ2jλ

2
`

] . (8)

Unfortunately, due to the second term in the sum, eval-
uating this covariance has cost O(N2). Dropping that
term again deliberately ignores co-variance structure.
The term is strictly positive definite—it is the product
of a linear kernel with a SE kernel and a number of
positive scalars, thus itself a positive definite kernel, be-
cause kernels form a semi-ring (Rasmussen & Williams,
2006, §4.2.4). Since its value at x¼▷ = x¾▷ is zero, it con-
tributes no marginal variance, only covariance. Thus,

the resulting Gaussian process prior over ∇▷f with
covariance function

k∇j`([x¾◁,x¼▷], [x¼◁,x¼▷]) = δj`
λ2j
k◁
x¼
◁
x¾
◁

k▷
x¼
▷
x¾
▷

(9)

= [k◁
x¼
◁
x¾
◁

⊗Λk▷
x¼
▷
x¾
▷

](1j)(1`)
(with Λ ≡ diag(λ−2)) makes strictly weaker assump-
tions than Eq. (8), in the sense that it assumes strictly
lower covariance between function values at differing
points. The second equality introduces the Kronecker
product between matrices, (a⊗b)(ij)(k`) = aikbj`, which
will appear repeatedly from here on. It is particularly
useful when dealing with operator-valued functions: If
we stack the elements of matrix Bij , row by row, into

the vector
Ð⇀
B (ij), then matrix products can be repre-

sented as
ÐÐÐ⇀
ABC⊺ = (A⊗C)Ð⇀B . Since the chosen kernel

on f is symmetric under transposition, the GP prior
on ∇◁ has kernel Λk◁ ⊗ k▷, identical to Eq. (9) up to
transposition.

The elements of the Hessian B(x◁,x▷) ∶ R1×N ×
RN×1 _ R are Bij = ∂x◁,i∂x▷,jf(x◁,x▷), the deriva-
tives of the elements of ∇▷ with respect to the elements
of x◁. But they are also ∂x▷,i∂x◁,jf(x◁,x▷), the
derivatives of ∇◁ with respect to the elements of x▷.
Under the factorisation structure of the prior, these
two facts are now separate, independent, statements.
Using the first definition, and the same argument as
for Eq. (8), the belief over these elements is also a
Gaussian process, with mean B0(x¾◁,x¾▷) = ∂x◁µ▷
and covariance

cov
⎡⎢⎢⎢⎣
∂2f(x¼◁,x¼▷)
∂x¼◁,i∂x

¼▷,j

,
∂2f(x¾◁,x¾▷)
∂x¾◁,k∂x

¾▷,`

⎤⎥⎥⎥⎦ (10)

= ∂2k◁
x¼
◁
x¾
◁

∂x¼◁,i∂x
¾◁,k

∂2k▷
x¼
▷
x¾
▷

∂x¼▷,j∂x
¾▷,`

(11)

= k◁
x¼
◁
x¾
◁

k▷
x¼
▷
x¾
▷

[δj`
λ2j

+ (x¾▷ −x¼▷)j(x¾▷ −x¼▷)`
λ2jλ

2
`

]
⋅ [δik
λ2i

+ (x¾▷ −x¼▷)i(x¾▷ −x¼▷)k
λ2iλ

2
k

] . (12)

Just as above we drop the quadratically expensive
mixing terms, to get the strictly weaker kernel

kB(ij)(k`)([x¾◁,x¼▷], [x¼◁,x¼▷]) = δj`δik
λ2iλ

2
j

k◁
x¼
◁
x¾
◁

k▷
x¼
▷
x¾
▷

= [Λk◁
x¼
◁
x¾
◁

⊗Λk▷
x¼
▷
x¾
▷

](ij)(k`) . (13)

An important observation is that the second definition
of B (that is, reversing the order of differentiation),

Fast Probabilistic Optimization from Noisy Gradients

yields the same kernel kB for the Hessian. This is
not surprising—it is the reason why the Hessian is
symmetric—but will become relevant in Section 2.2.

Together, the derivations so far provide independent
Gaussian process priors for f , the 2N gradient ele-
ments, and the N2 elements of the Hessian, each as
functions over the 2N -dimensional input space. Drop-
ping correlation between pairwise different dimensions
also weakens the relation between the belief over the f
and its gradients. But the derivation above does retain
a relation between the length scales λ and the signal
variances of gradient and Hessian: If f has large length
scales, it changes slowly, so we expect smaller values
for gradient and Hessian.

If we had not split x▷ and x⊺◁, the dropped terms would
have encoded the fact that the Hessian is symmetric,
and that gradient and Hessian are conservative fields
(i.e. that line integrals over them are independent of
the integration path). These aspects are now erased
from the model, so the posterior will converge more
conservatively than it otherwise would. In return for
this weakened inference power, it will turn out that the
resulting inference algorithm is only linearly expensive.

2.2. Inference

x▷

x
◁

x▷ x▷
Figure 1. Conceptual sketches, showing posterior marginal
variances (uncertainties), not mean functions, after three
observations at locations marked by white dashed lines.
Left: posterior over a gradient element. Middle: poste-
rior over an element of the Hessian’s main diagonal after
the “primal” observation (Eq. 22). Right: posterior over
the same Hessian element after both “primal” and “dual”
observation (Eq. 28). All plots use the same color scale,
from 0 (black) to unit (white) uncertainty. The dual obser-
vation does contain additional information, even along the
x◁ = x▷ sub-space.

Estimating the Newton descent direction −B−1∇f re-
quires beliefs for both gradient and Hessian, from ob-
servations of only the gradients, constructed these in
this section. Figure 1 gives intuition.

For the purposes of this paper, we will assume inde-
pendent Gaussian noise of standard deviation α on
all elements of the gradient. In applications like the
training of neural networks, the strength of the noise

may well depend on the function value. In such cases
simple heuristics may help improve performance.

2.2.1. Inference on the gradient

Observing ∇▷f means observing the derivative of f
along the entire subspace spanned by x◁. We thus
observe noisy functions (not just single function values)
ym(x◁,xm▷), m = 0, . . . ,M , which are constant along
x◁. The likelihood is thus p(ym(x◁) ∣xm▷ ,∇▷f) =N (ym(x◁);∇▷f(x◁,xm▷), k◁ ⋅ α2I). The presence of
a kernel function in this likelihood may initially be
confusing, but it is simply the correct encoding of an
observation containing no information in the x◁ space.

The joint conditional probability of the M + 1 vectors
ym, observed at M + 1 locations xm, combined into
the N ×M + 1 matrices Y and X, respectively, is

p(Y ∣X,∇f) = N (Ð⇀Y ;
Ð⇀∇f(X◁,X▷), k◁⊗IN⊗α2IM+1)

(14)
Inference is analytic: The posterior over the gradient
is a Gaussian process with mean function

µY∇ (x¾◁,x¾▷) = µ∇(x¾◁,x¾▷) + (k◁ ⊗Λk▷x¾X)⋅ (15)

[k◁ ⊗ (Λk▷X,X + αIN⊗M)]−1 (Ð⇀Y (x¾◁) −Ð⇀µ∇(x¾◁,X▷))
= µ∇(x¾◁,x¾▷) +Λk▷x¾X(Λk▷X,X + αIN⊗M)−1⋅ (16)

(Ð⇀Y −Ð⇀µ∇(x¾◁,X▷)).
Assuming independence between elements (Λ is diago-
nal), this expression simplifies into separate expressions
for each dimension n ∈ {1, . . . ,N}. Writing Y n∶ for the
n-th row of Y , we find

µY n∶∇,n(x¾◁,x¾▷) = µ∇,n(x¾◁,x¾▷) + λ−2n k▷x¾,X ⋅
(λ−2n k▷XX + αIM)−1(Y ⊺

n∶ −µ∇,n(x▷l ,X▷)). (17)

Evaluating this mean function once for all dimensions
has cost O(NM +M3N). If all λn are identical, which
is likely to be a good assumption for many applications,
including neural networks, the cost is O(NM +M3).
The posterior covariance will not feature in the algo-
rithm; but it is also analytic, and independent over the
N dimensions:

Σ∇,n(x¾◁,x¾▷,x¼◁,x¼▷) = k◁x¼x¾ ⋅
λ−2n (k▷x¼x¾ − λ−2n k▷x¼X(λ−2n k▷XX + αIM)−1k▷Xx¾) .

(18)

2.2.2. Inference on the Hessian

The likelihood of the Hessian is somewhat more in-
volved, but still allows analytic inference. The gradient

Fast Probabilistic Optimization from Noisy Gradients

is the integral over the Hessian, and integration is a
linear operation. Recall that there are two equivalent,
but in our model independent, ways of constructing the
Hessian. To incorporate both, as in Hennig & Kiefel
(2012), and as in classic quasi-Newton methods, we con-
struct a rank-2M update by considering two indepen-
dent observations, ui▷ = yi − yi−1 and ui◁ = y⊺i − y⊺i−1,
i = 1, . . . , I, encoding the integrals over the Hessian
along a linear path. We will combine them into an
N ×M matrix U▷ and a M ×N matrix U◁. Since
the noise on each yi is presumed i.i.d. and of variance
σ2, u▷ is the difference of two Gaussian variables, thus
has noise variance 2σ2. We will also use the matrix
S with elements Sim ≡ xm

i − xm−1
i . The conditional

probability of U▷ can then be written as

p(U▷;B,S) = N (U▷;S⊺▷B,Λk◁ ⊗ 2σ2IM) (19)

This uses the linear operator S▷ = (I⊗(∫ ⊙S)) (where⊙ is the Hadamard, or point-wise product). It returns
the integral of B along the x▷ sub-space

(S▷B)im = N∑
n=1Snm ∫ 1

0
Bin(x◁,x▷(τ)) dτ with

(20)

x▷(τ) = (xm −xm−1)τ +xm−1.
The posterior after this first observation is also a Gaus-
sian process. Constructing it is tedious but, given the
insights developed in the previous sections, it is now a
relatively uncomplicated generalisation of the results
of Hennig & Kiefel (2012), where some details can be
found. The posterior mean B▷ and covariance function
Σ▷ over B are

B▷(x¾◁,x¾▷) = (21)

B0 + (U▷ −B▷)(K▷ + 2α2IM)−1k⊺▷(x¾▷),
Σ▷(x¾◁,x¾▷,x¼◁,x¼▷) = (22)

Λk◁ ⊗ [Λk▷ − k▷ [K▷ + 2α2IM]−1 k⊺▷] ,
with the maps B▷ ∈ {R1×N _ RN×M}, k▷ ∈ {RN×1 _
RN×M}, and the matrix K▷ ∈ RM×M

B▷,nm(x¾◁) ≡S⊺B = N∑̀=1S`m ∫ 1

0
B0,n`(x¾◁,x`(τ)) dτ

(23)

k▷,nm(x¾▷) ≡S⊺k▷ = Snmλ
−2
n ∫ 1

0
k▷(x¾◁,xn(τ)) dτ

(24)

K▷m` ≡S⊺k▷S (25)

= N∑
n=1λn

−2SnmSn`∬ 1

0
k▷(xm(τ),x`(τ ′)) dτ dτ ′.

Assuming the prior mean function B0 is a constant
diagonal matrix, evaluating these two expressions isO(N ⋅M2). For the squared exponential kernel, Equa-
tions (24) & (25) require definite univariate and bivari-
ate Gaussian integrals. There are no analytic expres-
sions for these integrals; but good (single precision),
lightweight numerical approximations exist (Genz, 2004;
Hennig & Kiefel, 2012). The second, independent obser-
vation in the dual subspace is U◁, the corresponding
likelihood is, using S◁ = ((∫ ⊙S)⊗ I),

p(U◁;B,S) = N (u◁;S⊺◁B, (26)

2σ2IM ⊗Λk▷ − k▷ [K▷ + 2α2IM]−1 k⊺▷).
Once again, the presence of the kernel form in this like-
lihood is simply encoding ignorance in this observation
along the orthogonal subspace. By extension of the
derivation for Equations (21) & (22) (see also Hennig
& Kiefel, 2012), the posterior after both independent
observations is a Gaussian process with mean function
B◇ and (here unused) covariance Σ◇,

B◇ = B0 + (U▷ −B▷)(K▷ + 2α2IM)−1k⊺▷(x¾▷) (27)

+ k◁(x¾◁)(K◁ + 2α2IM)−1(U◁ −B◁)⊺
− k◁(x¼◁)(K◁ + 2α2IM)−1S⊺(U▷ −B▷)
(K▷ + 2α2IM)−1k▷(x¼▷)

Σ◇ = [Λk◁ − k◁ [K◁ + 2α2IM]−1 k⊺◁] (28)

⊗ [Λk▷ − k▷ [K▷ + 2α2IM]−1 k⊺▷]
with objects B◁, k◁,K◁, defined analogous to Equa-
tions (23) to (25). In fact, given our choice of kernel
and a symmetric mean function, these objects are iden-
tical along the sub-space x◁ = x▷ in which all rele-
vant evaluations take place. We will thus simplify to
k◁ = k▷ = k, etc. Note that the mean is not, in general,
a symmetric matrix. This is the effect of our deliberate
ignorance about the relationship between derivatives,
which eliminates information about the commutativity
of derivatives. It is easy, albeit somewhat ad hoc, to
project the mean estimate into the space of symmetric
matrices, using the projection operator Γ = 1

2
(I + T)

with the transposition operator Tx = x⊺.

On a superficial level, the final result is a relatively
simple extension of that of Hennig & Kiefel. But the
derivations up to here considerably clarify the infor-
mation content of prior and the two likelihood terms
in the inference for the Hessian. In particular, it is
now clear the inference scheme does not double count
observations; in fact it under -counts, by considering a
doubly large input space RN×1 ×R1×N ≃ R2N .

Fast Probabilistic Optimization from Noisy Gradients

2.3. Estimating the inverse Hessian

We now have a joint Gaussian belief over the elements of
the Hessian. Our belief over the inverse of this matrix,
which we require for the Newton-Raphson direction, is
not Gaussian. But a consistent point estimator for this
direction can be constructed efficiently as −B−1◇ (x¾) ⋅
µ∇(x¾) (where x¼ = x¼◁ = x¼▷), by inverting the mean
estimate B◇, using the matrix inversion lemma. After
symmetrisation, the mean estimate can be written as

B◇ = B0 + (V W)(0 IM
IM 0

)(V
W

) with (29)

V ≡ k(K + 2α2IM)−1 and (30)

W ≡ (U▷ −B▷) − 1

4
k(K + 2α2IM)−1⋅ (31)

[(U▷ −B▷)⊺ + (U▷ −B▷)].
Our estimate of the Newton-Raphson direction can be
thus evaluated in O(N ⋅M3). Of course, the number
of previous evaluations M rises over time. But the
algorithm moves along a trajectory, so old observations
typically become irrelevant as the algorithm moves
away from them. Analogously to the L-BFGS method
(Nocedal, 1980), we simply impose a memory limit
Mmax and ignore all observations more than Mmax

steps away (see also Hennig & Kiefel, 2012).

2.4. Relation to classic quasi-Newton methods

For the noise-free limit of α _ 0, there is a close con-
ceptual connection to classic quasi-Newton methods,
as shown in Hennig & Kiefel (2012): If we perform
the updates in individual steps, re-setting uncertainty
to the prior in every step, and set the length scales
λ _ ∞, which amounts to a locally constant model
for the Hessian (assuming the function is a quadratic),
the signal variance to unit, θ = 1, and the noise to zero
α _ 0, then Equation (21) reduces to Broyden’s (1965)
method, Equation (27) to Powell’s (1970) symmetric
Broyden method. If we further assume the function to
be convex and chose each kernel k◁, k▷ to be equal to
B itself (a concept that does not easily generalise to
non-constant Hessians), then we arrive at the DFP up-
date formula (Davidon, 1959; Fletcher & Powell, 1963).
From there, under the bijection Y] S,B] B−1, we
obtain the widely used BFGS formula (Broyden, 1969;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). All
these methods share regularization terms which can be
interpreted analogously to the derivations in this pa-
per, as assuming independence between the objective’s
dependence on row and column-vectors. So, while the
idea of treating separating vectors and co-vectors as
separate objects as introduced in this paper may appear
far-fetched at first sight, it is in fact an old concept at

the heart of some of the most widely used optimization
algorithms—it is just not obvious in their form. Cer-
tain classic algorithms are parametric, noise-free limit
cases of the method described here.

2.5. Open issues and limitations

The previous sections provide a principled, linear cost
solution to the issue of inferring the Newton-Raphson
direction under noise. There are other problems of
stochastic optimization not addressed here, most im-
portantly the choice of step size. Even in the noise
free case, a fixed step size of 1 is not optimal. Quasi-
Newton methods use a line search for this purpose, but
this paradigm is nontrivial to use under noise, where
bisection algorithms are not applicable. It is also clear
that with rising noise the algorithm learns ever more
slowly and eventually has to become more conservative
in its behaviour. The experiments in Section 3 ignore
this old question and leave the step size at 1 through-
out. A more fundamental question is in which regime
it is actually useful to try to learn the Hessian: Clearly,
in the limit of infinite noise a quasi-Newton method
cannot learn anything and will simply follow the mean
of the gradient. At the other end, for zero noise, it is
well known that quasi-Newton methods substantially
outperform simple gradient descent. The experiments
shed light on this issue. The unsurprising bottom line:
the right choice depends both on the noise level and
the computational cost of the objective function. Very
expensive functions justify the prize of comparably ex-
pensive methods like Hessian-free optimization, very
cheap functions are optimized most efficiently by gradi-
ent descent. The method proposed in this paper covers
the, perhaps most interesting, intermediate ground.

3. Experiments

In the following two experiments, a low-dimensional
toy problem provides intuition and evaluates numeri-
cal precision in the convergence limit, a realistic high-
dimensional problem investigates cost.

3.1. Numerical Precision: Minimizing a
Gaussian bowl

Consider a two-dimensional optimization problem in
form of a “Gaussian bowl”: f(x) = − exp(− 1

2
(x −

m)⊺P (x −m)), with location m ∈ R2 sampled from a
unit bivariate Gaussian distribution and inverse scale
P ∈ R2×2, sampled from a Wishart distribution with
3 degrees of freedom. Because this function has non-
trivial gradient and Hessian (proportional to the first
and second Hermitian polynomials, respectively), it is
nontrivial for Newton-Raphson.

Fast Probabilistic Optimization from Noisy Gradients

100 101 102
10−25

10−16

10−7

102

func. evaluations

∣∣x−
x
∗ ∣∣

grad-descent

Newton

100 101 102

func. evaluations

Hessian-free

Nonparam.

Figure 2. Performance on bowl problem, without noise
(left) and with noise (right). Note shared double-
logarithmic scale and large range of abscissa. The results
for Newton and Hessian-free optimization largely overlap,
the result for noise-free Newton jumps to zero after 5 eval-
uations.

Figure 2 shows the performance of a number of opti-
mization algorithms on the “Gaussian bowl” problem:
gradient descent, exact Newton-Raphson, Hessian-free
optimization (Martens, 2010), which is essentially an
elegant numerical implementation of exact Newton-
Raphson, and the nonparametric probabilistic quasi-
Newton algorithm. Gradient descent used the learning
rate rule αt = 500/t, which was the best choice found
in a rough grid search. Each algorithm performed one
optimization without evaluation noise, and one with
noise. Noise was independent Gaussian on each element
of the gradient, with standard deviation 0.01, which
corresponds to a relatively high signal to noise ratio of∼ 100. Noise vectors were sampled once per evaluation
and shared by all algorithms. As in the mini-batch
setting, the noise was kept constant throughout each
call to Hessian-free optimization to allow a consistent
inversion using conjugate gradients. Algorithms which
calculate the Hessian directly (Newton-Raphson and
Hessian-free optimization) were given access to the
exact Hessian even where noise was added to the gra-
dient. This creates an advantage for these methods,
which they were not able to use: The log-log plot shows
performance over the entire dynamic range of the opti-
mization, from initialisation down to single precision.
The noise-free quasi-Newton method, despite having
no access to the Hessian, performs almost as well as
the better informed Newton methods (the rough shape
towards the end of optimization is due to numerical
instabilities). More strikingly, it is the only method

in this comparison that is robust to noise: All three
other methods saturate roughly at the noise level, while
the probabilistic method descends about 10 orders of
magnitude below it.

It is not surprising that the other second-order methods
can not deal well with noise, they were not designed
for this purpose. And of course this experiment, with
its low-dimensional setting, is not particularly close
to most applications. But it offers insight into the
qualitative difference between stochastic gradient de-
scent’s diffusive kind of convergence, and the kind of
convergence afforded by actively modeling noise.

3.2. Numerical Cost: Training a deep belief
network

A realistic large-scale setting is optimization of the
weights of a neural network. Our implementation is
based on that by Hinton and Salakhutdinov1 (Hinton
& Salakhutdinov, 2006), which trains a 3-layer feed-
forward network on the MNIST dataset2. Pre-training
by contrastive divergence was run without change as in
the original code. To create a reasonably manageable
optimization problem that could be run numerous times
using various optimization algorithms, only the top
(classification) layer weights were then optimized, which
creates a N = 20, 010 dimensional optimization problem.
It is important to point out that this limitation was
introduced only for experimental convenience – the
algorithm described in this paper does in fact scale to
much higher values of N (we have anecdotal experience
with optimization problems in the range N ∼ 106).

The MNIST training set consists of 60,000 images.
Figure 3.2, top, shows that the noise created by even
splitting this dataset into two “mini”-batches is already
considerable. Adjusting the size of the mini-batches
thus allows varying both computation cost for, and
evaluation noise on the objective function over wide
ranges.

Figure 3.2, middle and right, shows optimization per-
formance as a function of number of evaluations and
computation time, respectively. The right plot should
be taken with a grain of salt, since computation time
changes with the complexity of the objective function,
and with implementation of the optimizer. In this par-
ticular case the objective function is comparably cheap,
making it harder for the nonparametric algorithm to
use its conceptual advantages. To get a noise-free plot,
the loss function achieved by the algorithms on smaller

1http://www.cs.toronto.edu/~hinton/
MatlabForSciencePaper.html

2http://yann.lecun.com/exdb/mnist

Fast Probabilistic Optimization from Noisy Gradients

100 101 102 103 104 105
10−3
10−2
10−1
100

batch size (# data points)

S
N

R

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

0 50 100 150 200

optimization steps

f
[i

rr
el

ev
an

tl
in

ea
rs

ca
le

]

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

0 200 400

computation time t [s]

S=1 ⋅ 103 S=1 ⋅ 104

S=3 ⋅ 104 S=6 ⋅ 104

Figure 3. Top: signal to noise ratio for the DBN training
problem, estimated by splitting the MNIST set into mini-
batches of the indicated size and evaluating mean, standard
deviation of f over the batches. Bottom left and right:
f -values achieved by stochastic and regularised gradient
descent (red and green, respectively, mostly overlapping),
probabilistic quasi-Newton descent (blue), Hessian free-
optimization (cyan) as a function of number of update
steps and computation time, respectively, for varying batch
sizes S. The Hessian-free method became unstable for all
but the two largest S, a problem that might be solvable
with more careful numerical engineering and should not be
misunderstood as a criticism of this method.

(noisy) batches was re-evaluated on the whole, expen-
sive dataset, i.e. the plotted function values were not
observed in this form by the algorithms. The figure
compares stochastic gradient descent to the nonpara-
metric quasi-Newton method, as well as to a “regular-
ized gradient descent”, which simply uses the GP mean
of Eq. (17) instead of the noisy gradient. The stark
difference between this method and the quasi-Newton
optimizer shows that the learned Hessian is nontrivial,
despite the high dimensionality of the problem and the
strong factorisation assumptions in the model. The
plots also show results from Hessian-free optimization,
implemented using matlab’s efficient symmetric LQ
solver (Barrett et al., 1994).

As anticipated (Section 2.5), these results reveal a non-
trivial situation: The probabilistic method dominates
stochastic gradient descent in terms of optimization
performance per step, but its slightly higher cost is
relevant when the objective function is very cheap. Ob-

viously, in the limits of no / high evaluation cost for f ,
the cheapest / most elaborate optimizer always wins,
respectively. But there is also a relevant region in
between, where the additional efficiency of the prob-
abilistic optimizer outweighs its slightly higher cost,
while remaining cheaper than the (technically nonlin-
ear) Hessian-free method. Of course, this region can
be extended further by a more efficient implementa-
tion than our simple matlab version (note that the
Hessian-free method uses c code).

4. Conclusion

Optimization methods for large-scale problems must
be cheap, robust, and efficient. This paper presents
a nonparametric robust extension of classic quasi-
Newton methods which appears to be the first to
fullfill all three of these requirements: It has linear
cost, accounts for Gaussian noise, and approximates
the quadratically efficient Newton Raphson method.
Achieving this required a nontrivial nonparametric
model, which explicitly ignores algebraic knowledge
in exchange for lower cost. A simple matlab imple-
mentation will be released along with this paper, at
http://probabilistic-optimization.org.

Acknowledgments

I am thankful to Martin Kiefel for ongoing helpful
discussions on all aspects of probabilistic optimization.
I would further like to thank an anonymous reviewer
for helpful comments on a draft of this paper.

References

Barrett, R., Berry, M., Chan, T.F., Demmel, J., Do-
nato, J., J., Dongarra, Eijkhout, V., Pozo, R.,
Romine, C., and Van der Vorst, H. Templates for
the Solution of Linear Systems: Building Blocks for
Iterative Methods. SIAM, Philadelphia, PA, 1994.

Bordes, A., Bottou, L., and Gallinari, P. SGD-QN:
Careful quasi-Newton stochastic gradient descent. J
of Machine Learning Research, 10:1737–1754, 2009.

Broyden, C.G. A class of methods for solving nonlinear
simultaneous equations. Math. Comp., 19(92):577–
593, 1965.

Broyden, C.G. A new double-rank minimization algo-
rithm. Notices American Math. Soc, 16:670, 1969.

Byrd, R.H., Chin, G.M., Neveitt, W., and Nocedal,
J. On the use of stochastic Hessian information in
optimization methods for machine learning. SIAM
J. Optimization, 21(3):977–995, 2011.

Fast Probabilistic Optimization from Noisy Gradients

Davidon, W.C. Variable metric method for minimiza-
tion. Technical report, Argonne National Laborato-
ries, Ill., 1959.

Dennis, J.E. Jr and Morée, J.J. Quasi-Newton methods,
motivation and theory. SIAM Review, pp. 46–89,
1977.

Fletcher, R. A new approach to variable metric algo-
rithms. The Computer Journal, 13(3):317, 1970.

Fletcher, R. and Powell, M.J.D. A rapidly convergent
descent method for minimization. The Computer
Journal, 6(2):163–168, 1963.

Genz, A. Numerical computation of rectangular bivari-
ate and trivariate normal and t probabilities. Statis-
tics and Computing, 14(3):251–260, 2004.

Goldfarb, D. A family of variable metric updates de-
rived by variational means. Math. Comp., 24(109):
23–26, 1970.

Hennig, P. and Kiefel, M. Quasi-Newton methods – a
new direction. In Int. Conf. on Machine Learning
(ICML), volume 29, 2012.

Hinton, G.E. and Salakhutdinov, R.R. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

Martens, J. Deep learning via Hessian-free optimization.
In International Conference on Machine Learning,
2010.

Martens, J. and Sutskever, I. Learning recurrent neural
networks with Hessian-free optimization. In Interna-
tional Conference on Machine Learning, 2011.

Nocedal, J. Updating quasi-Newton matrices with lim-
ited storage. Math. Comp., 35(151):773–782, 1980.

Pearlmutter, B.A. Fast exact multiplication by the
Hessian. Neural Computation, 6(1):147–160, 1994.

Powell, M.J.D. A new algorithm for unconstrained
optimization. In Mangasarian, O. L. and Ritter, K.
(eds.), Nonlinear Programming. AP, 1970.

Rasmussen, C.E. and Williams, C.K.I. Gaussian Pro-
cesses for Machine Learning. MIT Press, 2006.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, pp.
400–407, 1951.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J.
Learning representations by back-propagating errors.
Nature, 323(6088):533–536, 1986.

Schraudolph, N.N. Fast curvature matrix-vector prod-
ucts for second-order gradient descent. Neural Com-
putation, 14(7):1723–1738, 2002.

Shanno, D.F. Conditioning of quasi-Newton methods
for function minimization. Math. Comp., 24(111):
647–656, 1970.

	Introduction
	Methods
	Prior
	Inference
	Inference on the gradient
	Inference on the Hessian

	Estimating the inverse Hessian
	Relation to classic quasi-Newton methods
	Open issues and limitations

	Experiments
	Numerical Precision: Minimizing a Gaussian bowl
	Numerical Cost: Training a deep belief network

	Conclusion

