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Abstract

Biclustering is a major tool of data mining
in many domains and many algorithms have
emerged in recent years. All these algorithms
aim to obtain coherent biclusters and it is
crucial to have a reliable procedure for their
validation. We point out the problem of size
bias in biclustering evaluation and show how
it can lead to wrong conclusions in a com-
parative study. We present the theoretical
corrections for all of the most popular mea-
sures in order to remove this bias. We intro-
duce the corrected precision-recall space that
combines the advantages of corrected mea-
sures, the ease of interpretation and visual-
ization of uncorrected measures. Numerical
experiments demonstrate the interest of our
approach.

1. Introduction

In many domains more and more data are produced
because of recent technological advances and the in-
creasing capabilities of modern computers. However,
extracting relevant information from these enormous
volumes of data still remains a difficult task. This is
why, there has been an increasing interest in the data
mining and machine learning methods to handle data.
In this paper, we are interested in the problem of bi-
clustering, also called co-clustering (Dhillon, 2001), si-
multaneous clustering or block clustering (Govaert &
Nadif, 2008). All of these algorithms aim to obtain
homogeneous or coherent biclusters. The proposed al-
gorithms differ in the patterns they seek, the types of
data they are applied to, and the assumptions on which
they rest. In recent years biclustering has become an
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important challenge in data mining and in particular in
text mining (Dhillon, 2001) and bioinformatics (Lazze-
roni & Owen, 2000; Hanczar & Nadif, 2010; Madeira
& Oliveira, 2004; Hanczar & Nadif, 2012).

Several biclustering or co-clustering methods are pro-
posed and all of them claim to be better than the
previous ones. A reliable procedure of performance
estimation is therefore necessary to evaluate and com-
pare the results of these algorithms. Although this
evaluation is crucial in all biclustering publications,
few works have focused on this problem (Prelic et al.,
2006). The evaluation and comparison of biclustering
algorithms is based on performance indices that can be
divided into two categories: external and internal in-
dices. The external indices estimate the similarity be-
tween a biclustering solution and a priori knowledge.
Generally external indices are used to compare a bi-
cluster solution produced by a biclustering algorithm
with the true biclustering solution. The internal in-
dices compare intrinsic information about data with
the biclustering solution produced by an algorithm.
In this case, no a priori information further than the
raw data is available. Internal indices are not as pre-
cise as external indices, but they are important when a
priori information is not available (Handl et al., 2005;
Lee et al., 2011). Only external indices produce an
objective evaluation of the biclustering performance.
The internal indices are subjective since they depend
on assumptions that correspond more or less to the
reality. Unfortunately, in practical applications, the
true biclusters are generally unknown and external in-
dices can not be used. A reliable evaluation procedure
of a biclustering algorithm should include two steps.
The first one consists in testing the biclustering algo-
rithm on artificial datasets where the true biclusters
are known. The external indices are used to measure
the performance of the tested algorithm and analyze
its behavior with different parameters. In the second
step the biclustering algorithm is applied to real data
and the obtained results are evaluated with internal
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indices. If the results on artificial and real data go in
the same direction, we can draw reliable conclusions.
In the following, we focus on the external indices. It
should be notice that although the biclustering eval-
uation problem has strong connections with the clus-
tering evaluation problem, there are important differ-
ences. A bicluster is not just the union of a set of
features and a set of examples, we have to consider
the structure in two dimensions formed by these sets.
Moreover, in the clustering tasks a partition of the
elements is computed and evaluated. In biclustering
tasks, generally a large part of the points do not be-
long to any biclusters and some biclusters may overlap,
i.e. some points belong to several biclusters. For these
reasons, several classic performance measures of clus-
tering can not be used in biclustering. In this paper
we present and analyse the main external indices in
the precision-recall space. We show that these indices
are affected by a size bias that advantages the large
biclusters. We give the theoretical correction for each
measure in order to remove the size bias. We define
the corrected precision-recall space in which the un-
corrected measures are not affected by the size bias.

The outline of the paper is as follows. In section 2 we
present the main external indices used in biclustering
context, we analyze their behavior in the precision-
recall space and we show the impact of the tradeoff
between precision and recall on the results of these in-
dices. In section 3 we point out the problem of size
bias. Section 4 gives the correction to apply to the
different measures. In section 5, we introduce the cor-
rected precision-recall space. Section 6 is devoted to
present numerical experiments pointing out the ad-
vantage to consider the corrected measures and the
corrected-space for the biclustering evaluation. Fi-
nally, the conclusion summarizes the main contribu-
tions.

2. External Measures for Biclustering

Let D be a data matrix where F and E are respec-
tively the set of features and examples. We consider
that this matrix contains a "true" biclustering so-
lution corresponding to a set of K biclusters noted

= {B1, ..., BK}. A biclustering algorithm, whose
the objective is to find out the true biclustering so-
lution , produces an estimated biclustering solution

= {X1, ..., XL}.

The external indices consist in evaluating the similar-
ity between the true and estimated biclustering solu-
tion. There exist several indices but all of them are

based on the following formula:

I( , ) =
1

K

K
∑

i=1

maxj=1..LM(Bi, Xj) (1)

Each true bicluster is associated to the estimated bi-
cluster that maximizes the measure M and all values
are averaged. The difference between the different in-
dices depends only on the definition of M that mea-
sures the similarity between two biclusters.

Let B = EB × FB be a true bicluster defined by
the set of features FB and the set of examples EB

and its estimated bicluster X = EX × FX , defined
by the sets of features FX and examples EX . Let’s
|D| = |F ||E|, |B| = |FB ||EB |, |X| = |FX ||EX | and
|B∩X| = |FB ∩FX ||EB ∩EX | be the sizes of the data
matrix, true bicluster, estimated bicluster and inter-
section between true and estimated error respectively.
The performance of the estimated bicluster depends
on how it matches the true bicluster. Two types of
errors can be defined: the points belonging to the true
bicluster and not covered by the estimated bicluster,
represented by the dark gray area and the points in
the estimated bicluster but not belonging to the true
bicluster, representing by the light gray area. These
two types of error are represented by the notion of
precision and recall. The precision is the proportion
of points of the estimated bicluster belonging to the
true bicluster, it takes this form

pre = precision(B,X) =
|B ∩X|

|X|
. (2)

The recall is the proportion of points of the true bi-
cluster covered by the estimated bicluster. It can be
written as follows

rec = recall(B,X) =
|B ∩X|

|B|
. (3)

We consider here three popular measures used in the
biclustering problem: Dice, Jaccard and goodness
measures.

2.1. Dice Measure

The Dice measure is the ratio between the intersection
and the size of true and estimated biclusters.

Mdice(B,X) =
2|B ∩X|

|B|+ |X|
. (4)

Plugging (2) and (3) in (4), the Dice measure becomes

Mdice(B,X) = 2
pre.rec

pre+ rec
. (5)

The Dice measure is the harmonic mean of precision
and recall, it also corresponds to the traditional bal-
anced F-score.
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2.2. Jaccard Measure

The Jaccard measure is the ratio between the intersec-
tion and union of true and estimated biclusters.

Mjaccard(B,X) =
|B ∩X|

|B|+ |X| − |B ∩X|
. (6)

Plugging (2) and (3) in (6), the Jaccard takes the fol-
lowing form

Mjaccard(B,X) =
pre.rec

pre+ rec− pre.rec
(7)

Note that Mdice and Mjaccard are compat-
ible i.e. let X1 and X2 be two biclus-
ters Mdice(B,X1) ≤ Mdice(B,X2) ⇐⇒
Mjaccard(B,X1) ≤ Mjaccard(B,X2).

2.3. Goodness Measure

We also consider a third measure that is the mean of
precision and recall. It has not conventional names, it
is called here the Goodness measure:

Mgood =
1

2
(pre+ rec). (8)

3. Precision-Recall Space

3.1. Definitions and properties

An efficient analysis and visualization tool for these
measures is the precision-recall space. It is a 2D space,
where the performance of an estimated bicluster is rep-
resented by a point in this space (Figure 1).

Figure 1. Precision-Recall space

The precision-recall space is close to the ROC space
that is defined by the false and true positive rate. Some

relationships have been identified between precision-
recall and ROC spaces (Davis & Goadrich, 2006). A
point on the precision-recall space represents the per-
formance of all biclusters with the same size |X| and
the same intersection |B ∩X|. The point (1, 1) (black
dot), maximising both precision and recall, represents
the perfect bicluster, i.e. equal to the true bicluster.

The point (1, |B|
|D| ) (black square) represents the case

where the estimated bicluster is equal to the whole
data matrix X = D. The horizontal bold line cor-
responds to the expected performances of a random
bicluster, i.e. bicluster where the set of examples and
features are randomly selected. Since it depends on the
size of the true bicluster |B|, the expected precision

of a random bicluster is constant and [pre] = |B|
|D| .

The expected recall of a random bicluster depends on
the size of the estimated bicluster |X|, it is equal to

[rec] = |X|
|D| . The gray area represents performances

that cannot be reached by a bicluster. From (2) and

(3), note that pre ≥ |B|
|D|rec since |X| ≤ |D|, then all

estimated biclusters whose the performance are repre-

sented by a point on the line pre = |B|
|D|rec are the bi-

clusters with the minimal intersection possible |B∩X|
for a given size |X|. The point (0,0) represents all bi-
clusters whose the intersection with the true bicluster
is null.

The behavior of the different measures can be illus-
trated by the isometrics. The isometrics are collec-
tions of points in the precision-recall space with the
same value for the metric (Flach, 2003). They are rep-
resented in the precision-recall space by lines or curves.
The isometrics of precision are represented by horizon-
tal lines and isometrics of recall by vertical lines. The
three panels of the figure 2 show respectively the iso-
metrics of Goodness, Dice and Jaccard measures. The
isometrics of goodness are lines whose the slope is -1.
The isometrics of Jaccard and Dice are curves whose
the inflexion point lies on the line precision = recall.
The three measures give the same importance to the
precision and recall but they can be sensitive to the dis-
proportion between precision and recall. We see that
Goodness does not take into account this disproportion
whereas Dice and Jaccard are very sensitive, they pro-
mote balanced biclusters, i.e. biclusters where preci-
sion and recall are equal. Note that precision = recall

implies equality of Dice and Goodness. The more we
move away from the line precision = recall, the more
we are penalized by Dice. On the other hand, the
isometrics of Dice and Jaccard are similar; the figure
2 illustrates that these two measures are compatible
since if we draw their isometrics on the same graph-
ics, the lines do not cross. There is a difference in the
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Goodness Dice Jaccard

Figure 2. Isometrics of Goodness, Dice and Jaccard measure in the Precision-Recall space.

distribution of their values. The isometrics of Jaccard
are more concentrated to the point (1,1) meaning that
the range of values used to measure the bicluster per-
formances is larger for good biclusters than with the
Dice measure. Whereas for bad and medium biclusters
the range of Jaccard is smaller than the range of Dice.
This analysis leads to the following recommendations:
if we do not care about the disproportion of precision
and recall, we should use the Goodness measure. If we
want "equilibrate" biclusters, we should use Dice or
Jaccard. We will prefer the Jaccard measure in easy
biclustering problems, where the estimated biclusters
tend to obtain good performances. However, the Dice
measure could be used in harder problems, where the
estimated biclusters are not good enough.

3.2. Precision-Recall Tradeoff

All performance measures given in the previous sec-
tion consider that the precision and recall have the
same importance, but in practice, this is not always
the case. For example, in microarray data analysis,
biclustering is used to select subset of genes present-
ing some potentially interesting patterns. Then the
elements contained in the bicluster are analyzed man-
ually by a biologist in comparing the corresponding
genes with the bibliography and making some biolog-
ical experiments. Biclustering is therefore used as a
preprocessing method in order to reduce the size of the
data. In this context, recall is much more important
than precision. A measure giving the same importance
to recall and precision is therefore not suitable for this
problem. A reliable performance measure should use
a tradeoff between precision and recall adapted to the
context. We present a variant of Goodness in introduc-
ing a parameter R that controls the tradeoff precision-

recall:

Mgood =
1

R+ 1
(R.pre+ rec), (9)

where R is the ratio of importance of precision com-
pared to recall, for example R = 2 means that preci-
sion is twice more important than recall. When R = 1
precision and recall have the same importance and we
obtain the same definition as in formulas (6). The de-
nominator (R + 1) is a normalization term such that
Goodness remains in [0, 1]. In the previous section we
have shown that Dice is actually the F1-measure. We
can use the parameter β of the F-measure to control
the tradeoff precision recall:

MFmeasure(B,X) = (1 + β2)
pre.rec

β2pre+ rec
, (10)

where β is the ratio of importance of precision com-
pared to recall. When β = 1 precision and recall have
the same importance and obtain the definition of the
Dice measure (4). In the rest of this paper, we replace
Dice by F-measure since Dice is just a special case.

4. Size Bias Correction

In the comparison studies, generally we have to com-
pare biclustering algorithms that produce estimated
biclusters of different sizes. A major problem of the
performance measures is that they have a bias de-
pending on the size of estimated biclusters. We have
performed some experiments to point out this bias.
We have considered a 100× 100 data matrix contain-
ing a true bicluster B of size 30 × 30 or 50 × 50.
We have generated 10000 random biclusters of vari-
ous sizes and computed their performance in studied
measures terms. For each bicluster, we computed its
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Figure 3. Performance measure for random biclustering.

precision, recall, Goodness (R = 1), Jaccard and F-
measure (β = 1).

The figure 3 shows the average of the performance
measures in function of the size of the biclusters, the
size of the true bicluster is |B| = 50 × 50. Full and
dotted gray lines represent recall and precision. We
see that the precision does not depend on the size of
the estimated bicluster, its line is constant and equal

to |B|
|D| = 2500

10000 = 0.25. The recall increases linearly

with |X|, the slope of the line is |1|
|D| = 10−4. The

circle, cross and triangle curves represent Goodness,
Jaccard and F-measure respectively. Without surprise
we observe that Goodness increases linearly with |X|
since it is a linear combination of recall and precision.
Jaccard and F-measure are increasing with |X|. The
increase is strong for small estimated biclusters and
weak for large estimated biclusters. Jaccard measure
tends to the precision when |X| tends to |D|. Since all
biclusters are randomly chosen, we expected that all
of them obtain the same performance, but this is not
the case. This figure shows that there is a size bias for
all measures (excepted precision). The large biclusters
are at an advantage compared to small biclusters. The
consequence of this bias is that the comparison of dif-
ferent biclustering algorithms producing biclusters of
different sizes is not reliable and may lead to wrong
conclusions.

5. Corrected Measures

We propose some modifications of the different biclus-
tering measures in order to remove the effect of size

bias. Our approach is to apply the following correc-
tion:

M(B,X)correct =
M(B,X)− [M(B,X)]

1− [M(B,X)]

where [M(B,X)] corresponds to the expected value
of the measure M for a random bicluster of size |X|.
The subtraction by [M(B,X)] removes the effect of
the size bias, the denominator adjusts the range of the
measure such that 1 corresponds to the perfect biclus-
ter and 0 to the worst performance, i.e. equivalent to
a random bicluster. Note that the corrected measure
is actually defined in [-1,1], but the negative values
means that the biclusters are worse than random bi-
clusters. The performance of this kind of biclusters
can be considered equal to 0 and the corrected mea-
sure defined in the range [0, 1]. This type of correction
has already been used in some works (Lee et al., 2011),
but its computation was empirical. It was estimated
by the average of measures obtained by generating a
large set of random biclusters. This method has some
drawbacks. It is very time consuming since we need to
generate and compute the performance of several hun-
dreds or thousands of biclusters. Moreover, since we
do not know the variance of M(B,X), the minimum
number of iterations to obtain a reliable estimation of
[M(B,X)] is unknown, so this estimation may be

inaccurate. In the following, we present an analytical
formulation of this correction and show how to com-
pute it quickly and accurately.

In the previous sections, we have already shown that
the expected precision and recall for a random biclus-

ter of size |X| are [pre] = |B|
|D| and [rec] = |X|

|D|

respectively. Hereafter we describe the expectation of
Goodness, F-measure and Jaccard measures.

Property 1 The expected Goodness for a random

bicluster of size |X| is defined by R|X|+|B|
|D|(R+1) .

Proof:

[Mgoodness(B,X)] = [
1

R+ 1
(R.pre+ rec)]

=
1

R+ 1
(R

|B|

|D|
+

|X|

|D|
)

=
R|B|+ |X|

|D|(R+ 1)
.

Property 2 The expected F-measure for a random

bicluster of size |X| is defined by (1+β2) |B||X|
|D|(β2|B|+|X|) .

Proof:
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For a given bicluster size |X|, precision and recall are

totally correlated and we have pre = |B|
|X|rec, then

[MFmeasure(B,X)) =

[

(1 + β2)
pre.rec

β2pre+ rec

]

=



(1 + β2)

|B|
|X|rec

2

β2 |B|
|X|rec+ rec





= (1 + β2)
|X|

β2|B|+ |X|

|B|

|X|
[rec]

= (1 + β2)
|B||X|

|D|(β2|B|+ |X|)
.

Property 3 The expected Jaccard measure for a
random bicluster of size |X| can be approximated by

|B||X|
|D||B|+|D||X|−|B||X| .

Proof:

[Mjaccard(B,X))] =

[

pre.rec

pre+ rec− pre.rec

]

=





|B|
|X|rec

2

|B|
|X|rec+ rec− |B|

|X|rec
2





=

[

|B|rec

|B|+ |X| − |B|rec

]

.

The computation of this expectation being not
tractable we propose to approximate it by

|B| [rec]

|B|+ |X| − |B| [rec]
=

|B||X|

|D||B|+ |D||X| − |B||X|
.

The three panels of the figure 4 show respectively
the isometrics of corrected Goodness (R = 1), F-
measure (β = 1) and Jaccard where |D| = 10000
and |B| = 2000. Around the point (1,1) the isomet-
rics of corrected measures are close to the isometrics
of uncorrected measures. The isometrics representing
M(B,X) = 0 lies on the horizontal line of random bi-
cluster defined on the figure 1. We see that the isomet-
rics of corrected measures are more complex than the
uncorrected measures. The visualization of the results
in the precision-recall space becomes more difficult.
That is a drawback of the application of these correc-
tions to the performance measures, the interpretability
of the results decreases.

6. Corrected precision-recall space

In order to combine the advantages of corrected mea-
sures and the simple interpretation and visualization of

uncorrected measures, we propose to represent the re-
sults in a new space. We define the corrected precision-
recall space from the corrected recall and corrected
precision.

precorrect =
pre−

|B|
|D|

1−
|B|
|D|

= |D|pre−|B|
|D|−|B|

reccorrect =
rec−

|X|
|D|

1−
|X|
|D|

= |D|rec−|X|
|D|−|X| .

(11)

The figure 5 depicts the isometrics of precision and re-
call in the precision-recall space (top) and their trans-
formation in the corrected precision-recall space (bot-
tom). This figure illustrates the deformation of the
space when corrected precision and recall are used.
In the corrected-space all points representing perfor-
mances of random biclusters, i.e. points lying on the
dotted lines in uncorrected-space, have been moved
to the point (0,0). The points (0,0) and (1,1) repre-
sent respectively the worst and best performance. The
gray area of uncorrected-space vanishes, all points of
the corrected-space are possible.

uncorrected-space corrected-space

Figure 5. Comparison of the Precision-Recall space (left)
and corrected Precision-Recall space (right).

From this new space, we define corrected-space mea-
sures. A corrected-space measure is computed with the
uncorrected formulas of the measure but the corrected
precision and recall are used instead of the uncorrected
precision and recall. For example the corrected-space
F-measure is computed from the formula (10) in using
the corrected precision and recall defined in (11). In
analysing the corrected-space Goodness, Jaccard and
Dice measure, we find out some interesting properties:

Property 4 The isometrics of corrected-space
Goodness, Jaccard and Dice measure in the corrected
precision-recall space are exactly the same as the un-
corrected Goodness, Jaccard and Dice measure in the
precision-recall space (see figure 2).

Property 5 The corrected-space F-measure is equal
to the corrected F-measure.
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Goodness F-measure Jaccard

Figure 4. Isometrics of corrected Goodness, F-measure and Jaccard in the precision-recall space.

Property 6 The corrected-space Jaccard measure is
compatible with the corrected Jaccard measure.

Property 7 The Jaccard and F-measure are com-
patible in the corrected-space

All of these propositions can be easily demonstrated in
replacing the precision and recall by the corrected pre-
cision and recall in the formulas of Jaccard (7), Good-
ness (9) and F-measure (10). Notice that there are
no propositions about the relation between corrected-
space goodness and corrected goodness. We can
demonstrate that these two measures are theoretically
not compatible, but we will see in the next section
that, in practice, corrected-space Goodness and cor-
rected goodness are compatible in the most part of the
cases. These two measures diverge only in the extreme
cases where the estimated bicluster is very large.

7. Experiments

We will show the interest of our approach in order
to obtain a reliable performance measure of biclusters
and biclustering algorithms. These experiments have
two objectives. The first one is to point out the signifi-
cant difference between the uncorrected measures and
the corrected, correct space measures. The second is to
show that results of the corrected and corrected-space
measures are compatible. This point has a high impact
on the model selection and algorithm comparison.

In our experiment, a 100×100 artificial data matrix is
generated, in which a 40×20 bicluster is included using
the same model described in the Cheng and Church’s
paper (Cheng & Church, 2000). We use the popu-
lar Cheng and Church algorithm to identify an esti-
mated bicluster in this data matrix. This algorithm
depends on the parameter δ representing the maxi-

Figure 6. Jaccard measure in function of the delta thresh-
old with the Cheng and Church algorithm. The uncor-
rected measure is represented by the full line, the corrected
measure by the dotted lines and the corrected-space mea-
sure by the gray line. The blacks dots represent the maxi-
mal measure and the optimal threshold for each measure.

mum allowed mean square error in the estimated bi-
cluster. The size and the quality of the estimated bi-
cluster strongly depend on this parameter. The choice
of the δ’s value is therefore critical. Generally, the
value that maximizes the biclustering measure is cho-
sen. The figure 6 illustrates that using an uncorrected
measure leads to a different value of δ than the cor-
rected and corrected-space, a suboptimal bicluster is
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Table 1. Three comparisons of different estimated biclusters with corrected (cor.) and uncorrected (uncor.) measures
according to various sizes of biclusters.

Goodness Jaccard F-measure
size uncor. cor. cor.-space uncor. cor. cor.-space uncor. cor. cor.-space

X1 800 0.70 0.67 0.67 0.54 0.52 0.51 0.70 0.67 0.67

X2 800 0.62 0.59 0.59 0.45 0.43 0.42 0.62 0.59 0.59
X3 1600 0.49 0.45 0.46 0.28 0.26 0.25 0.43 0.40 0.40

X4 266 0.60 0.52 0.55 0.29 0.24 0.23 0.45 0.38 0.37
X5 3200 0.40 0.29 0.30 0.18 0.12 0.11 0.30 0.20 0.20
X6 400 0.38 0.34 0.34 0.20 0.18 0.17 0.33 0.30 0.30

therefore produced. This figure shows the Jaccard
measure of the estimated bicluster (y-axis) in function
of the δ threshold (x-axis). The uncorrected measure
is represented by the full line, the corrected measure
by the dotted lines and the measure in the corrected-
space by the gray line. The blacks dots represent the
measure maximum and the optimal threshold for each
measure. The dotted line and gray line have exactly
the same shape, confirming that Jaccard and its cor-
rected are compatible in the corrected-space. We see
that the value of the optimal threshold for uncorrected
Jaccard (δ∗uncor = 67.9) is very different than optimal
threshold of corrected and corrected-space measures
(δ∗cor = δ∗space = 33.5). The estimated bicluster re-
turned by the uncorrected measure has a size of 3294
whereas the bicluster size from corrected measures is
475. This is an example of how the size bias can be
affected the biclustering algorithm and leads to a sub-
optimal results. We also point out that the corrected
and corrected-space measures give the same optimal δ
i.e. the same estimated bicluster.

We reuse the same data matrix in the next experiment
to show the impact of the different measures in the bi-
cluster comparison. We generate different estimated
biclusters of various size and quality. For each of
them, the uncorrected, corrected and corrected-space
versions of all measures are computed. We compare
all biclusters two by two and identify the best one for
each measure. Since we generated 50 estimated biclus-
ters, we have 1225 bicluster comparisons. The table 1
gives three examples of comparisons (X1 vs X2, X3 vs
X4, X5 vs X6).

• In the first one, all measures show that X1 is bet-
ter than X2. But note that X1 and X2 have the
same size (equal to the size of the true bicluster),
there is no size bias, all measures give therefore
the same conclusion.

• In the second comparison, X3 is a large bicluster
and X4 a small one. The uncorrected F-measure

and Jaccard give X4 as the best bicluster whereas
their corrected and corrected-space versions show
that X3 is better than X4.

• In the third comparison, the uncorrelated Good-
ness does not give the same conclusion that cor-
rected and corrected-space measures. Over all
comparisons, we notice that the uncorrected mea-
sures give different conclusions than corrected and
corrected-space measures in almost 20% of the
comparisons. In these cases the use of an uncor-
rected measure leads to the wrong conclusions.
The corrected and corrected-space measures give
the same conclusions in almost all cases (98.8%).
The differences appear only with the Goodness
measure with extremely large biclusters.

8. Discussion and Conclusion

In this paper, we have presented several external mea-
sures in biclustering context. The analysis of these
measures on the precision-recall space shows that the
choice of a given measure implies some assumptions
on the biclusters. Our analysis leads us to the follow-
ing recommendations: If the precision and recall have
the same importance, Goodness (R = 1), Dice or Jac-
card can be used. In the other case, the Goodness
and F-measure should be preferred, the parameters R

and β control the tradeoff precision-recall. As all of
these measures are affected by the size bias advantag-
ing the large biclusters, we have proposed an efficient
correction of this bias for each measure. We suggest
to compute the measures in the corrected precision-
recall space. Our experiments have shown that the
assessment of performance must be chosen carefully, if
the measure is not adapted to the context of the prob-
lem, the comparison study may be biased and leads to
wrong conclusions.
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