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Abstract

Visual inspection of neuroimagery is suscepti-
ble to human eye limitations. Computerized
methods have been shown to be equally or
more e↵ective than human clinicians in di-
agnosing dementia from neuroimages. Nev-
ertheless, much of the work involves the use
of domain expertise to extract hand–crafted
features. The key technique in this paper is
the use of cross–domain features to represent
MRI data. We used a sparse autoencoder to
learn a set of bases from natural images and
then applied convolution to extract features
from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset. Using this new
representation, we classify MRI instances
into three categories: Alzheimer’s Disease
(AD), Mild Cognitive Impairment (MCI) and
Healthy Control (HC). Our approach, in spite
of being very simple, achieved high classifica-
tion performance, which is competitive with
or better than other approaches.

1. Introduction

Alzheimer’s disease (AD) is a major cause of demen-
tia. It is progressive and fatal. A clinical diagnosis
largely depends on the experience of clinicians and it
can be inaccurate even among experienced clinicians
(Matsuda, 2007; Kloppel et al., 2008). Conclusive di-
agnosis requires an autopsy.

Neuroimaging provides a variety of biomarkers that
respond to biological and structural changes due to
onset and progression of the disease. However, a visual
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inspection is susceptible to human eye limitations and
other factors including subjectivity and experience of
the clinician (Imabayashi et al., 2004; Matsuda, 2007;
Kloppel et al., 2008).

Three-Dimensional Stereotactic Surface Projection
(3D-SSP) can be used to perform both statistical anal-
ysis and standardization of brain imagery (Matsuda,
2007; Minoshima et al., 1995). 3D-SSP analysis is su-
perior to visual inspection in discriminating AD from
HC (Imabayashi et al., 2004). However, in addition
to a unique pipeline for data processing, other deci-
sions have to be made. For instance, z-score analy-
sis after pixel normalization requires a choice of refer-
ence region, which has an immediate impact on results.
While Minoshima et al. used the thalamus as a ref-
erence region, Imabayashi et al. referred to global
activity for routine clinical diagnosis of early AD.

Kloppel et al. provided a direct comparison of diag-
nostic accuracy between radiologists and a comput-
erized method that utilizes a support vector machine
(SVM). They studied diagnostic classification in two
di↵erent settings: i) AD versus HC and ii) AD versus
fronto-temporal lobar degeneration. In each task, the
computerized method either made a tie with or out-
performed radiologists. Kloppel et al. and Imabayashi
et al. suggest a general adoption of computerized
methods for visual image interpretation for dementia
diagnosis.

Using spatial independent component analysis
(sICA), Yang et al. decomposed MRI data into a set
of bases and corresponding coe�cients. Each base
captures local information and a linear combination
of the bases represents a brain. The coe�cients are
used as features for discriminating i) AD from HC
and ii) MCI from HC using an SVM. In essence, their
results1 are based on the separation of dementia and

1For the ADNI dataset.
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healthy brain scans. They did not demonstrate the
e�cacy of their approach for the discrimination of
AD from MCI.

Representation learning is concerned with obtain-
ing meaningful and potentially high-level abstractions
from sensory input. It is useful for higher-level cogni-
tive tasks, such as computer vision and object recog-
nition. Recently, breakthrough results have been re-
ported in these domains (Hinton et al., 2006; Bengio &
Lecun, 2007; Krizhevsky et al., 2012). In our work, we
learn such meaningful and low dimensional representa-
tions of high dimensional MRI imagery. Reduction in
regional cerebral blood flow (rCBF) and loss of gray
matter are strong indicators of AD (Matsuda, 2007;
Imabayashi et al., 2004). Our approach exploits the in-
tuition that the discriminating power of neuroimaging
biomarker should improve as the disease progresses.
We model the putative biomarkers by capturing struc-
tural brain deformations that progress along with the
severity of AD. Thus, our approach strives to maxi-
mize information about the putative biomarker which
are correlated with dementia, instead of capturing the
details about the brain that may not be as pertinent
in diagnosing AD.

Our approach for modeling lesions is motivated by self-
taught learning (STL) (Raina et al., 2007). They made
a cogent argument that basic structural patterns are
shared among data in similar spaces. Once we learn to
recognize such patterns, they could be used for the task
of interest on any data in some other but similar space.
In this respect, we hypothesize that natural images can
be leveraged in order to learn such basic patterns and
to recognize them in MRI data, even though the image
domains are di↵erent. In this setting, natural images
are unlabeled, whereas MRI data are labeled according
to their dementia levels. As in STL, the unlabeled
data do not share the class labels or follow from the
generative distribution of the labeled data. Moreover,
the datasets are not completely irrelevant to each other
as the unlabeled data will help the classification of
MRI data.

2. Preliminaries

2.1. Sparse Autoencoders (SAE)

An autoencoder (Bourlard & Kamp, 1988) uses an un-
supervised learning algorithm that exploits inputs as
if they were targets. The algorithm consists of two
modules: i) an encoder and ii) a decoder. Encoding
maps the data from the input space to a representa-
tion space and decoding maps it back into the input
space, thus reconstructing the data. The algorithm

minimizes reconstruction error by back-propagation.
Values of parameters W minimizing the error give rise
to feature detectors (bases).

Representations learned using autoencoders are very
similar those learned by PCA and ICA. However,
the advantages of sparse-overcomplete representation,
which can be achieved using autoencoders, have been
advocated in recent work (Olshausen, 2001; Teh et al.,
2003). The sparsity in the representation is enforced
by sparsifying the logistic (Ranzato et al., 2006) using
an additional penalty term. The penalty term encour-
ages units to maintain low average activations. For-
mally, the cost function is defined as:
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1
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where, D is data matrix, h is the hidden representation
of the data, x̂ is reconstructed data, L(·, ·) is squared
loss error, �(·) is sigmoid function, ⇢ is sparsity param-
eter, ⇢̂ is average activation, and KL(·||·) is Kullback-
Leibler divergence, {W, b} = {W1,W2; b1, b2} are the
parameters to learn and k is the number of bases. The
hyper–parameters (�,�, k, ⇢) are determined by grid
search on validation data. The autoencoder is applied
to a set of natural images and MRI patches to create
a set of bases

2.2. Convolutional Network

The idea behind convolutional networks is neurobio-
logically motivated and dates back to the pioneering
work of (Hubel &Wiesel, 1962) on locally sensitive and
orientation-selective neural feature detectors in the vi-
sual cortex of the cat. It is specifically designed to rec-
ognize patterns and is invariant to translation, scaling,
skewing, and other forms of distortions. The network
includes the following forms of structural constraints
(Lecun & Bengio, 1995): i) Feature extraction: Neu-
rons take input from a local receptive field in the previ-
ous layer. The position of the feature relative to other
features is preserved. ii) Feature mapping: helps in
reducing the number of free parameters and obtaining
shift invariance. iii) Subsampling layer: performs local
averaging and subsampling thus reducing the resolu-
tion of the feature maps. It reduces the sensitivity of
the feature map to various distortions.
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(a) Raw MRI scan. (b) Processed MRI scan.

Figure 1. Visualization of MRI scan of an AD patient using 3D Slicer.

3. Dataset and Preprocessing

3.1. Natural Images

We used a set of ZCA whitened natural images2. The
collection contains 10 di↵erent images of size 512 ⇥
512, from each of which we sampled 1000 patches of
size 8 ⇥ 8. Pixel values of the patches were scaled to
[0.1� 0.9].

3.2. MRI Data

Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.ucla.edu).

The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early
AD. Determination of sensitive and specific markers
of very early AD progression is intended to aid re-
searchers and clinicians to develop new treatments and
monitor their e↵ectiveness, as well as lessen the time
and cost of clinical trials.

Table 1 describes the demographics of the patients in
our collection, which is broken into three groups: AD,
MCI and HC. For a balanced dataset, we sampled 755
scans from each group. Figure 1(a) shows the MRI
scan of an AD patient. The dimensions of the raw
MRI data are 170⇥ 256⇥ 256.

2
http://redwood.berkeley.edu/bruno/sparsenet/

Table 1. Demographics of the ADNI dataset.

Class
# of Sex Age # of

Subjects M F mean sd MRI scans

AD 200 103 97 76.05 7.66 755
MCI 411 267 114 75.50 7.38 2282
HC 232 113 119 76.18 4.97 1278

3.3. Stereotactic Normalization

Statistical Parametric Mapping3 was used to normal-
ize the image data into an International Consortium
for Brain Mapping template. Our configuration also
includes a positron density template with no weighting
image, and a 7th-order B-spline for interpolation. The
remaining parameters were set to their default. After
normalization, dimensionality reduces to 79⇥ 95⇥ 68.
Figure 1(b) shows a scan after normalization. In addi-
tion, we perform min-max normalization to scale the
data to the range of [0.1� 0.9].

Note that we do not extract anatomical structures such
as gray matter or white matter. As a result, no struc-
tural knowledge is injected into learning. Instead, we
expect the learner to figure out whatever is informa-
tive.

3The SPM toolbox can be downloaded from http://

www.fil.ion.ucl.ac.uk/spm/
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(a) (b) (c) (d)

Figure 2. Bases learned by Autoencoder. (a) The bases learned from Natural Images. Our result is consistent with (Ran-
zato et al., 2006). (b) Bases learned from MRI scans. (c)-(d) Bases from natural image and MRI scans respectively that
were chosen based on the performance on validation set.

4. Learning of Bases

Following the stereotactic normalization, MRI anal-
ysis enables an unbiased assessment of gray matter
loss (Matsuda, 2007). The goal of visual inspection is
to assess the severity of lesions; however, it is virtu-
ally impossible to detect a slight decrease in regional
cerebral blood flow or glucose metabolism in the case
of early AD (Imabayashi et al., 2004).

Lesions are the objects of interest. These are the
causes of structural deformation. Exploiting statisti-
cal regularities in images, a sparse autoencoder yields a
set of feature detectors. Using these detectors, we aim
to identify markers, so to speak, present in the scans.
These markers are used to represent lesions along the
surface and ventricles of the brain.

All complex visual features share some primary fea-
tures. These features are viewed as parts of objects
and constellation models where model for parts can
be reused in di↵erent instances. We learn bases from
two distinct sets of data i) MRI imagery and ii) natural
images. Since we rescale MRI and natural image pixel
values to the same range, we ensure proper activation
when using natural image bases.

5. Experiments

Our experiments involve three steps: i) learning a ba-
sis set, ii) extraction of features from MRI data and
iii) classification of MRI data. The steps of the algo-
rithm are given in Algorithm 1. The diagnostic clas-
sifier is a neural network. In order to learn various
hyper-parameters for the autoencoder and the neural
network, we split the MRI data into three subsets:
i) 15% for validation ii) 10% for testing and iii) the
rest for training.

Algorithm 1

Input 1: patches P
Input 2:MRI Scans {Train TrD, Val VD, Test
TD}
(�,�, k, ⇢) SAE–validate (P, TrD,VD)
{basis set:B} SAE (P,�,�, k, ⇢)
gridSize gs = [3, 3]
features f = ;
D = TrD [ VD [ TD
for s 1 to # of scans do
for b 1 to # of basis do
convScan  CONVOLVE(D(s), B(b))
f(s, b)  MAX–POOL(convScan, gs)

end for
end for
model  TRAIN–NETWORK(fTrD, fVD)

We divided the parameter search into two phases. In
the first phase, we search for the best parameters
(⇢,�,�, k, see section 2.1) for the autoencoder. Two
autoencoders were trained, one on MRI data and the
other on natural images. The performances of two sets
of bases learned were evaluated on the validation set
using a classifier. To make the search faster we used
soft-max as the classifier in this phase. Figure 3 shows
the performance of the soft–max on various hyper–
paramenter settings. For number of bases, k, we have
used these values: [24, 48, 72, 100, 150, 200, 300, 400].
In our experiments, weight decay constant �, was set
to 0.001. Any larger value led to extremely poor per-
formace. Once the parameters for the autoencoder
were determined (⇢ = 0.01,� = 3,� = 0.001, k = 100)
and features (described below) were extracted, param-
eters for the neural network were learned.
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Figure 3. Performance of softmax on validation set. � sig-
nifies importance of sparsity penalty term. We have used
� (weight decay constant) = 0.001 for all the experiments.

Bases

We sampled 8 ⇥ 8 patches from natural images (Sec-
tion 3.1). More specifically, 1000 patches from each
natural image give rise to 10000 patches in total. We
sampled ten times as many from MRI scans. Using
sparse autoencoder (Section 2.1), we learn the sparse-
overcomplete representation with 100 bases in both
cases (based on cross–validation). Figure 2 shows all
the bases. These bases are eventually used to represent
lesions in MRI data. Our results (figure 2a) are consis-
tent with the (Ranzato et al., 2006; Olshausen, 2001;
Teh et al., 2003) which have shown remarkable perfor-
mance in other object recognition tasks. However, in
our case, the basis sets that perform well are di↵erent.
They are shown in figure 2c-d. They were generated
using the parameters learned in our first phase of val-
idation.

Convolutional Feature Extraction

For each basis, we apply 2D valid convolution4 on each
slice of each scan. Convolution with a 8 ⇥ 8 base
yields 72 ⇥ 88 ⇥ 68 dimensional feature maps (Fig-
ure 5(b)). Then, feature activations are obtained via
sigmoid function (Figure 5(c)). For a complete list of
feature activations for the median slice, see figure 9
in supplement. By a collection of feature activations
for 100 bases per slice, we could obtain a new repre-
sentation of the actual MRI data. However, this rep-
resentation would be further blown up since we have

4The valid 2D convolution of p ⇥ q on m ⇥ n matrix
results with an m-p+1 ⇥ n-q+1 matrix.

Figure 4. Comparision of L2 pooling and L1 pooling over
larger number of variables.

100 bases. To overcome this issue, we applied pool-
ing by dividing each slice into 3 ⇥ 3 grid resulting
in 100(bases) ⇥ 3 ⇥ 3 ⇥ 68(slices) = 61, 200 feature
activations for each scan. We tried di↵erent pooling
strategies: L2 pooling and L1 pooling. Mean pool-
ing was not used because it smooths everything out
and does not capture lesion feature. Theoretical anal-
ysis (Boureau et al., 2010) suggests that L1 pooling
(max–pooling) works best when the features are sparse
which agrees with our experiments (figure 4).

Figure 5(c) shows higher activations (shown in red) of
the basis around the area of the brain filled with cer-
berospinal fluid (CSF). Due to shrinkage in an AD
brain, CSF accounts for higher volume. Thus, the
feature extraction process captures this information,
which relates to the severity of lesions. Di↵erent bases
strive to capture this information from di↵erent parts
of the brain (for details see figure 9 in supplement).

Classification

We deal with i) binary classification and ii) three-way
classification problems. Binary classification tasks al-
low for a comparison of our results with others. In
three-way classification, we consider all three groups,
AD, MCI and HC, at once.

The 61,200 max–pooled feature activations are fed to a
neural network that uses back-propagation with scaled
conjugated gradient. We used a single hidden layer
with logistic units. The size of the hidden layer was
determined based on validation accuracy and it ranges
from 800 to 1600 units depending on the classification
task.
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(a) (b)

(c)

Figure 5. The e↵ect of a basis on the median (34th) slice.
(a) Original median slice. (b) Result of convolution with
the 55th base. (c) Feature activations using sigmoid func-
tion.

Our performance metrics are sensitivity, specificity
and classification accuracy. Sensitivity indicates our
ability to recognize positive results, whereas specificity
does it for negative results. For instance, given an AD
patient, sensitivity is the probability that our classi-
fier will assign the correct diagnosis. Specificity is the
probability that our classifier will tell that the patient
is healthy, given that he/she is, in fact, healthy.

Table 2 shows the comparison of our method for the bi-
nary classification task with one of the recent studies.
We performed our experiment with basis sets learned
from two di↵erent sources viz. natural images and
MRI data. Our method shows significant improve-

Figure 6. ROC plots of binary classifiers.

Table 2. Binary classification results on test set(%).

Sensitivity Specificity Accuracy

N
at
.I
m
g.

b
as
es

AD/HC 95.24 94.26 94.74
MCI/HC 92.23 81.45 86.35
AD/MCI 84.07 92.11 88.10

M
R
I

b
as
es

AD/HC 92.67 94.92 93.80
MCI/HC 85.85 80.99 83.30
AD/MCI 84.55 88.46 86.30

Y
an

g

et
al
. AD/HC 81.90 79.50 80.70

MCI/HC 73.20 68.60 71.10
AD/MCI - - -

Table 3. Three-way classification results on test set(%).

Sensitivity Specificity Accuracy

N
at
.I
m
g.

b
as
es

AD/others 95.90 91.80
85.00MCI/others 74.20 92.70

HC/others 87.70 91.30

M
R
I

b
as
es

AD/others 81.36 89.95
78.20MCI/others 67.89 87.67

HC/others 84.96 85.86

Table 4. Test confusion matrix for three-way classification.

O
u
tp
u
t
C
la
ss

HC
57 13 0 81.4%

25.1% 5.7% 0.0% 18.6%

MCI
7 66 3 86.8%

3.1% 29.1% 1.3% 13.2%

AD
1 10 70 86.4%

0.4% 4.4% 30.8% 13.6%

87.7% 74.2% 95.9% 85.0%
12.3% 25.8% 4.1% 15.0%

HC MCI AD
Target Class

ments across all the measures compared to Yang et al.
Figure 6 presents the ROC curves for the binary clas-
sifiers using natural image bases.

Someone likely to develop AD progresses from being
healthy to the point where they have mild dementia to
their final stage of severe dementia. Moreover, within
the MCI class, depending upon how severe the demen-
tia is, subjects can be in early or late phases of MCI.
Thus, discriminating AD from MCI seems imperative
for early detection of AD. To demonstrate the e�-
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cacy of our method for early detection, we performed a
three-way classification task. Table 3 shows the perfor-
mance of our method on this task. It also shows that
natural image bases outperformed the bases learned
from MRI scans. Table 4 shows the confusion matrix
for 3-way classification with natural image bases.

6. Discussion

Utilizing either MRI or natural images, our approach
improves over the sICA-based method (Yang et al.,
2011). To compare MRI bases with natural image
bases, over half of the MRI image surface area of
a coronal section is white matter, which, because of
its uniformity, conveys no meaningful features, except
at the boundaries. However, the informative indica-
tors for the progression of AD are unspecified putative
biomarker features. Using a small database of natu-
ral images gives a much more comprehensive basis set
that has the ability to capture lesion features.

To further analyse the reason for better performance,
we replaced SAE in our pipeline (Algorithm 1) with
ICA5. Using ICA bases learned from natural images
and fMRI scan patches we obtained the accuracy of
67.98% and 69.29% respectively. Compared to ICA
bases, the SAE bases performed (table 3) significantly
better. Figure 7 shows the convolved and sigmoid ac-
tivation of the median slice (figure 5(a)) using ICA
bases. Due to the small weights of ICA bases, the
activation falls in the linear range so there is no ef-
fect of applying the sigmoid nonlinearity. This is in
contrast to figure 5(c), where more details about the
lesions are revealed after applying sigmoid activation
and thus, allowing the pooling layer to capture much
richer features. The pooling strategy seems to have
impact on the performance (figure 4) as well. In its
entirety, the superior performance can be attributed
to representational power of SAE, the invariance prop-
erty of convolution and the pooling strategy.

However, there is more room for improvement. The
various design choices were made for simplicity and
computational e�ciency. They lead to the following
unexplored avenues:

• features are expected to be highly correlated.

• we have not exploited the 3D spatial information
present in MRI imagery.

• we used only one convolutional layer with a coarse
3⇥ 3 grid for max pooling.

5
http://research.ics.aalto.fi/ica/fastica/

(a) (b)

Figure 7. The e↵ect of a ICA basis on the median (34th)
slice (figure 5(a)). (a) Result of convolution. (b) Feature
activations using sigmoid function.

Feature correlation is the price we pay for the simplic-
ity we adopted by considering each MRI slice individ-
ually (see figure 8 in the supplement for details). It is
worth exploring the potential of various dimensionality
reduction methods. Alternatively, methods to exploit
the 3D spatial information that innately manifests in
MRI data can be used. Adding a few more convolu-
tional layers with finer subsampling might improve the
classification performance but at the cost of increasing
the computational requirements.

7. Conclusion

Visual inspection can be ine↵ective in identifying slight
structural and metabolic changes in human brain.
By focusing on an expressive bassis set for putative
biomarkers, we achieve remarkably high diagnostic ac-
curacy. Our data processing steps do not incorporate
prior domain-knowledge, such as extraction of gray
matter. Furthermore, we do not have to make prior
choices, as opposed to 3D-SSP studies, in order to an-
alyze statistical characteristics of data.

We have experimentally demonstrated that our ap-
proach for computerized-diagnosis of AD is i) signifi-
cantly better than the method we compared with, and
ii) shows promises for building a model for early de-
tection of AD.

The HC and MCI classes can be very subtle in their
di↵erences. In spite of that, our approach, as simple
as it is, was able to uncover such subtlety with very
high sensitivity. This is encouraging for a future in-
vestigation of early MCI and late MCI cases.
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