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Abstract

This paper presents a general vector-valued
reproducing kernel Hilbert spaces (RKHS)
formulation for the problem of learning an
unknown functional dependency between a
structured input space and a structured out-
put space, in the Semi-Supervised Learning
setting. Our formulation includes as special
cases Vector-valued Manifold Regularization
and Multi-view Learning, thus provides in
particular a unifying framework linking these
two important learning approaches. In the
case of least square loss function, we pro-
vide a closed form solution with an efficient
implementation. Numerical experiments on
challenging multi-class categorization prob-
lems show that our multi-view learning for-
mulation achieves results which are compara-
ble with state of the art and are significantly
better than single-view learning.

1. Introduction

Reproducing kernel Hilbert spaces (RKHS) and
kernel-based methods have been by now established as
among the most powerful paradigms in machine learn-
ing and statistics, with numerous practical applica-
tions, see e.g. (Schölkopf & Smola, 2002; Shawe-Taylor
& Cristianini, 2004). While most of the literature on
kernel methods so far has focused on scalar-valued
functions, RKHS of vector-valued functions have re-
ceived increasing research attention in machine learn-
ing recently, from both theoretical and practical per-
spectives, see e.g. (Micchelli & Pontil, 2005; Carmeli
et al., 2006; Reisert & Burkhardt, 2007; Caponnetto
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et al., 2008; Brouard et al., 2011; Dinuzzo et al., 2011;
Kadri et al., 2011; Minh & Sindhwani, 2011).

The goal of the present work is to fuse together two
learning approaches for Semi-Supervised Learning in a
general vector-valued RKHS framework, where the hy-
pothesis spaces are RKHS of vector-valued functions.

The first approach for Semi-Supervised Learning that
we consider is Manifold Regularization (Belkin et al.,
2006), which attempts to learn the geometry of the in-
put space from the given unlabeled data. Generaliza-
tions from the scalar case to the vector-valued setting
include (Brouard et al., 2011), where a vector-valued
version of the graph Laplacian L is used, and (Minh &
Sindhwani, 2011), where L can be a general symmet-
ric, positive operator, including the graph Laplacian.
The vector-valued setting allows one to capture possi-
ble dependencies between output variables by the use
of, for example, an output graph Laplacian.

The second approach for Semi-Supervised Learning
that we consider is Multi-view Learning. In the multi-
view approach (Brefeld et al., 2006; Sindhwani &
Rosenberg, 2008; Rosenberg et al., 2009; Saffari et al.,
2010), different hypothesis spaces are employed to con-
struct target functions based on different aspects of the
input data. These target functions not only need to
agree with the labeled data, but also need to agree
with each other on the unlabeled data. One scenario
where this approach can be applied (Rosenberg et al.,
2009) is when the input data can be decomposed as
x = (x1, . . . , xm), with each xi representing one view.
One can then construct a target function for each view
and fuse them together to obtain the final solution.

The formulation we present in this paper gives a uni-
fied learning framework for the case the hypothesis
spaces are vector-valued RKHS. Our formulation is
general, encompassing many common algorithms as
special cases, including both Vector-valued Manifold
Regularization and Multi-view Learning. For the case



Unifying Vector-valued Manifold Regularization and Multi-view Learning

of least square loss function, we give a closed form solu-
tion which can be implemented efficiently. Our numer-
ical experiments were performed using a special case
of our framework, namely Vector-valued Multi-view
Learning, with promising results on several particu-
larly challenging multi-class categorization problems.

To the best of our knowledge, this work is the first
attempt to present a unified general learning frame-
work whose components have been only individually
and partially covered in the literature.

Organization. We start by giving a review of vector-
valued RKHS in Section 2. We state the general opti-
mization problem we wish to solve in Section 3, along
with various special cases, the Representer Theorem,
and Proposition 1, which gives the explicit solution for
the least square case. We then describe Vector-valued
Multi-view Learning and its implementation in Section
4, with empirical experiments in Section 5. Proofs for
all mathematical results in the paper are given
in the Supplementary Material.

2. Vector-Valued RKHS

In this section, we give a brief review of RKHS
of vector-valued functions1, for more detail see e.g.
(Carmeli et al., 2006; Micchelli & Pontil, 2005; Capon-
netto et al., 2008; Minh & Sindhwani, 2011). In the
following, denote by X a nonempty set, Y a real, sepa-
rable Hilbert space with inner product 〈·, ·〉Y , L(Y) the
Banach space of bounded linear operators on Y. Let
YX denote the vector space of all functions f : X → Y.
A function K : X × X → L(Y) is said to be an
operator-valued positive definite kernel if for
each pair (x, z) ∈ X × X , K(x, z)∗ = K(z, x), and

N∑
i,j=1

〈yi,K(xi, xj)yj〉Y ≥ 0 (1)

for every finite set of points {xi}Ni=1 in X and {yi}Ni=1

in Y. Given such a K, there exists a unique Y-valued
RKHS HK with reproducing kernel K, which is con-
structed as follows. For each x ∈ X and y ∈ Y, form
a function Kxy = K(., x)y ∈ YX defined by

(Kxy)(z) = K(z, x)y for all z ∈ X.

Consider the set H0 = span{Kxy | x ∈ X , y ∈ Y} ⊂
YX . For f =

∑N
i=1Kxi

wi, g =
∑N
i=1Kziyi ∈ H0, we

1Some authors, e.g. (Kadri et al., 2011) employ the
terminology function-valued, which is equivalent to vector-
valued: a function is a vector in a vector space of functions
(e.g. a Hilbert space of functions), and an n-dimensional
vector is a discrete function defined on n points.

define the inner product

〈 f, g 〉HK
=

N∑
i,j=1

〈wi,K(xi, zj)yj〉Y ,

which makes H0 a pre-Hilbert space. Completing H0

by adding the limits of all Cauchy sequences gives the
Hilbert space HK . The reproducing property is

〈f(x), y〉Y = 〈f,Kxy〉HK
for all f ∈ HK . (2)

Sampling Operators. For each x ∈ X , let Kx : Y →
HK be the operator with Kxy defined as above, then

||Kxy||2HK
= 〈K(x, x)y, y〉Y ≤ ||K(x, x)|| ||y||2Y ,

which implies that

||Kx : Y → HK || ≤
√
||K(x, x)||,

so that Kx is a bounded operator. Let K∗x : HK → Y
be the adjoint operator of Kx, then from (2), we have

f(x) = K∗xf for all x ∈ X , f ∈ HK . (3)

From this we deduce that for all x ∈ X and all f ∈ HK ,

||f(x)||Y ≤ ||K∗x|| ||f ||HK
≤
√
||K(x, x)|| ||f ||HK

,

that is the sampling operator Sx : HK → Y defined by

Sxf = K∗xf = f(x)

is bounded. Let x = (xi)
l
i=1 ∈ X l, l ∈ N. For the

sampling operator Sx : HK → Y l defined by Sx(f) =
(f(xi))

l
i=1, for any y = (yi)

l
i=1 ∈ Y l,

〈Sxf,y〉Yl =

l∑
i=1

〈f(xi), yi〉Y =

l∑
i=1

〈K∗xi
f, yi〉HK

=

l∑
i=1

〈f,Kxi
yi〉HK

= 〈f,
l∑
i=1

Kxi
yi〉HK

.

Thus the adjoint operator S∗x : Y l → HK is given by

S∗xy = S∗x(y1, . . . , yl) =

l∑
i=1

Kxiyi, y ∈ Y l, (4)

and the operator S∗xSx : HK → HK is given by

S∗xSxf =

l∑
i=1

Kxi
f(xi) =

l∑
i=1

Kxi
K∗xi

f. (5)

Data-dependent Semi-norms. Let (x1, . . . , xu+l)
⊂ X . Let M : Yu+l → Yu+l ∈ L(Yu+l) be a symmet-
ric, positive operator, that is 〈y,My〉Yu+l ≥ 0 for all



Unifying Vector-valued Manifold Regularization and Multi-view Learning

y ∈ Yu+l. For f ∈ HK , let f = (f(x1), . . . , f(xu+l)) ∈
Yu+l. The operator M : Yu+l → Yu+l can be ex-
pressed as an operator-valued matrix M = (Mij)

u+l
i,j=1

of size (u+ l)× (u+ l), with each Mij : Y → Y being
a linear operator, so that

(M f)i =

u+l∑
j=1

Mijfj =

u+l∑
j=1

Mijf(xj). (6)

We can then define the following semi-norm for f ,
which depends on the xi’s:

〈f ,M f〉Yu+l =

u+l∑
i,j=1

〈f(xi),Mijf(xj)〉Y . (7)

This form of semi-norm was utilized in vector-valued
manifold regularization (Minh & Sindhwani, 2011).

3. General Minimization Problem

In this section, we state the general minimization prob-
lem that we wish to solve, which includes Vector-
valued Manifold Regularization and Multi-view Learn-
ing as special cases.

Let the input space be X , an arbitrary non-empty set.
Let Y be a separable Hilbert space, denoting the out-
put space. Assume that there is an unknown probabil-
ity measure ρ on X ×Y, and that we have access to a
random training sample z = {(xi, yi)}li=1 ∪ {xi}

u+l
i=l+1

of l labeled and u unlabeled examples.

LetW be a separable Hilbert space. Let K : X ×X →
L(W) be an operator-valued positive definite kernel
andHK its induced Reproducing Kernel Hilbert Space
of W-valued functions.

Let M : Wu+l → Wu+l be a symmetric, positive op-
erator. For each f ∈ HK , let

f = (f(x1), . . . , f(xu+l)) ∈ Wu+l. (8)

Let V : Y × Y → R be a convex loss function. Let
C : W → Y be a bounded linear operator, with C∗ :
Y → W its adjoint operator.

The following is the general minimization problem that
we wish to solve:

fz,γ = argminf∈HK

1

l

l∑
i=1

V (yi, Cf(xi))

+γA||f ||2HK
+ γI〈f ,M f〉Wu+l, (9)

with regularization parameters γA > 0, γI ≥ 0.

Let us give a general multi-view learning interpretation
of our framework. If each input instance x has many

views, then f(x) ∈ W represents the output values
from all the views, constructed by their correspond-
ing hypothesis spaces. These values are combined by
the operator C to give the final output value in Y,
which is not necessarily the same as W. In (9), the
first term measures the error between the final output
Cf(xi) for xi with the given output yi, 1 ≤ i ≤ l. The
second summand is the standard RKHS regularization
term. The third summand, Multi-view Manifold Reg-
ularization, is a generalization of vector-valued Mani-
fold Regularization in (Minh & Sindhwani, 2011) and
Multi-view Point Cloud regularization in (Rosenberg
et al., 2009): if there is only one view, then it is sim-
ply manifold regularization; if there are many views,
then it consists of manifold regularization along each
view, as well as consistency regularization across dif-
ferent views. We describe one concrete realization of
this term in Section 4.2.

Remark 1. The framework is readily generalizable to
the case the point evaluation functional f(x) is re-
placed by a general bounded linear operator - we de-
scribe this in the Supplementary Material.

3.1. Representer Theorem

The minimization problem (9) is guaranteed to al-
ways have a unique global solution. The following is a
natural generalization of the Representer Theorem in
(Minh & Sindhwani, 2011).

Theorem 1. The minimization problem (9) has a

unique solution, given by fz,γ =
∑u+l
i=1 Kxi

ai for some
vectors ai ∈ W, 1 ≤ i ≤ u+ l.

3.2. Least Square Case

For the case V is the least square loss function, we solve
the following problem, which has an explicit solution:

fz,γ = argminf∈HK

1

l

l∑
i=1

||yi − Cf(xi)||2Y

+γA||f ||2HK
+ γI〈f ,M f〉Wu+l. (10)

The following is a generalization of Proposition 1 in
(Minh & Sindhwani, 2011).

Proposition 1. The minimization problem (10) has a

unique solution fz,γ =
∑u+l
i=1 Kxi

ai, where the vectors
ai ∈ W are given by

lγI

u+l∑
j,k=1

MikK(xk, xj)aj + C∗C(

u+l∑
j=1

K(xi, xj)aj)

+lγAai = C∗yi, (11)
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for 1 ≤ i ≤ l, and

γI

u+l∑
j,k=1

MikK(xk, xj)aj + γAai = 0, (12)

for l + 1 ≤ i ≤ u+ l.

3.3. Operator-valued Matrix Formulation

The system of equations (11) and (12) can be refor-
mulated in matrix form, which is more readable and
more convenient to implement efficiently.

Let K[x] denote the (u + l) × (u + l) operator-valued

matrix whose (i, j) entry is K(xi, xj). Let JW,u+ll :
Wu+l →Wu+l denote the diagonal matrix whose first
l entries on the main diagonal are the identity operator
I :W →W, with the rest being 0. Let C∗C :Wu+l →
Wu+l be the (u + l) × (u + l) diagonal matrix, with
each diagonal entry being C∗C : W → W. Let C∗ :
Yu+l →Wu+l be the (u+ l)× (u+ l) diagonal matrix,
with each diagonal entry being C∗ : Y → W. Then
Proposition 1 is equivalent to

Proposition 2.

(C∗CJW,u+ll K[x]+ lγIMK[x]+ lγAI)a = C∗y, (13)

where a = (a1, . . . , au+l), y = (y1, . . . , yu+l) are con-
sidered as column vectors in Wu+l and Yu+l, respec-
tively, and yl+1 = · · · = yu+l = 0.

3.4. Special Cases

Vector-valued Regularized Least Squares. If
C∗C = I :Wu+l →Wu+l, then (13) reduces to

(JW,u+ll K[x] + lγIMK[x] + lγAI)a = C∗y. (14)

If u = 0, γI = 0, and γA = γ, then we have

(K[x] + lγI)a = C∗y. (15)

One particular case for this scenario is when W = Y
and C : Y → Y is a unitary operator, that is C∗C =
CC∗ = I. If Y = Rn and C : Rn → Rn is real, then
C is an orthogonal matrix. If C = I, then we recover
the Regularized Least Squares algorithm.

Vector-valued Manifold Regularization. Let
W = Y and C = I. Then we obtain the minimiza-
tion problem for vector-valued Manifold Regulariza-
tion (Minh & Sindhwani, 2011):

fz,γ = argminf∈HK

1

l

l∑
i=1

V (yi, f(xi)) + γA||f ||2HK

+γI〈f ,M f〉Wu+l. (16)

Scalar Multi-view Learning. In this section, we
show that the scalar multi-view learning formulation
of (Sindhwani & Rosenberg, 2008; Rosenberg et al.,
2009) can be cast as a special case of our framework.
Let Y = R and k1, . . . , km be real-valued positive defi-
nite kernels on X ×X , with corresponding RKHS Hki
of functions f i : X → R, with each Hki represent-
ing one view. Let f = (f1, . . . , fm), with f i ∈ Hki .
Let c = (c1, . . . , cm) ∈ Rm be a fixed weight vec-
tor. In the notation of (Rosenberg et al., 2009), let
f = (f1(x1), . . . , f1(xu+l), . . . , f

m(x1), . . . , fm(xu+l))
and M ∈ Rm(u+l)×m(u+l) be positive semidefinite.
The objective of Multi-view Point Cloud Regulariza-
tion (formula (4) in (Rosenberg et al., 2009)) is

argminϕ:ϕ(x)=〈c,f(x)〉
1

l

l∑
i=1

V (yi, ϕ(xi))

+

m∑
i=1

γi||f i||2ki + γ〈f ,M f〉Rm(u+l) , (17)

for some convex loss function V , with γi > 0, i =
1, . . . ,m, and γ ≥ 0. Problem (17) admits a natural
formulation in vector-valued RKHS. Let

K = diag(
1

γ1
, . . . ,

1

γm
) ∗ diag(k1, . . . , km)

: X × X → Rm×m, (18)

then f = (f1, . . . , fm) ∈ HK : X → Rm, with

||f ||2HK
=

m∑
i=1

γi||f i||2ki . (19)

By the reproducing property, we have

〈c, f(x)〉Rm = 〈f,Kxc〉HK
. (20)

We can now recast (17) into

fz,γ = argminf∈HK

1

l

l∑
i=1

V (yi, 〈c, f(x)〉Rm)

+||f ||2HK
+ γ〈f ,M f〉Rm(u+l) . (21)

This is a special case of (9), with W = Rm, Y = R,
and C : Rm → R given by

Cf(x) = 〈c, f(x)〉Rm = c1f
1(x)+· · ·+cmfm(x). (22)

The vector-valued formulation of scalar multi-view
learning has the following advantages:

(i) The kernel K is diagonal matrix-valued and is ob-
viously positive definite. In contrast, it is nontrivial to
prove that the multi-view kernel of (Rosenberg et al.,
2009) is positive definite.
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(ii) The kernel K is independent of the ci’s, unlike the
multi-view kernel of (Rosenberg et al., 2009), which
needs to be recomputed for each different set ci’s.

(iii) One can recover all the component functions f i’s
using K. In contrast, in (Sindhwani & Rosenberg,
2008), it is shown how one can recover the f i’s only
when m = 2, but not in the general case.

4. Vector-valued Multi-view Learning

Another special case of our formulation, which is the
focus of subsequent sections, is vector-valued multi-
view learning. For a general separable Hilbert space
Y, let W = Ym and C1, . . . , Cm : Y → Y be bounded
linear operators. For f(x) = (f1(x), . . . , fm(x)), with
each f i(x) ∈ Y, we can define the operator C =
[C1, . . . , Cm] : Ym → Y by

Cf(x) = C1f
1(x) + · · ·+ Cmf

m(x) ∈ Y. (23)

This gives rise to a vector-valued version of multi-view
learning, where outputs from m views, each one being
a vector in the Hilbert space Y, are linearly combined.

Consider the following setting of vector-valued multi-
view learning, which we apply to the problem of multi-
class categorization in Section 5. Let the input space
be X , a non-empty subset, and the output space be
Y = RP , P ∈ N. Let the number of views be m ∈
N. For the multi-class classification problem, P is the
number of classes. For each yi, 1 ≤ i ≤ l, in the labeled
training sample, yi = (−1, . . . , 1, . . . ,−1), with 1 at
the kth location if xi is in the kth class.

Let W = Ym = RPm. The hypothesis space HK of
functions with values in W = RPm is induced by a
positive definite matrix-valued kernel K : X × X →
RPm×Pm, that is for each pair (x, t) ∈ X ×X , K(x, t)
is an Pm × Pm matrix. For each function f ∈ HK ,
f(x) = (f1(x), . . . , fm(x)), where f i(x) ∈ Y = RP is
the value corresponding to the ith view.

In Proposition 2, JW,u+ll is a diagonal matrix of
size Pm(u + l) × Pm(u + l), with the first Pml en-
tries on the main diagonal being 1, the rest being 0,
M ∈ RPm(u+l)×Pm(u+l), K[x] ∈ RPm(u+l)×Pm(u+l),
C ∈ RP×Pm, C ∈ RP (u+l)×Pm(u+l), C∗C ∈
RPm(u+l)×Pm(u+l), a ∈ RPm(u+l), y ∈ RP (u+l).

4.1. The Combination Operator

In the present context, the bounded linear operator
C :W → Y is a matrix of size P ×Pm. This operator
transforms the output vectors obtained from the m
views f i’s in RPm into an output vector in RP . The

simplest form of C is the average operator:

Cf(x) =
1

m
(f1(x) + · · ·+ fm(x)) ∈ Y = RP . (24)

Let ⊗ denote the Kronecker tensor product. For m ∈
N, let em = (1, . . . , 1)T ∈ Rm. The matrix C is then

C =
1

m
eTm ⊗ IP =

1

m
[IP , . . . , IP ]. (25)

More generally, we consider a weight vector c =
(c1, . . . , cm)T ∈ Rm and define C as

C = cT ⊗ IP , with Cf(x) =

m∑
i=1

cif
i(x) ∈ RP . (26)

4.2. Multi-view Manifold Regularization

We decompose the multi-view manifold regularization
term γI〈f ,M f〉Wu+l in (Eq. 9) into two components

γI〈f ,M f〉Wu+l = γB〈f ,MBf〉Wu+l+γW 〈f ,MW f〉Wu+l ,
(27)

where MB ,MW : Wu+l → Wu+l are symmetric, pos-
itive operators, and γB , γW ≥ 0. We call the first
term between-view regularization, which measures the
consistency of the component functions across differ-
ent views, and the second term within-view regulariza-
tion, which measures the smoothness of the component
functions in their corresponding views. We describe
next two choices for MB and MW .

Between-view Regularization. Let

Mm = mIm − emeTm. (28)

This is the m×m matrix with (m−1) on the diagonal
and −1 elsewhere. Then for a = (a1, . . . , am) ∈ Rm,

aTMma =

m∑
j,k=1,j<k

(aj − ak)2. (29)

If each ai ∈ RP , then we have a ∈ RPm and

aT (Mm ⊗ IP )a =

m∑
j,k=1,j<k

||aj − ak||2RP . (30)

We define MB by

MB = Iu+l ⊗MPm = Iu+l ⊗ (Mm ⊗ IP ). (31)

Then MB is a diagonal block matrix of size Pm(u+l)×
Pm(u+ l), with each block (i, i) being MPm. For f =
(f(x1), . . . , f(xu+l)) ∈ RPm(u+l), with f(xi) ∈ RPm,

〈f ,MBf〉RPm(u+l) =

u+l∑
i=1

〈f(xi),MPmf(xi)〉RPm

=

u+l∑
i=1

m∑
j,k=1,j<k

||f j(xi)− fk(xi)||2RP . (32)
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For P = 1, this is precisely the Point Cloud regular-
ization term for scalar multi-view learning (Rosenberg
et al., 2009; Brefeld et al., 2006). In particular, for

m = 2, we have M2 =

(
1 −1
−1 1

)
, and

〈f ,MBf〉R2(u+l) =

u+l∑
i=1

(f1(xi)− f2(xi))
2, (33)

which is the Point Cloud regularization term for co-
regularization (Sindhwani & Rosenberg, 2008).

Within-view Regularization. One way to define
MW is via the graph Laplacian. For view i, 1 ≤ i ≤ m,
let Gi be a corresponding undirected graph, with
symmetric, nonnegative weight matrix W i, which in-
duces the scalar graph Laplacian Li, a matrix of size
(u+ l)× (u+ l). For a vector a ∈ Ru+l, we have

aTLia =

u+l∑
j,k=1,j<k

W i
jk(aj − ak)2.

Let L be the block matrix of size (u+ l)× (u+ l), with
block (i, j) being the m×m diagonal matrix given by

Li,j = diag(L1
ij , . . . L

m
ij ). (34)

Then for a = (a1, . . . , au+l), with aj ∈ Rm, we have

aTLa =

m∑
i=1

u+l∑
j,k=1,j<k

W i
jk(aij − aik)2. (35)

If aj ∈ RPm, with aij ∈ RP , then

aT (L⊗ IP )a =

m∑
i=1

u+l∑
j,k=1,j<k

W i
jk||aij − aik||2RP . (36)

Define
MW = L⊗ IP , then (37)

〈f ,MW f〉RPm(u+l) =

m∑
i=1

u+l∑
j,k=1,j<k

W i
jk||f i(xj)−f i(xk)||2RP .

(38)
The ith summand in the sum

∑m
i=1 is precisely a man-

ifold regularization term within view i.

Single View Case. When m = 1, Mm = 0 and
MB = 0. In this case, we simply carry out manifold
regularization within the given single view, using MW .

4.3. Numerical Implementation

This section is devoted to giving an efficient numerical
implementation of Proposition 2 while still preserving

the closed form of the solution. Assume that each
input x is decomposed into x = (x1, . . . , xm) for the m
different views. We define K(x, t) as a block diagonal
matrix, with the (i, i)th block given by

K(x, t)i,i = ki(xi, ti)IP , (39)

where ki is a scalar-valued kernel, such as the Gaussian
kernel. Then K(x, t) is a matrix of size Pm× Pm.

Simplification via the Kronecker Tensor Prod-
uct. Let G(x, t) be the m×m diagonal matrix, with

(G(x, t))i,i = ki(xi, ti), (40)

and G[x] be the (u+ l)× (u+ l) block matrix, where
block (i, j) is the m×m matrix G(xi, xj). Then

K(x, t) = G(x, t)⊗ IP , (41)

and the matrix K[x] is

K[x] = G[x]⊗ IP . (42)

Proposition 3. For C = cT ⊗ IP , c ∈ Rm, MW =
L⊗ IP , MB = Iu+l ⊗ (Mm ⊗ IP ), the system of linear
equations (13) in Proposition 2 is equivalent to

BA = YC , (43)

where

B =
(
(Ju+ll ⊗ ccT ) + lγB(Iu+l ⊗Mm) + lγWL

)
G[x]

+lγAI(u+l)m, (44)

which is of size (u + l)m × (u + l)m, A is the matrix
of size (u + l)m × P such that a = vec(AT ), and YC
is the matrix of size (u + l)m × P such that C∗y =
vec(Y TC ). Ju+ll : Ru+l → Ru+l is a diagonal matrix of
size (u+ l)×(u+ l), with the first l entries on the main
diagonal being 1 and the rest being 0.

Evaluation on a Testing Sample. Let v =
{v1, . . . , vt} ∈ X be an arbitrary set of testing
input examples, with t ∈ N. Let fz,γ(v) =
({fz,γ(v1), . . . , fz,γ(vt)})T ∈ RPmt, with

fz,γ(vi) =

u+l∑
j=1

K(vi, xj)aj .

Let K[v,x] denote the t× (u+ l) block matrix, where
block (i, j) is K(vi, xj) and similarly, let G[v,x] denote
the t × (u + l) block matrix, where block (i, j) is the
m×m matrix G(vi, xj). Then

fz,γ(v) = K[v,x]a = (G[v,x]⊗IP )a = vec(ATG[v,x]T ),

In particular, for v = x = (xi)
u+l
i=1 , the original training

sample, we have G[v,x] = G[x].

Algorithm 1 combines all the steps in this section.
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Algorithm 1 RP -valued, m-view, semi-supervised
least square regression and classification

Input: - Training data z = (xi, yi)
l
i=1∪(xi)

u+l
i=l+1, with

l labeled examples and u unlabeled examples.
- Number of views: m. Output dimension: P .
- Testing example: v.
Parameters: γA, γB , γW ; a kernel ki for each view
and its parameters; the weight vector c.
Procedure: - Compute kernel matrix G[x] on input
set x = (xi)

u+l
i=1 according to (40).

- Compute matrix C according to (26).
- Compute graph Laplacian L according to (34).
- Compute matrices B, YC according to Proposition 3.
- Solve system of linear equations BA = YC .
- Compute kernel matrix G[v,x] between v and x.
Output: fz,γ(v) = vec(ATG[v,x]T ) ∈ RPm.
RP -regression: return Cfz,γ(v) ∈ RP .
P -way classification: return index of max(Cfz,γ(v)).

5. Experiments

This section provides an empirical analysis of the pro-
posed framework and its particular instance described
in Section 4. We tested our method on two different
multi-class categorization tasks, namely object recog-
nition and bird species categorization, using challeng-
ing, publicly available datasets (Fei-Fei et al., 2006;
Wah et al., 2011). For these problems, each view of an
input example is one type of features of that example.

These experiments demonstrate that: 1) the multi-
view regularization terms both contribute to improve
learning performance; 2) multi-view learning achieves
significantly better performance compared to single-
view learning; 3) our method gives comparable perfor-
mance with other state-of-the-art methods.

Parameters. These were fixed for all of the experi-
ments unless explicitly stated otherwise. In particular,
γA = 10−5, γB = γW = 10−6, and the weight vector
c of the combination operator was set to be uniform.
The graph Laplacians of Eq. 34 were computed with
the kernel matrices as weight matrices.

Object Recognition. We evaluated the pro-
posed method on the Caltech-101 dataset (Fei-Fei
et al., 2006) using the features, kernel matrices,
and evaluation protocol proposed in (Vedaldi et al.,
2009), available at http://www.robots.ox.ac.uk/

~vgg/software/MKL/. The appearance descriptors
are made up of 4 features (views): PHOW gray and
color, geometric blur (GB), and self-similarity (SSIM).
For the first three features, a three-level pyramid of
spatial histograms were built (Vedaldi et al., 2009).

First, we analyzed the contributions of each of the
between-view (Eq. 32) and within-view (Eq. 38) regu-
larization terms in (Eq. 9). A subset of 10 images for
each class were randomly selected, with half used as la-
beled data lc = 5 and the other half as unlabeled data
uc = 5 (see Table 1, last column). We also tested the
proposed method in the one-shot learning setup, where
the number of labeled images is one per class lc = 1
(see Table 1, third column). The testing set consisted
of 15 images per category. For this test, we selected
the features at the bottom of each pyramid, because
they give the best performance in practice. We can see
from Table 1 that both the between-view and within-
view regularization terms contribute to increase the
recognition rate, e.g. with lc = 1 the improvement is
2.35%. As one would expect, the improvement result-
ing from the use of unlabeled data is bigger when there
are more unlabeled data than labeled data, which can
be seen by comparing the third and forth columns.

Table 1. Results on the Caltech-101 dataset using PHOW
color and gray L2, SSIM L2 and GB. The training set is
made of 1 or 5 labeled data lc and 5 unlabeled data per
class uc, and 15 images per class are left for testing.

Accuracy Accuracy
γB γW lc = 1, uc = 5 lc = uc = 5
0 0 30.59% 63.68%
0 10−6 31.81% 63.97%

10−6 0 32.44% 64.18%
10−6 10−6 32.94% 64.2%

We observed that averaging views in the combina-
tion operator is not the optimal choice. For c =
[5, 10, 10, 10]T , we obtained 65.22% accuracy, an im-
provement of 1.02% with respect to the last row, last
column of Table 1. This suggests that c should be ei-
ther jointly optimized within the proposed framework
or cross-validated. We leave this to a future work.

To demonstrate that multi-view learning is able to
combine features properly, we report in Table 2 the
performance of each feature independently and of the
proposed method with all 10 views combined. The
minimum improvement with respect to the view that
gives the best results (PHOW gray L2) is 4.77% (sec-
ond column) and 4.71% (last column).

The last test we performed on the Caltech-101 dataset
used the features at the bottom level of the pyramid
in a supervised setup with 15 images per category for
training. The results obtained (see Table 3) are com-
parable with other state-of-the-art techniques. This is
very encouraging, because the loss function V in the
present implementation of our framework is the least

http://www.robots.ox.ac.uk/~vgg/software/MKL/
http://www.robots.ox.ac.uk/~vgg/software/MKL/
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Table 2. Results on the Caltech-101 data set using each
feature in the single-view learning framework and all 10
features in the multi-view learning framework (last row).

Feature Accuracy Accuracy
lc = 1, uc = 5 lc = uc = 5

PHOW color L0 13.66% 33.14%
PHOW color L1 17.1% 42.03%
PHOW color L2 18.71% 45.86%
PHOW gray L0 20.31% 45.38%
PHOW gray L1 24.53% 54.86%
PHOW gray L2 25.64% 56.75%
SSIM L0 15.27% 35.27%
SSIM L1 20.83% 45.12%
SSIM L2 22.64% 48.47%
GB 25.01% 44.49%
10-view learning 30.41% 61.46%

square loss, while most existing methods use SVM that
is known to reach very good classification performance
in practice. We leave to future work an implementa-
tion using the SVM loss function, which will be able
to combine the advantages of our framework with the
classification power of the SVM.

Table 3. Comparison with state-of-the-art methods on the
Caltech-101 dataset using PHOW color and gray L2, SSIM
L2 and GB in the supervised setup . SVM = Support Vec-
tor Machine, GP = Gaussian Process, LS = Least Square.

Method Classifier Accuracy
lc = 15

(Gehler & Nowozin, 2009) SVM-based 74.6%
(Yang et al., 2009) SVM-based 73.2%
(Christoudias et al., 2009) GP 73.00%
(Vedaldi et al., 2009) SVM 71.1%
4-view learning LS 73.33%

Bird Species Categorization. Next, we exam-
ined the Caltech-UCSD Birds-200-2011 dataset (Wah
et al., 2011), which is particularly challenging be-
cause it contains 11, 788 annotated images of 200 very
similar bird species. We consider as two views an
appearance-based feature and an attribute-based fea-
ture. For the appearance-based view, we extracted
the bag of feature descriptors based on PHOW gray
features (Vedaldi et al., 2009) and computed the χ2

kernel. For the attribute-based view, we used the 312-
dimensional binary vector provided in (Wah et al.,
2011) and computed the Gaussian kernel; these cor-
respond to 312 attributes for each image, which were
not exploited as features in (Wah et al., 2011). The
parameters of both kernels were set to be the me-
dian pairwise distances among training points. Fig-
ure 1 shows the classification accuracies of single-view
learning (in red and green) of each feature and 2-view
learning (in blue) when increasing the number of la-

beled data in the training set with a fixed number
of unlabeled data. The best categorization accuracy
reported so far in (Wah et al., 2011) is 6.94% (with
lc = 5). Their pipeline, consisting of a bird detec-
tor, an appearance-based descriptor and SVM, outper-
forms PHOW because they performed bird localization
while we extracted features from the whole image. The
most important fact is that 2-view learning is always
able to combine both appearance-based and attribute-
based features, giving better results compared to each
feature taken as single view.

Figure 1. Bird species categorization when increasing the
number of labeled data lc = {1, 5, 10, 15, 20} in the training
set, with fixed number of unlabeled data uc = 5.

Computational complexity. The system of linear
equations (43) in Proposition 3 is of size m(u + l) ×
m(u+ l), has a unique solution, is simple to implement
and is efficient. For the experiments that we report in
this paper, the main computation cost is in computing
the different kernel matrices. With 4 views, using the
same setup of Table 2, the proposed algorithm took
30.79 sec. and 0.48 sec.2 for training (3060 images)
and testing (1530 images), respectively (given the pre-
computed kernel matrices). With 2 views, it took 4.95
sec. (training) and 0.17 sec. (testing).

6. Conclusion and Future Work

We have presented a general vector-valued RKHS
formulation for Semi-Supervised Learning, of which
Vector-valued Manifold Regularization and Multi-view
Learning are special instances. The results we have ob-
tained demonstrate that this is a promising venue for
further research exploration. Our future work includes
an implementation of the SVM loss function within our
framework, the optimization of the combination oper-
ator, and connection to Multiple Kernel Learning.

2The method is implemented in MATLAB, on an Intel
Xeon(R) CPU E5645 @2.40GHz×12 cores, 12GB RAM.
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