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Abstract

This paper describes a new online convex op-
timization method which incorporates a fam-
ily of candidate dynamical models and es-
tablishes novel tracking regret bounds that
scale with the comparator’s deviation from
the best dynamical model in this family. Pre-
vious online optimization methods are de-
signed to have a total accumulated loss com-
parable to that of the best comparator se-
quence, and existing tracking or shifting re-
gret bounds scale with the overall variation of
the comparator sequence. In many practical
scenarios, however, the environment is non-
stationary and comparator sequences with
small variation are quite weak, resulting in
large losses. The proposed Dynamic Mirror
Descent method, in contrast, can yield low
regret relative to highly variable comparator
sequences by both tracking the best dynam-
ical model and forming predictions based on
that model. This concept is demonstrated
empirically in the context of sequential com-
pressive observations of a dynamic scene and
tracking a dynamic social network.

1. Introduction

In a variety of large-scale streaming data problems,
ranging from motion imagery formation to network
analysis, dynamical models of the environment play a
key role in performance. Classical stochastic filtering
methods such as Kalman or particle filters or Bayesian
updates (Bain & Crisan, 2009) readily exploit dynami-
cal models for effective prediction and tracking perfor-
mance. However, classical methods are also limited in
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their applicability because (a) they typically assume
an accurate, fully known dynamical model and (b)
they rely on strong assumptions regarding a genera-
tive model of the observations. Some techniques have
been proposed to learn the dynamics (Xie et al., 1994;
Theodor & Shaked, 1996), but the underlying model
still places heavy restrictions on the nature of the data.
Performance analysis of these methods usually does
not address the impact of “model mismatch”, where
the generative models are incorrectly specified.

A contrasting class of prediction methods is based
on an “individual sequence” or “universal predic-
tion” (Merhav & Feder, 1998) perspective; these strive
to perform provably well on any individual observa-
tion sequence. In particular, online convex program-
ming methods (Nemirovsky & Yudin, 1983; Beck &
Teboulle, 2003; Zinkevich, 2003; Cesa-Bianchi & Lu-
gosi, 2006) rely on the gradient of the instantaneous
loss of a predictor to update the prediction for the next
data point. The aim of these methods is to ensure that
the per-round performance approaches that of the best
offline method with access to the entire data sequence.
This approach allows one to sidestep challenging is-
sues associated with statistically dependent or non-
stochastic observations, misspecified generative mod-
els, and corrupted observations. This framework is
limited as well, however, because performance bounds
are typically relative to either static or piecewise con-
stant comparators and do not adequately reflect adap-
tivity to a dynamic environment.

This paper describes a novel framework for prediction
in the individual sequence setting which incorporates
dynamical models – effectively a novel combination of
state updating from stochastic filter theory and online
convex optimization from universal prediction. We es-
tablish tracking regret bounds for our proposed algo-
rithm, Dynamic Mirror Descent (DMD), which scale
with the deviation of a comparator sequence from a se-
quence evolving with a known dynamic. These bounds
simplify to previously shown bounds, when there are
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no dynamics. We further establish tracking regret
bounds for another algorithm, Dynamic Fixed Share
(DFS), which scale with the deviation of a compara-
tor sequence from a sequence evolving with the best
sequence of dynamical models. While our methods and
theory apply in a broad range of settings, we are par-
ticularly interested in the setting where the dimen-
sionality of the parameter to be estimated is very high
relative to the data volume. In this regime, the incor-
poration of both dynamical models and sparsity regu-
larization plays a key role. With this in mind, we focus
on a class of methods which incorporate regularization
as well as dynamical modeling. The role of regular-
ization, particularly sparsity regularization, is increas-
ingly well understood in batch settings and has re-
sulted in significant gains in ill-posed and data-starved
settings (Banerjee et al., 2008; Ravikumar et al., 2010;
Candès et al., 2006; Belkin & Niyogi, 2003).

In our experiments, we consider reconstructing motion
imagery from sequential observations collected with a
compressive camera and estimating the dynamic social
network underlying over 200 years of U.S. Senate roll-
call data. There has been significant recent interest in
using models of temporal structure to improve time se-
ries estimation from compressed sensing observations
(Angelosante et al., 2009; Vaswani & Lu, 2010) or for
time-varying networks (Snijders, 2001; Kolar et al.,
2010); the associated algorithms, however, are typi-
cally batch methods poorly suited to large quantities
of streaming data. This paper strives to bridge that
gap.

2. Problem formulation

Let X denote the domain of our observations, and let
Θ denote a convex feasible set. Given sequentially ar-
riving observations x ∈ X∞, we wish to construct a
sequence of predictions θ̂ = (θ̂1, θ̂2, . . .) ∈ Θ∞, where

θ̂t may depend only on the currently available obser-
vations xt−1 = (x1, . . . , xt−1). We pose our problem
as a dynamic game between a Forecaster and the En-
vironment. At time t, the Forecaster computes a pre-
diction, θ̂t and the Environment generates the obser-
vation xt. The Forecaster then experiences the loss
`t(θ̂t), defined as follows. Let F and R denote fam-
ilies of convex functions, and let ft(·),f(·, xt) ∈ F
be a cost function measuring the accuracy of the pre-
diction θ̂t with respect to the datum xt. Similarly,
let r(·) ∈ R be a regularization term which does not
change over time; for instance, r might promote spar-
sity or other low-dimensional structure in the poten-
tially high-dimensional space Θ. The loss at time t

is
`t(·),ft(·) + r(·)

where

`t ∈ L,{` = f + r : f ∈ F , r ∈ R}.

The task facing the Forecaster is to create a new pre-
diction θ̂t+1 based on the previous prediction and the
new observation, with the goal of minimizing loss at
the next time step. We characterize the efficacy of
θ̂T,(θ̂1, θ̂2, . . . , θ̂T ) ∈ ΘT relative to a comparator se-
quence θT,(θ1, θ2, . . . , θT ) ∈ ΘT as follows:

Definition 1 (Regret). The regret of θ̂T with respect
to a comparator θT ∈ ΘT is

RT (θT ),
T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt).

Previous work proposed algorithms which yielded re-
gret of O(

√
T ) for static comparators, where θt = θ for

all t. Our goal is to develop an online convex optimiza-
tion algorithm with low regret relative to a broad fam-
ily of time-varying comparator sequences. In particu-
lar, our main result is an algorithm which incorporates
a dynamical model, denoted Φt, which admits a regret
bound of the form O(

√
T [1+

∑
t ‖θt+1−Φt(θt)‖]). This

bound scales with the compartor sequence’s deviation
from the dynamical model Φt – a stark contrast to pre-
vious tracking regret bounds which are only sublinear
for comparators which change slowly with time or at
a small number of distinct time instances.

3. Static, tracking, shifting, and
adaptive regret

In much of the online learning literature, the com-
parator sequence is constrained to be static or time-
invariant. In this paper we refer to the regret with
respect to a static comparator as static regret:

Definition 2 (Static regret). The static regret of θ̂T
is

RT,
T∑
t=1

`t(θ̂t)−min
θ∈Θ

T∑
t=1

`t(θ).

Static regret bounds are useful in characterizing how
well an online algorithm performs relative to, say,
a loss-minimizing batch algorithm with access to all
the data simultaneously. More generally, static re-
gret bounds compare the performance of the algorithm
against a static point, θ∗, which can be chosen with full
knowledge of the data.

However, this form of analysis fails to illuminate the
performance of online algorithms in dynamic settings
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where a static comparator is inappropriate. Perfor-
mance relative to a temporally-varying or dynamic
comparator sequence has been studied previously in
the literature in the context of tracking regret, shift-
ing regret (Herbster & Warmuth, 2001; Cesa-Bianchi
et al., 2012), and the closely-related concept of adap-
tive regret (Littlestone & Warmuth, 1994; Hazan &
Seshadhri, 2009).

In particular, tracking regret compares the output
of the online algorithm to a sequence of points
θ∗1 , θ

∗
2 , ..., θ

∗
T which can be chosen collectively with full

knowledge of the data. This is a fair comparison for
a batch algorithm that detects and fits to drift in the
data, instead of fitting a single point. Frequently, in
order to bound tracking regret there needs to be a mea-
sure of the complexity of the sequence θ∗1 , θ

∗
2 , ..., θ

∗
T+1.

Typically, this complexity is characterized via a mea-
sure of the temporal variability of the sequence, such
as

V (θT ),
T∑
t=1

‖θt+1 − θt‖.

If this complexity is allowed to be very high, we could
imagine that the comparator series would fit the series
of losses closely and hence generalize poorly. Con-
versely if this complexity is restricted to be 0, the
tracking regret becomes equivalent to static regret.
Tracking and shifting regret are the same concept, al-
though the term shifting regret is used more in the
“experts” setting, while tracking regret tends to be a
more generic term.

Adaptive regret is a related concept to tracking regret.
Instead of measuring accumulated regret over the en-
tire series, however, adaptive regret measures accumu-
lated loss over an arbitrary time interval of length τ ,
and measures performance against a static comparator
chosen optimally on this interval:

Rτ, max
[r,s]⊂[1,T ];s+1−r≤τ

[
s∑
t=r

`t(θ̂t)−min
θ∈Θ

s∑
t=r

`t(θ)

]

This is a valuable metric as it assures that a process
will have low loss not just globally, but also at any
given moment. Intuitively we can see that an algo-
rithm with low adaptive regret on any interval should
also have low tracking regret and vice versa. The re-
lationship between the two has been formally shown
(Cesa-Bianchi et al., 2012).

In this paper, we present tracking/shifting regret
bounds which rely on a much more general notion of
the complexity of a comparator sequence. In particu-
lar, we could measure the complexity of a sequence in
terms of how much it deviates from a given dynamical

model, denoted Φt:

VΦ(θT ),
T∑
t=1

‖θt+1 − Φt(θt)‖. (1)

Ultimately, we consider a family of dynamical models,
and we measure the complexity of a comparator in
terms of how much it deviates from the best sequence
of dynamical models in this family. (These concepts
will be formalized and detailed in the next two sec-
tions.)

It is intuitively satisfying that this measure appears in
the bound. Firstly, if the comparator actually follows
the dynamics, we would imagine this complexity to be
very small, leading to low tracking regret. This fact
holds whether Φt is part of the generative model for the
observations or not. Secondly, we can get a dynamic
analog of static regret, where we enforce VΦ(θT ) = 0.
This is equivalent to saying that the batch comparator
is fitting the best single trajectory using Φt instead of
the best single point. Using this, we would recover a
bound analogous to a static regret bound in a station-
ary setting.

Concurrent related work considers online algorithms
where the data sequence is described by a “predictable
process” (Rakhlin & Sridharan, 2012). By knowing
a good estimate for the underlying process, they can
create a prediction sequence that follows accordingly,
reducing overall loss. However, they express their re-
sults in terms of a static regret bound (i.e., regret with
respect to a static comparator) with a variation term
that expresses the deviation of the input data from
the underlying process. In contrast, we make no as-
sumptions about the data itself, but instead on the
comparator series, and form tracking regret bounds.

4. Online convex optimization

One common approach to forming the predictions θ̂t,
Mirror Descent (MD) (Nemirovsky & Yudin, 1983;
Beck & Teboulle, 2003), consists of solving the fol-
lowing optimization problem:

θ̂t+1 =arg min
θ∈Θ

ηt〈∇`t(θ̂t), θ〉+D(θ‖θ̂t), (2)

where ∇`t(θ) denotes an arbitrary subgradient of `t at

θ, D(θ‖θ̂t) is the Bregman divergence between θ and

θ̂, and ηt ≥ 0 is a step size parameter. Let ψ denote a
continuously differentiable function that is σ-strongly
convex with respect to a norm ‖ · ‖ on the set Θ for
some σ > 0; the Bregman divergence associated with
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ψ is defined as

D(θ1‖θ2) =Dψ(θ1‖θ2) (3a)

,ψ(θ1)− ψ(θ2)− 〈∇ψ(θ2), θ1 − θ2〉 (3b)

≡D(θ3‖θ2) +D(θ1‖θ3)

+ 〈∇ψ(θ2)−∇ψ(θ3), θ3 − θ1〉 (3c)

for all θ1, θ2, θ3 ∈ Θ, and the strong convexity of ψ
implies

D(θ1‖θ2) ≥ σ

2
‖θ1 − θ2‖2.

The MD approach is a generalization of online learning
algorithms such as online gradient descent (Zinkevich,
2003) and weighted majority (Littlestone & Warmuth,
1994). Several recently proposed methods consider the
data-fit term separately from the regularization term
(Duchi et al., 2010; Xiao, 2010; Langford et al., 2009).
For instance, consider Composite Objective Mirror De-
scent (COMD) (Duchi et al., 2010):

θ̂t+1 =arg min
θ∈Θ

ηt〈∇ft(θ̂t), θ〉+ ηtr(θ) +D(θ‖θ̂t). (4)

This formulation is helpful when the regularization
function r(θ) promotes sparsity in θ, and helps en-

sure that the individual θ̂t are indeed sparse, rather
than approximately sparse as are the solutions to the
MD formulation. The regret of this approach has pre-
viously been characterized as follows:

Theorem 3 (Static regret for COMID (Duchi
et al., 2010)). Let Gf,maxθ∈Θ,f∈F ‖∇f(θ)‖, Dmax =

maxθ1,θ2∈ΘD(θ1‖θ2) and assume that θ,θ1 =

θ2 = · · · = θT . If r(θ̂1) = 0 and ηt =
(2σDmax)1/2/(Gf

√
T ), then

RT (θT ) ≤ Gf (2TDmax/σ)1/2.

5. Dynamical models in online convex
programming

Unlike the bound in Theorem 3, tracking or shift-
ing regret (Cesa-Bianchi & Lugosi, 2006; Cesa-Bianchi
et al., 2012) bounds typically consider piecewise con-
stant comparators, where θt − θt−1 = 0 for all but
m values of t, where m is a constant, or yield regret
bounds which scale with

∑
t ‖θt − θt−1‖. In this pa-

per, we develop tracking regret bounds which are small
for much broader classes of dynamic comparator se-
quences.

In particular, we propose the following alternative to
(2) and (4), which we call Dynamic Mirror Descent

(DMD). Let Φt : Θ 7→ Θ denote a predetermined dy-
namical model, and set

θ̃t+1 =arg min
θ∈Θ

ηt〈∇ft(θ̂t), θ〉+ ηtr(θ) +D(θ‖θ̂t)

(5a)

θ̂t+1 = Φt(θ̃t+1) (5b)

By including Φt in the process, we effectively search
for a predictor which (a) attempts to minimize the loss

and (b) which is close to θ̃t under the transformation
of Φt. This is similar to a stochastic filter which al-
ternates between using a dynamical model to update
the “state”, and then uses this state to perform the
filtering action. A key distinction of our approach,
however, is that we make no assumptions about Φt’s
relationship to the observed data.

Our approach effectively includes dynamics into the
COMID approach. Indeed, for a case with no dynam-
ics, so that Φt(θ) ≡ θ for all θ and t, our method is
equivalent to COMID. Rather than considering CO-
MID, we might have used other online optimization
algorithms, such as the Regularized Dual Averaging
(RDA) method (Xiao, 2010), which has been shown
to achieve similar performance with more regularized
solutions. However, to the best of our knowledge,
no tracking or shifting regret bounds have been de-
rived for dual averaging methods (regularized or oth-
erwise). Recent results on the equivalence of COMID
and RDA (McMahan, 2011) suggest that the bounds
derived here might also hold for a variant of RDA, but
proving this remains an open problem.

Our main result uses the following definitions:

G`, max
θ∈Θ,`∈L

‖∇`(θ)‖

M,
1

2
max
θ∈Θ
‖∇ψ(θ)‖

Dmax, max
θ,θ′∈Θ

D(θ′‖θ),

and ∆Φt
, max
θ,θ′∈Θ

D(Φθ‖Φθ′)−D(θ‖θ′),

Theorem 4. Let Φt be a dynamical model such that
∆Φt

≤ 0. Let the sequence θ̂T be as in (5b), and
let θT be an arbitrary sequence in ΘT . Then the Dy-
namic Mirror Descent (DMD) algorithm using a non-
increasing series ηt+1 ≤ ηt gives

RT (θT ) ≤ Dmax

ηT+1
+

4M

ηT
VΦt(θT ) +

G2
`

2σ

T∑
t=1

ηt (6)

with VΦt
(θT ),

T∑
t=1

‖θt+1 − Φt(θt)‖ (7)
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where VΦt
(θT ) measures variations or deviations of the

comparator sequence θT from the dynamical model Φt.

Note that when Φt corresponds to an identity operator,
the bound in Theorem 4 corresponds to existing track-
ing or shifting regret bounds (Cesa-Bianchi & Lugosi,
2006; Cesa-Bianchi et al., 2012). The condition that
∆Φt ≤ 0 is similar to requiring that Φt be a contrac-
tion mapping. This restriction is important; without
it, any poor prediction made at one time step could
be magnified by repeated application of the dynam-
ics. Additive models and matrix multiplications with
all eigenvalues less than or equal to unity satisfy this
restriction. Notice also that if Φt = I for all t, the the-
orem gives a novel tracking regret bound for COMID.
To prove Theorem 4, we employ the following lemma,
which is proven in Section 9.

Lemma 5. Let the sequence θ̂T be as in (5b), and let
θT be an arbitrary sequence in ΘT ; then

`t(θ̂t)− `t(θt) ≤
1

ηt

[
D(θt‖θ̂t)−D(θt+1‖θ̂t+1)

]
+

∆Φt

ηt
+

4M

ηt
‖θt+1 − Φt(θt)‖+

ηt
2σ
G2
` .

Proof of Theorem 4: The proof is a matter of sum-
ming the bounds of Lemma 5 over time. For simplicity
denote Dt,D(θt‖θ̂t) and Vt,‖θt+1 − Φt(θt)‖. Then

RT (θT ) ≤
T∑
t=1

(
Dt

ηt
− Dt+1

ηt+1

)
+
G2
`

2σ

T∑
t=1

ηt

+Dmax

T∑
t=1

(
1

ηt+1
− 1

ηt

)
+

T∑
t=1

4M

ηt
Vt

≤Dmax

ηT+1
+

4M

ηT
VΦt

(θT ) +
G2
`

2σ

T∑
t=1

ηt. �

We set ηt using the doubling trick (Cesa-Bianchi & Lu-
gosi, 2006) whereby time is divided into increasingly
longer segments, and on each interval a temporary
time horizon is fixed, known, and used to determine
an optimal step size (generally proportional to the in-
verse of the square root of the time horizon). This
approach yields the regret bound:

R(θT ) = O(
√
T [1 + VΦt

(θT )])

This proof shares some ideas with the tracking regret
bounds of (Zinkevich, 2003), but uses properties of the
Bregman Divergence to eliminate some terms, while
additionally incorporating dynamics.

6. Prediction with a family of
dynamical models

DMD in the previous section uses a single dynamical
model. In practice, however, we do not know the best
dynamical model to use, or the best model may change
over time in nonstationary environments.

To address this challenge, we assume a finite set of

candidate dynamical models {Φ(1)
t ,Φ

(2)
t , . . .Φ

(N)
t }, and

describe a procedure which uses this collection to
adapt to nonstationarities in the environment. In par-
ticular, we establish tracking regret bounds for a com-
parator class with different dynamical models on dif-
ferent time intervals. This class, Θm, can be described
as all predictors defined on m+1 segments [ti, ti+1−1]
with time points 1 = t1 < · · · < tm+2 = T + 1. For a
given θT ∈ Θm and k = 1, . . . ,m+ 1, let

V (m+1)(θT ),

min
t2,...,tm+1

m+1∑
k=1

min
ik∈{1,...,N}

tk+1−1∑
t=tk

‖θt+1 − Φ
(ik)
t (θt)‖

denote the deviation of the sequence θT from the best
series of m+ 1 dynamical models.

Let θ̂
(i)
t denote the output of the DMD algorithm of

Section 5 using dynamical model Φ
(i)
t . Then tracking

regret can be expressed as:

RT (Θm) =

T∑
t=1

`t(θ̂t)− min
i1,...,iT

T∑
t=1

`t

(
θ̂

(it)
t

)
︸ ︷︷ ︸

T1

+ min
i1,...,iT

T∑
t=1

`t

(
θ̂

(it)
t

)
− min

θ∈Θm

T∑
t=1

`t(θt)︸ ︷︷ ︸
T2

(8)

where the minimization in the second term of T1 and
first term of T2 is with respect to sequences of dy-
namical models with at most m switches, such that∑T
t=1 1[it 6=it+1] ≤ m. In (8), T1 corresponds to the

tracking regret of our algorithm relative to the best
sequence of dynamical models within the DMD frame-
work, and T2 is the regret of that sequence relative to
the best comparator in the class Θm.

We choose θ̂t by using the Fixed Share (FS) forecaster

on the DMD estimates of (5), θ̂
(i)
t . In FS, each expert

(here, each candidate dynamical model) is assigned a
weight that is inversely proportional to its cumula-
tive loss at that point yet with some weight shared
amongst all the experts, so that an expert with very
small weight can quickly regain weight to become the
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leader (Cesa-Bianchi & Lugosi, 2006). Our estimate
is:

w̃i,t =wi,t−1 exp(−ηr`t(θ̂(i)
t )) (9)

wi,t =(λ/N)
∑N
j=1 w̃j,t + (1− λ)w̃i,t (10)

θ̂t =

N∑
i=1

wi,tθ̂
(i)
t /

N∑
i=1

wi,t. (11)

Following (Cesa-Bianchi & Lugosi, 2006), we have

T1 ≤
m+ 1

ηr
logN +

1

ηr
log

1

λm(1− λ)(T−m−1)
+
ηr
8
T

and T2 can be bounded using the method described
in Section 5 on each time interval [tk, tk+1 − 1] and
summing over the m+ 1 intervals, yielding

T2 ≤
(m+ 1)Dmax

ηT+1
+

4M

ηT
V (m+1)(θT ) +

G2
`

2σ

T∑
t=1

ηt.

Letting ηr = ηt = 1/
√
T , the overall expected tracking

regret is thus

RT (θT ) = O
(√

T
[
(m+ 1)(logN +Dmax)

+ log
1

λm(1− λ)(T−m−1)
+ 4MV (m+1)(θT )

])
.

The last term in this bound measures the deviation of
a comparator in Θm from the best series of dynamical
models over m + 1 segments (where m does not scale
with T ). Here λ is usually chosen to be m

T where m is
an upper bound on the number of switches, indepen-
dent of T . Again, if T is not known in advance the
doubling trick can be used. Note that V (m+1)(θT ) ≤
V

Φ
(i)
t

(θT ) for any fixed i ∈ {1, . . . , N}, thus this ap-

proach generally yields lower regret than using a fixed
dynamical model. However, we incur some loss by not
knowing the optimal number of switches m or when
the switching times are; these are accounted for in T1.

We use the Fixed Share algorithm as a means to amal-
gamate estimates with different dynamics, however
other methods could be used with various tradeoffs.
The Fixed Share algorithm, for instance, has linear
complexity with low regret, but with respect to a com-
parator class with fixed number of switches. Other al-
gorithms can accommodate larger classes of experts,
or not assume knowledge of the number of switches,
but come at the price of higher regret or complexity
as explained in (Gyorgy et al., 2012).

7. Experiments and results

To demonstrate the performance of Dynamic Mirror
Descent (DMD) combined with the Fixed share algo-
rithm (which we call Dynamic Fixed Share (DFS)), we

consider two scenarios: reconstruction of a dynamic
scene (i.e., video) from sequential compressed sensing
observations, and tracking connections in a dynamic
social network.

7.1. Compressive video reconstruction

To test DMD, we construct a video which contains an
object moving in a 2-dimensional plane; the tth frame
is denoted θt (a 150 × 150 image stored as a length-
22500 vector) which takes values between 0 and 1. The
corresponding observation is xt = Atθt +nt, where At
is a random 500×22500 matrix and nt corresponds to
measurement noise. This model coincides with several
compressed sensing architectures (Duarte et al., 2008).
We used white Gaussian noise with variance 1.

Our loss function uses ft(θ) = 1
2‖xt − Atθ‖22 and

r(θ) = τ‖θ‖1, where τ > 0 is a tuning parameter.
We construct a family of N = 9 dynamical mod-

els, where Φ
(i)
t (θ) shifts the frame, θ, one pixel in a

direction corresponding to an angle of 2πi/(N − 1)
as well as a “dynamic” corresponding to no motion.
(With the static model, DMD reduces to COMID.)
The true video sequence uses different dynamical mod-
els over t = {1, ..., 240} and t = {241, ..., 500}. Fi-
nally, we use ψ(·) = ‖ · ‖22 so the Bregman Divergence
D(x‖y) = ‖x−y‖22 is the usual squared Euclidean dis-
tance. The DFS forecaster uses λ = 0.01.
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Figure 1. Tracking dynamics using DFS and comparing in-
dividual models for directional (N, S, E, etc.) motion. Be-
fore t = 240 the NE motion dynamic model incurs small
loss, where as after t = 240 the SE motion does well, and
DFS successfully tracks this change.

Figures 1 and 2 show the impact of using DFS. We see
that DFS switches between dynamical models rapidly
and outperforms all of the individual predictions, in-
cluding COMID, used as a baseline, to show the ad-
vantages of incorporating knowledge of the dynamics.
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Figure 2. Instantaneous predictions at t = 480. Top Left:
θt. Top Right: θ̂

(SE)
t . Bottom Left: θ̂

(E)
t . Bottom Right:

θ̂t. The prediction made with the prevailing motion is an
accurate representation of the ground truth, while the pre-
diction with the wrong dynamic is an unclear picture. The
DFS algorithm correctly picks out the cleaner picture.

7.2. Tracking dynamic social networks

Dynamical models have a rich history in the context
of social network analysis (Snijders, 2001), but we are
unaware of their application in the context of online
learning algorithms. To show how DMD can bridge
this gap, we track the influence matrix of seats in
the US Senate from 1795 to 2011 using roll call data
(http://www.voteview.com/dwnl.htm). At time t, we
observe the “yea” or “nay” vote of each Senator, which
we represent with a +1 or −1. When a Senator’s vote
is unavailable (for instance, before a state joined the
union), we use a 0. We form a length p = 100 vector
of these votes indexed by the Senate seat, and denote
this xt.

Following (Ravikumar et al., 2010), we form a loss
function using a negative log Ising model pseudolikeli-
hood to sidestep challenging issues associated with the
partition function of the Ising model likelihood. For
a social network with p agents, θt ∈ [−1, 1]p×p, where
(θt)ab corresponds to the correlation in voting patterns
between agents a and b at time t. Let V denote the
set of agents, V\a the set of all agents except a, xa
the vote of agent a, and θa,{θab : b ∈ V}. Our loss
function is

ϕ
(a)
t (θa), log

[
exp

(
2θaaxa + 2

∑
b∈V\a θabxaxb

)
+ 1
]

f (a)(θa;x),− 2θaaxa − 2
∑
b∈V\a θabxaxb + ϕ

(a)
t (θa)

f(θ;x) =
∑
a∈V f

(a)(θa;x)

and r(θ) = τ‖θ‖1, where τ > 0 is a tuning parameter;
this loss is convex in θ. We set ψ(θ) = 1

2‖θ‖
2
2 and use

a dynamical model inspired by (Snijders, 2001), where
if |θac∗θbc∗ | > |θab|, with c∗ =arg maxc |θacθbc|, then:

(Φ
(i)
t (θ))ab = (1− αi)θab + αiθac∗θbc∗ .

Otherwise, θ̂
(i)
ab = θ̃

(i)
ab . The intuition is that if two

members of the network share a strong common con-
nection, they will become connected in time. We set
αi ∈ {0, .001, .002, .003, .004} for the different dynam-
ical models. We set τ = .1 and again set η using the
doubling trick with time horizons at set at increasing
powers of 10. As in (Langford et al., 2009), we find
that regularizing (e.g., thresholding) every 10 steps,
instead of at each time step, allows for the values to
grow above the threshold for meaningful relationships
to be found.
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Figure 3. Tracking a dynamic social network. Losses for
different dynamical models and the DFS predictions; α = 0
corresponds to COMID.
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Figure 4. Losses for individual senators. Low losses cor-
respond to predictable, consistent voting behavior, while
higher loss means less predictable
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Figure 3 shows the average per round loss of each
model, and the DFS estimator over a 30 year time
window. We see that applying the dynamical model
improves performance relative to COMID (αi = 0)
and that DFS aggregates the predictions successfully.
Figure 4 shows the moving average losses for a few
Senators, where high loss corresponds to behavior un-
expected in the model. Notice that John Kerry (D-
MA) has generally low loss, spikes around 2006, and
then drops again before a reelection campaign in 2008.

Looking at the network estimates of DFS across time
(as in Figure 5) we can see tight factions forming in the
mid- to late-1800s (post Civil War), followed by a time
when the factions dissipate in the mid-1900s during the
Civil Rights Movement. Finally, we see factions again
forming in more recent times. The seats are sorted sep-
arately for each matrix to emphasize groupings, which
align with known political factions.

1859 1877 1887

1905 1967 2011

Figure 5. Influence matrices for select years spanning Civil
War and Civil Rights Movement to present, showing for-
mation of factions. Warmer colors (reds and greens) cor-
respond to higher influence and colder (blue) corresponds
to lower influence. (Best viewed in color)

8. Conclusion and future directions

In this paper we have proposed a novel online op-
timization method, called Dynamic Mirror Descent
(DMD), which incorporates dynamical model state up-
dates. There is no assumption that there is a “true”
known underlying dynamical model, or that the best
dynamical model is unchanging with time. The pro-
posed Dynamic Fixed Share (DFS) algorithm adap-
tively selects the most promising dynamical model
from a family of candidates at each time step. Re-
cent work on shifting or tracking regret bounds for
online convex optimization further suggest that the
techniques developed in this paper may also be useful
for bounding adaptive regret or developing methods
for automatically tuning step-size parameters (Cesa-

Bianchi et al., 2012). In experiments with real and
simulated data, DMD shows strong tracking behavior
even when underlying dynamical models are switching.

9. Proofs

Proof of Lemma 5:

The optimality condition of (5a) implies

〈∇ft(θ̂t) +∇r(θ̃t+1), θ̃t+1 − θt〉 ≤
1

ηt
〈∇ψ(θ̂t)−∇ψ(θ̃t+1), θ̃t+1 − θt〉. (13)

Using this condition we can bound the instantaneous
regret as follows:

ft(θ̂t)− ft(θt) + r(θ̂t)− r(θt)

=ft(θ̂t)− ft(θt) + r(θ̂t)− r(θ̃t+1) + r(θ̃t+1)− r(θt)

≤〈∇ft(θ̂t), θ̂t − θt〉+ 〈∇r(θ̂t), θ̂t − θ̃t+1〉

+ 〈∇r(θ̃t+1), θ̃t+1 − θt〉 (14a)

≤ 1

ηt
〈∇ψ(θ̂t)−∇ψ(θ̃t+1), θ̃t+1 − θt〉

+ 〈∇ft(θ̂t) +∇r(θ̂t), θ̂t − θ̃t+1〉 (14b)

=
1

ηt

[
D(θt‖θ̂t)−D(θt+1‖θ̂t+1)

]
+ T3 + T4/ηt + T5/ηt where, (14c)

T3,−
1

ηt
D(θ̃t+1‖θ̂t) + 〈∇`t(θ̂t), θ̂t − θ̃t+1〉

T4,
[
D(Φt(θt)‖Φt(θ̃t+1))−D(θt‖θ̃t+1)

]
≤ ∆Φt

T5,
[
D(θt+1‖θ̂t+1)−D(Φt(θt)‖θ̂t+1)

]
.

Here, (14a) follows from the convexity of ft and r,
(14b) follows from the optimality condition of (5a),
and (14c) follows from (3c) and adding and subtracting
terms using the equivalence (5b). Each of term can be
bounded, and then combined to complete the proof.

T3 ≤−
σ

2ηt
‖θ̃t+1 − θ̂t‖2

+
σ

2ηt
‖θ̃t+1 − θ̂t‖2 +

ηt
2σ
G2
` =

ηt
2σ
G2
` (15a)

T5 =ψ(θt+1)− 〈∇ψ(θ̂t+1), θt+1 − θ̂t+1〉

− ψ(Φt(θt)) + 〈∇ψ(θ̂t+1),Φt(θt)− θ̂t+1〉

=ψ(θt+1)− ψ(Φt(θt))− 〈∇ψ(θ̂t+1), θt+1 − Φt(θt)〉
≤4M‖θt+1 − Φt(θt)‖ (15b)

where (15a) is due to the strong convexity of the Breg-
man Divergence and Young’s inequality and (15b) is
due to the convexity of ψ and the Cauchy-Schwarz in-
equality. Combining these inequalities with (14c) gives
the Lemma as it is stated. �
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