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Abstract

We develop a generic approach to form
smooth versions of basic mathematical opera-
tions like multiplication, composition, change
of measure, and conditional expectation,
among others. Operations which result
in functions outside the reproducing kernel
Hilbert space (such as the product of two
RKHS functions) are approximated via a nat-
ural cost function, such that the solution
is guaranteed to be in the targeted RKHS.
This approximation problem is reduced to
a regression problem using an adjoint trick,
and solved in a vector-valued RKHS, con-
sisting of continuous, linear, smooth opera-
tors which map from an input, real-valued
RKHS to the desired target RKHS. Impor-
tant constraints, such as an almost every-
where positive density, can be enforced or ap-
proximated naturally in this framework, us-
ing convex constraints on the operators. Fi-
nally, smooth operators can be composed to
accomplish more complex machine learning
tasks, such as the sum rule and kernelized
approximate Bayesian inference, where state-
of-the-art convergence rates are obtained.

1. Motivation

One of the important ideas that make functional anal-
ysis a powerful tool in all branches of mathematics is
that basic mathematical operations, like multiplication
or composition, may be represented and studied with
linear operators. Multiplication fg, for example, is for
a fixed f a linear operation in g, and under suitable
restrictions, this operation can be described with the
help of a bounded linear operator Mf , i.e. Mfg = fg.
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The study of such basic operations in reproducing ker-
nel Hilbert spaces (RKHSs, Aronszajn (1950); Berlinet
& Thomas-Agnan (2004)) suffers from a crucial diffi-
culty: these spaces are not closed under many such
operations. For example, if we consider an RKHS HX
and two functions f, g ∈ HX then in most cases fg
will not lie in HX . This simple fact has far reaching
consequences, both for theoretical and practical prob-
lems, as one cannot simply apply basic mathematical
operations on functions in the RKHS and expect to ob-
tain an RKHS function. In many practical problems,
for example, the reproducing property is of major im-
portance in keeping computation costs at bay, and to
avoid dealing explicitly with high dimensional feature
spaces. To each RKHS HX there corresponds an as-
sociated reproducing kernel k(x, y), and the reproduc-
ing property states that f(x) = 〈f, k(x, ·)〉k for any
function f from HX . Since the product of two RKHS
functions is likely not inHX , however, the reproducing
property will not hold for this product.

Our main contribution is a way to address these diffi-
culties by approximating linear operators such as Mf

with operators Ff : HX → HX that map back into the
RKHS HX . We will refer to such operators as smooth
operators. By smooth we mean in a broad sense RKHS
functions with low norm. The intuition is that an
RKHS-norm is a measure of smoothness very similar
to a Sobolev-norm, which measures (weak) derivatives
of functions and calculates the norm based on how
large these derivatives are. The operator Ff preserves
smoothness in this sense, but we also model Ff itself
as an element of a more complex RKHS.

This more complex RKHS is one of the key tools in
the paper. It is based on a vector-valued kernel func-
tion Ξ(f, g), where f, g ∈ HX . The importance of this
kernel is that the corresponding RKHS HΞ consists
only of bounded linear operators mapping from HX
to a second RKHS HY (in the case of a product of
functions, we have the special case HY = HX). This
vector-valued kernel is in the simplest case a subset of
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the Hilbert-Schmidt operators. We will make use of
well established vector-valued RKHS tools to approx-
imate and estimate operators like Mf .

It turns out that for the intuitive risk functions in
many settings, an adjoint trick is useful to make es-
timation tractable. Typically, we have an expression
of the form (Fh)(x), where h ∈ HY , and we want to
separate h from F (recall that our goal is to estimate
F, which is assessed by its action on some test func-
tion h evaluated at x). The trick is simple: as F is a
bounded linear operator, there exists an adjoint oper-
ator F∗ with which we can transform the term

(Fh)(x) = 〈Fh, k(x, ·)〉k = 〈h,F∗k(x, ·)〉l,

with l being the kernel of HY ; thus h is separated
from F. We prove there exists a natural adjoint kernel
Ξ∗ for Ξ such that F∗ ∈ HΞ∗ iff F ∈ HΞ. This is
important as we gain explicit control over the adjoint
and the link between F and F∗.

We can view this move to the adjoint operator as trans-
forming our learning problem from one of estimating
an operator F to that of estimating a mapping into an
RKHS, x 7→ F∗k(x, .), which can be viewed as a regres-
sion problem. We are thus able to obtain F through
standard regression techniques. Since this is couched
in the general RKHS framework, it can be applied
to a very general class of mappings and applications.
Our results show that these estimation problems are
tractable both algorithmically and statistically.

Besides the problem of learning smooth approxima-
tions of non-smooth functions, an important appli-
cation of smooth operators is in integration theory.
Basic integrals of RKHS functions are studied with
the help of mean embeddings (Berlinet and Thomas-
Agnan, 2004; Smola, Gretton, Song, and Schölkopf,
2007; Sriperumbudur, Gretton, Fukumizu, Lanckriet,
and Schölkopf, 2010). These mean embeddings are
representer mX ∈ HX of an integral or expectation, in
that the expectation over an RKHS function f ∈ HX
can be efficiently calculated as Ef = 〈mX , f〉k. In-
tegration theory itself is a field rich in sophisticated
methods to transform integrals for all sorts of prac-
tical problems. We focus here on two such trans-
formations: the change of measure rule, and condi-
tional expectations. We show these can be approached
within the operator framework, and produce sample
based estimates for these transformations which do
not leave the underlying RKHSs. The covariate shift
problem (Huang, Smola, Gretton, Borgwardt, and
Schölkopf, 2007; Gretton, Smola, Huang, Schmittfull,
Borgwardt, and Schölkopf, 2009; Yu and Szepesvari,
2012) is closely related to the change of measure trans-
formation, and our conditional expectation approach

follows up on the work of Song, Huang, Smola, and
Fukumizu (2009); Grünewälder, Lever, Baldassarre,
Patterson, Gretton, and Pontil (2012a).

The Radon-Nikodým theorem often allows us to re-
duce a change of measure transformation to a multi-
plication: an integral of a function f over a changed
measure reduces to an integral of the product f with
a Radon-Nikodým derivative r over the original mea-
sure. This problem is close to that of learning a mul-
tiplication operator Mr, however a Radon-Nikodým
derivative is almost everywhere positive. Constraints
of this form occur often and are difficult to enforce. If
we consider the space L2 with inner product 〈f, g〉L2 =∫
fg, and a multiplication operator Mr with r ∈ L2,

then r is a.e. positive when the multiplication opera-
tor Mr is positive; that is, if 〈Mrf, f〉L2 =

∫
rf2 ≥ 0

for all square integrable f . The important point is
that positivity of Mr can be enforced by a convex con-
straint, illustrating the broader principle that difficult
constraints can in certain cases be replaced or approx-
imated with convex constraints on the operators.

Finally, we consider the problem of combining basic
operations to perform more complex operations. Key
applications of conditional expectations and changes
of measure include the sum rule for marginalising out
a random variable in a multivariate distribution (Song,
Huang, Smola, and Fukumizu, 2009), and kernel-based
approximations to Bayes’ rule for inference without
parametric models (Fukumizu, Song, and Gretton,
2011; Song, Fukumizu, and Gretton, 2013). We show
that these problems can be addressed naturally with
smooth operators. In particular, the development of
estimators is considerably simplified: we derive natural
estimators for both rules in a few lines, by first trans-
forming the relevant integrals and then approximating
these transformations with estimated operators. This
is a significant shortening of the derivation of an es-
timator when performing approximate Bayesian infer-
ence, albeit at the expense of a non-vanishing bias.

We give a brief overview of the sum rule approach. The
task is to estimate the expected value of a function h
wrt. a measure QY that is unobserved. We observe
QX , a second measure PX×Y , and we know that the
conditional measures are equal, i.e. PY |x = QY |x. It is
easy to obtain the quantity EQY

h from these observed
measures, via the integral transformations

EQY
h = EQX

EQY |xh = EQX
EPY |xh.

We can approximate the two operations on the right,
i.e. the expectations EQX

and EPY |x , with operators.
The advantage of the approach is that the two opera-
tors can be composed together, since the approxima-
tion of EPY |x maps back into the relevant RKHS.
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Our approach to composition of operators has another
advantage: the error of the composite operation is
bounded by the errors of the basic operations that are
combined. We demonstrate this on the sum rule and
on the kernel Bayes’ rule, by bounding the risk of the
estimators via the risk of the conditional expectations,
means, and approximation errors, which are easily esti-
mated. We show in the case of the sum rule that these
bounds can yield state-of-the-art convergence rates.

The problems that can be addressed with our approach
have direct practical application. Besides covariate
shift and Bayesian inference as discussed above, ad-
ditional applications include spectral methods for in-
ference in hidden Markov models, and reinforcement
learning (Song et al., 2010; Grünewälder et al., 2012b;
Nishiyama et al., 2012).

We like to think that the main text of this paper is
readable with a basic knowledge of functional analysis
and scalar valued RKHS theory. Obviously, we also
use techniques from the vector-valued RKHS litera-
ture, however this is kept to a minimum in the main
text, and the reader can go a long way with the con-
crete form of the kernel Ξ from eq. 3, and treat terms
of the form ‖F‖Ξ by analogy with the scalar case ‖f‖k.
In the supplement, a basic understanding of vector-
valued RKHSs is needed. Excellent introductions to
this topic are Micchelli and Pontil (2005); Carmeli, De
Vito, and Toigo (2006).

2. Smooth Operators

We begin by introducing a natural risk function and a
generic way of minimising it to motivate the approach.
We then introduce the operator valued kernel and its
adjoint. For the purposes of illustration, we apply this
basic approach to the multiplication, composition and
quotient (Suppl. A.3) operations.

2.1. A Natural Risk Function

Assume we have a linear operator G, acting on func-
tions h from an RKHS HY with kernel l(y, y′) and
mapping to some function space F , which we want to
approximate with an operator F ∈ HΞ mapping from
HY to HX . We first need to define in which sense
we want to approximate G. A natural choice is to
consider the actions of G and F on elements h, and
minimise the difference between the two, i.e. to min-
imise the error ((Fh)(x) − (Gh)(x))2. There are two
free variables here, x and h. An intuitive choice is
now to average the error over x wrt. a suitable mea-
sure and to take the supremum over ‖h‖l ≤ 1 to be
robust against the worst case h. The corresponding

risk function, which we call the natural risk, is

sup
‖h‖l≤1

EX((Fh)(x)− (Gh)(x))2.

2.2. A Generic Approach

This natural risk has the disadvantage that h can be
a rather complicated object, and optimising over all
possible h is difficult. We can transform the problem
into a simpler problem, however. As we will see, there
often exists an operator X acting directly on data x
and mapping to HY such that

(Gh)(x) = 〈h,X(x)〉l. (1)

(we will provide examples shortly). Furthermore, as
F is in HΞ, we can use the adjoint trick to transform
(Fh)(x) = 〈h,F∗k(x, ·)〉l. Applying both transforma-
tions to the natural risk gives us

sup
‖h‖l≤1

EX((Fh)(x)− (Gh)(x))2

= sup
‖h‖l≤1

EX〈h,F∗k(x, ·)−X(x)〉2l .

We still have h in the equation, but it is separated from
F∗. Applying Cauchy-Schwarz removes h altogether,

EX‖F∗k(x, ·)−X(x)‖2l .

This is an upper bound for the natural risk which
contains no supremum, but only observable quanti-
ties that depend on the data x. The objective is still
difficult to optimise, as we may not easily be able to
compute the expectation EX . We fall back on a sam-
pling approach, and replace EX with a finite sample
estimate. We further add a regulariser that penalizes
the complexity of F∗, to guarantee solutions that are
robust in sparsely sampled regions. This gives us a
vector-valued regression problem,

n∑
i=1

‖F∗k(xi, ·)−X(xi)‖2l + λ‖F∗‖2Ξ∗ ,

where λ ∈ [0,∞[ is the regularisation parameter and
{xi}ni=1 a sample from the underlying probability mea-
sure. The minimiser of this problem is known to be

F∗f =

n∑
i,j=1

f(xi)WijX(xj), (2)

with W = (K+λI)−1 and K the kernel matrix, in case
that the kernels Ξ from (3) below are used with A and
B being the identities (Micchelli & Pontil, 2005).

We have a one-to-one relation between operators in
HΞ and their adjoints by Theorem 2.3 below, so we



Smooth Operators

extract F together with F∗. In summary, the recipe to
approximate the operator G is extremely simple: find
a transformation X and use the adjoint of the corre-
sponding estimator in (2). There remains an impor-
tant question, however: How tight is the upper bound?
While in general this bound is not tight, the minima of
the upper bound and the natural risk are often related
(see Supplement A.1).

2.3. An RKHS of Bounded Linear Operators

We now develop the necessary mathematical tools for
the smooth operator approach. The first step is to
define a vector-valued kernel Ξ, such that the corre-
sponding RKHS HΞ consists of linear bounded opera-
tors between HX and HY . A suitable choice is

Ξ(f, g) := 〈f,Ag〉kB, (3)

where A ∈ L(HX),B ∈ L(HY ) are positive, self-
adjoint operators. The most important case is where
A and B are the identities.

As in the case of scalar kernels, there exist point eval-
uators that are closely related to the kernel. These
are Ξf [h], where Ξf : HY → HΞ with 〈F,Ξf [h]〉Ξ =
〈Ff, h〉l (see Micchelli & Pontil (2005)[Sec. 2]). These
point evaluators have a natural interpretation as a ten-
sor product in case that A and B are the identities;
that is, Ξf [h] = h ⊗ f . We have in this case that
〈h,Ξ(f, g)u〉l = 〈Ξf [h],Ξg[u]〉Ξ = 〈h⊗ f, u⊗ g〉HS.

The theorems we prove hold for the general form in eq.
3, as long as all the scalar kernels used are bounded,
e.g. supx∈X k(x, x) < ∞. In the applications we re-
strict ourselves for ease of exposition to the case that
A and B are the identities. Finally, we often need to
integrate scalar valued RKHS functions, and we as-
sume that these integrals are well defined (Supp. F).

In Carmeli et al. (2006)[Prop.1] a criterion is given
which, if fulfilled, guarantees that a vector-valued
RKHS exists with Ξ as its reproducing kernel. It is
easy to verify this criterion applies, and that Ξ has an
associated RKHS HΞ (see Supp. A.2). The impor-
tance of this space is that it consists of bounded linear
operators. A standard tensor product argument shows
that HΞ is a subset of the Hilbert-Schmidt operators
in case that A and B are the identities.

Corollary 2.1. If A and B are the identities then
HΞ ⊂ HS and the inner products are equal.

In the general case we still have:

Theorem 2.1 (Proof in supplement, p. 11). Each
F ∈ HΞ is a bounded linear operator from HX to HY .

Another useful fact about this RKHS is that all F are
uniquely defined by the values Fk(x, ·).

Theorem 2.2 (Proof in supp., p. 11). If for F,G ∈
HΞ and all x ∈ X it holds that Fk(x, ·) = Gk(x, ·)
then F = G. Furthermore, if k(x, ·) is continuous in
x then it is sufficient that Fk(x, ·) = Gk(x, ·) on a
dense subset of X.

2.4. Adjoint Kernels and Operators

We now define an adjoint kernel Ξ∗(h, u) = 〈h,Bu〉lA
for Ξ. Here l(y, y′) denotes the kernel corresponding
to HY , and 〈·, ·〉l is the HY inner product. With the
same argument as for Ξ we show Ξ∗ is a kernel with an
associated RKHS HΞ∗ such that each element of HΞ∗

is a bounded linear operator from HY to HX . The
following theorem is important for the adjoint trick.

Theorem 2.3 (Proof in supp., p. 12). For every F ∈
HΞ there exists an adjoint F∗ in HΞ∗ such that for all
f ∈ HX and h ∈ HY

〈Ff, h〉l = 〈f,F∗h〉k.

In particular, we have for Ff =
∑n
i=1 Ξfi [hi](f) =∑n

i=1〈f,Afi〉kBhi that the adjoint is

(TF)h = F∗h =

n∑
i=1

Ξ∗hi
[fi](h) =

n∑
i=1

〈h,Bhi〉lAfi.

The operator TF = F∗ is an isometric isomorphism
from HΞ to HΞ∗ (HΞ

∼= HΞ∗ and ‖F‖Ξ = ‖F∗‖Ξ∗).

2.5. Constraints

As in the introductory example, it is usually known
that the operation we estimate fulfills certain proper-
ties, like being symmetric in the sense that

〈Ff, g〉k = 〈f,Fg〉k,

and one might want to have an estimate that shares
this property of self-adjointness with F.

In the case of operators acting on L2, certain proper-
ties can be enforced by imposing convex constraints.
We mentioned already the a.e. positive Radon-
Nikodým derivative in the introduction, which can be
enforced by a positivity constraint on the operator.
Symmetry of an operation can be enforced by a linear
constraint on the corresponding operator, to make the
operator self-adjoint. Enforcing a multiplication op-
erator is very similar to this case, as every bounded
multiplication operator is self-adjoint and every self-
adjoint operator is a multiplication operator in a suit-
able coordinate system, due to the spectral theorem.
Self-adjointness might therefor be used as an easy to
optimise proxy constraint. Other examples are expec-
tation operators, which can be difficult to learn due
to the required normalisation. Convex constraints can
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be used to guarantee that the inferred operator repre-
sents an integral, however. This is similar to the pos-
itivity constraint discussed before: we have Ff ≥ 0
for all positive continuous f iff there exists a (Radon-
)measure µ such that Ff =

∫
fdµ under suitable con-

ditions. This is the Riesz representation theorem for
linear functionals (Fremlin, 2003)[436J].

The same constraints can be applied in the RKHS set-
ting, although a real-valued RKHS is usually a proper
subset of L2 and this can weaken the implications.
Quantifying this effect is a major piece of work on its
own. Here, we illustrate on an example the relation
between self-adjointness and linear constraints:

Theorem 2.4 (Proof in supp., p. 13). The set of self-
adjoint operators in HΞ is a closed linear subspace.

2.6. Smooth Multiplication Operators

We demonstrate our approach on the example from
the introduction by approximating the multiplication
operator Gg = fg with a smooth operator Mf :
HX → HX , where g ∈ HX and f is an arbitrary
function. As noted in the introduction, fg is not in
the RKHS even for f ∈ HX : in this case, the prod-
uct fg = 〈f ⊗ g,Ψ(x)〉HS is a linear operation in the
tensor feature space Ψ(x) := k(x, ·) ⊗ k(x, ·) with the
standard Hilbert-Schmidt inner product, which corre-
sponds to the RKHS with the squared kernel (Stein-
wart & Christmann, 2008, Theorem 7.25).

We apply the generic approach from Section 2.2, where
in eq. 1 we use the mapping X(x) := f(x)k(x, ·), which
is in HX for a given x as required. An approximation
Mf of G can now be gained from eq. 2 by moving
from the adjoint M∗

f in eq. 2 to Mf ,

Mfg =

n∑
i,j=1

f(xj)g(xj)Wijk(xi, ·).

This is an intuitive solution: f and g are multiplied on
our sample points xj and this product is interpolated
with the help of k(xi, ·). Indeed, it is the solution of
the scalar-valued ridge regression,

min
q∈HX

n∑
i=1

(f(xi)g(xi)− q(xi))2
+ λ‖q‖2k.

Returning to our setting from the introduction: if we
wish to take the inner product of this approximation
with a new function h ∈ HX , we get

“〈fg, h〉k” ≈ 〈Mfg, h〉k =

n∑
i,j=1

f(xj)g(xj)Wijh(xi).

It would further be useful to constrain the estimate
either to be a multiplication operator or to be self-
adjoint. In this case no closed form solution is avail-
able, and a numerical optimisation is needed.

2.7. Smooth Composition Operators

Assume we have given a function φ : X → Y , a func-
tion h ∈ HY , and we want a smooth approximation of
Gh = h ◦ φ with Φh, where Φ ∈ HΞ maps from HY
to HX . We again use the relation of eq. 1, where this
time X(x) := l(φ(x), ·), which is in HY for a given x.
We then get the approximation

Φh =

n∑
i,j=1

h(φ(xj))Wijk(xi, ·).

3. RKHS Integration Theory: Basic
Transformations

We discuss the change of measure rule and conditional
expectations. The supplementary material contains a
discussion of products and the Fubini theorem.

3.1. Covariate Shift: Ch. of Meas. on X

A standard integral transformation is the change of
measure: given a measure P and a measure Q that
is absolute continuous wrt. P (Q � P) there exists a
Radon-Nikodým derivative r such that EQf = EPf×r.
As in the multiplication case we have in general no
guarantee that f×r is inHX , and it is useful to have an
approximation Rf that maps toHX . Furthermore, we
do not know r, and we need to work with data. A po-
tential risk function is sup‖f‖k≤1(EQf − EPRf)2, and
a first optimisation approach would be to replace ex-
pectations with empirical expectations and minimize
wrt. R,

sup
‖f‖k≤1

( m∑
j=1

〈f, k(yj , ·)〉k −
n∑
i=1

〈Rf, k(xi, ·)〉k
)2

≤ ‖
m∑
j=1

k(yj , ·)−R∗
n∑
i=1

k(xi, ·)‖2k, (4)

where {yj}mj=1 is a sample from Q and {xi}ni=1 from P.
The following R∗ makes both errors zero,

R∗ =
1

‖mP‖2
〈mP, · 〉kmQ, R∗mP = mQ,

where mP =
∑n
i=1 k(xi, ·) and mQ =

∑m
i=1 k(x′i, ·).

This is the minimum norm solution which fits both
sides exactly (Micchelli & Pontil, 2005)[Th. 3.1].

The approach differs from our generic approach since
we have no expectation in the risk function over which
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the error is averaged. Instead, we have an interpola-
tion problem. This interpolation transforms P com-
pletely to Q, which can be interpreted as overfitting.
There are at least two points where we can improve
matters. First, R does not necessarily represent a
multiplication, and constraints can be used to enforce
this, or to enforce self-adjointness of R, which is eas-
ier. Second, we do not verify the absolute continuity
condition. If the measures are not absolutely contin-
uous then it is not possible to transform one measure
into the other by a multiplication operator. We further
discuss absolute continuity in Suppl. C.1.1.

A heuristic to solve the constrained problem is to es-
timate a Radon-Nikodým derivative r from data and
then, in a second step, to approximate the multiplica-
tion with an operator R to guarantee that Rf ∈ HX .
There are several possible ways to estimate such a
function. In Huang et al. (2007); Gretton et al. (2009);
Yu & Szepesvari (2012) a quadratic program is given
to estimate a weight vector β with non-negative en-
tries, such that the following cost function is min-
imised, ‖

∑m
j=1 k(yj , ·)−

∑n
i=1 βik(xi, ·)‖k. This is eq.

4 with β instead of R∗.

We can interpolate these βi’s with a non-negative func-
tion r if the xi are disjoint. Applying the uncon-
strained multiplication estimate from Sec. 2.6 to r×f
gives us the change-of-measure operator

Rf =

n∑
i,j=1

βif(xi)Wijk(xj , ·).

3.2. Conditional Expectation

Kernel-based approximations to conditional expecta-
tions have been widely studied, and their links with
vector-valued regression are established (Song et al.,
2009; Grünewälder et al., 2012a). The conditional ex-
pectation estimate introduced in these works can be
represented by a vector-valued function µ : X → HY .
The approximation is E[h|x] ≈ 〈h, µ(x)〉l. Now, in line
with our earlier reasoning, we can define a smooth op-
erator E to represent the operation. To define such an
operator, it is useful to treat the conditional expecta-
tion as an operator on h, i.e. (h 7→ E[h|x]).

By using our natural cost function and applying
Jensen’s inequality, we gain an upper bound that is
very similar to the one in the generic case,

Ec[E] := sup
‖h‖l≤1

EX(E[h|x]−E[h](x))2

≤ sup
‖h‖l≤1

EX×Y (〈h, l(y, ·)〉l − 〈h,E∗k(x, ·)〉l)2

≤ EX×Y ‖l(y, ·)−E∗[k(x, ·)]‖2l .

This differs from our approach of Section 2.2 in that
X(x) is no longer deterministic, but takes the values
l(y, ·) according to the product distribution. With the
usual (regularised) empirical version we get the esti-
mate

Eh =

n∑
i,j=1

h(yj)Wijk(xi, ·), (5)

where W is defined in eq. 2. The expression is very
similar to the solution µ in (Grünewälder et al., 2012a),
since µ(x) = E∗k(x, ·) (see Supp. C.3).

4. Composite Transformations

4.1. Sum Rule – Change of Measure on Y

We next consider a smooth approximation to the sum
rule, as introduced by Song et al. (2009)[eq. 6]; see also
Fukumizu et al. (2012, Theorem 3.2). We have two
measures P and Q on the product space X × Y . We
assume that for each x we have conditional measures
PY |x = QY |x. The task is to estimate the marginal
distribution of Q on Y , i.e. QY , based on samples
{(xi, yi)}ni=1 from PX×Y and {zi}mi=1 from QX .

In our setting the task is formulated naturally in a
weak sense, i.e. we want to infer an RKHS element mY

such that Em[mY ] := sup‖h‖l≤1(EQY
h − 〈mY , h〉l)2 is

small. We can reformulate the expectation to reduce
it to quantities we observe. Formally, we have

EQY
h = EQX×Y

h = EQX
EQ[h|x] = EQX

EP[h|x]. (6)

The problem of performing these transformations
when we have only samples can now be addressed
naturally in the operator framework. Using the sam-
ples from PX×Y we can infer a conditional expecta-
tion estimate E[h](x) ≈ E[h|x] via Sec. 3.2, and us-
ing samples {zi}mi=1 from QX , we can infer an mX =
m−1

∑m
i=1 k(zi, ·) representing QX . We can now form

compositions of the approximate conditional expecta-
tion operation E and the approximate expectation op-
eration 〈mX , ·〉k as E maps into HX : 〈mX ,Eh〉k =
〈E∗mX , h〉l. A natural estimate mY is hence E∗mX .
With the expectation estimate from eq. 5 and W from
eq. 2 we have

mY = E∗mX =

n∑
i,j=1

mX(xi)Wij l(yj , ·),

which is the estimate of Song et al. (2009).

4.1.1. Estimation Error

Assuming we have control over the approximation er-
ror Ec[E] of E and Em[mX ] of mX , and we want to get
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error approximations for mY , i.e. upper bounds on
Em[mY ]. The next theorem provides these. The proof
uses the transformation in eq. 6 and the link of the
involved quantities to the estimates E and mX . The
kernel function is Ξ(h, h′) := 〈h,Ah′〉lB.

Theorem 4.1 (Proof in supp., p. 16). We assume
that the integrability assumptions from Supp. F hold,
QX � PX , and the corresponding Radon-Nikodým
derivative r is a.e. upper bounded by b. Defining
c = ‖A1/2‖2op‖B‖op, we have that

Em[mY ] ≤ bEc[E] + c‖E‖2Ξ Em[mX ].

The error is controlled by scaled versions of the er-
rors of E and mX , which is as we would hope. The
convergence rate of Em[mY ] in terms of sample size
is controlled by the slower rate of Ec[E] and Em[mX ]
when ‖E‖2Ξ stays bounded.

4.2. Bayes’ Rule – Ch. of Meas. on X|y
Closely related to the approximate sum rule is an ap-
proximate Bayesian inference setting, as described by
Fukumizu et al. (2011); Song et al. (2013). As in the
case of the sum rule, we have two measures P and
Q on the product space X × Y , samples {(xi, yi)}ni=1

from PX×Y , samples {zi}mi=1 from QX , and we assume
PY |x = QY |x. The difference compared with the sum
rule is that we are not interested in the marginal QY ,
but in QX|y.

It is intuitive to consider this problem in a weak sense:
that is, instead of estimating the full distribution, we
want to learn a version of the conditional expectation
acting on functions f , i.e., to minimise

Ec[G] = sup
‖f‖k≤1

EQY
(EQX

[f |y]−G[f ](y))2.

Unlike the problem of estimating conditional expecta-
tions, however, we observe only P on the product space
X × Y , and not the Q for which we want the condi-
tional expectation. In this setting multiple operations
must be combined, and the operator approach shows
its strength in terms of keeping the manipulations sim-
ple.

We begin by linking the problem of estimating E[f |y]
with G to the easier problem of estimating E[h|x] with
E. The latter problem is easier since QY |x = PY |x and
we can use the usual approach to estimate the condi-
tional expectation with samples from P. As with the
sum rule, the quality of this estimate as an estimate
of QY |x depends on the Radon-Nikodým derivative of
the marginal measures, as the estimate is optimised
wrt. EPX

and not EQX
.

We can use integral transformations to link the condi-
tional expectations. One of the challenges is the intro-

duction of an integral over QY such that we can move
from E[f |y] to a product integral, and from the prod-
uct integral to the conditional expectation E[h|x]. One
way to do this is to approximate a δ-peak at y with
a function δ̄y. This function should be concentrated
around y, and should be normalised to 1 wrt. QY to
approximate the point evaluator at y. In this case we
can approximate E[f |y] with

EY ′
δ̄y(y′)

EY ′ δ̄y(y′)
E[f |y′] = EX×Y ′f ×

δ̄y(y′)

EY ′ δ̄y(y′)

=
1

EY ′ δ̄y(y′)
EXf EY ′ [δ̄y(y′)|x].

An RKHS kernel function l(y, ·) can serve as a
smoothed approximation to a point-evaluator. For ex-
ample, a Gaussian kernel with a bandwidth parameter
σ becomes concentrated around y for small σ. We thus
choose δ̄y = l(y, ·), bearing in mind that this will in-
troduce a non-vanishing bias. With this choice, and
by approximating the last term with the estimate E,
we get

EXf(x)E[l(y, ·)|x] ≈ EXf(x)E[l(y, ·)](x)

= EX〈f, k(x, ·)〉k〈El(y, ·), k(x, ·)〉k
= EX〈f, 〈El(y, ·), k(x, ·)〉kk(x, ·)〉k,

The term EY l(y, ·) is approximated by the mean esti-
mate 〈mY , l(y, ·)〉l, computed via change of measure.

We next approximate the above with G[f ](y) to esti-
mate E[f |y]. By defining a suitable distribution RY
over Y to approximate E[f |y], and following the usual
approach, we get

sup
‖f‖k≤1

EY
(
〈Gf, l(y, ·)〉l− (7)

(〈mY , l(y, ·)〉l)−1EX〈f, 〈El(y, ·), k(x, ·)〉kk(x, ·)〉k
)2

≤ EX×Y ‖G∗l(y, ·)− u(x, y)k(x, ·)‖2k,

where the product measure is over the independent
probability measures QX and RY which we choose,
and we are approximating the function

u(x, y) = 〈El(y, ·), k(x, ·)〉k 〈mY , l(y, ·)〉−1
l

≈
(
EY |xl(y, ·)

) (
EY |xEQX

l(y, ·)
)−1

.

The above is an estimate (via E) of a ratio of smoothed
densities, the numerator being a smoothed conditional
density. If the bandwidth parameter of the kernel on
HY is fixed, then this smoothing remains a source
of bias, and shows up as an approximation error in
Th. 4.2 below. If we now use the empirical and λ-



Smooth Operators

regularised version of the upper bound, we get an es-
timate for E[f |y],

Gf =

n∑
i,j=1

f(xj)E

[
l(yj , ·)

〈mY , l(yj , ·)〉l

]
(xj)Wij l(yi, ·),

with W = (L + λI)−1, L being the kernel matrix,
{xi}ni=1 being samples from QX and {yi}ni=1 from RY .
Note that this expression is not the same as the kernel
Bayes’ rule of Fukumizu et al. (2012, Figure 1); an
empirical comparison of the two approaches remains a
topic for future work.

4.2.1. Estimation Error

The error of the estimator G can be bounded by the
errors of the mean estimate mX , the error of E, an
approximation error

Ea[l] := sup
‖h‖1≤1

EY
(
h(y)− EY ′

l(y, y′)

EY ′ l(y, y′)
h(y′)

)2

where y, y′ ∼ QY , and the risk of G in the top line of
eq. 7. We denote this risk with EK [G]. The following
theorem states the bound. The risks in the theorem
are measured wrt. Q for all but the estimate E and
the constant C, and can be found in the supplement.

Theorem 4.2 (Proof in supp., p. 17). We as-
sume that the integrability assumptions from Supp.
F hold, that QX � PX , and that the corresponding
Radon-Nikodým derivative is a.e. upper bounded by
b. Furthermore, we assume that there exists a con-
stant q > 0 such that Ey′∼PY

l(y, y′) ≥ q for all y ∈ Y
and that the approximation error of mY is such that
|Ey′∼PY

l(y, y′) − 〈mY , l(y, ·)〉l| ≤ |Ey′∼PY
l(y, y′)|/2.

There exists a positive constant C such that

Ec[G] ≤ EK [G] + C
(
Ea[l] + ‖E‖2ΞEm[mX ] + Ec,P[E]

)
.

The assumption on mY guarantees that we are rea-
sonably close to the true expectation. This is fulfilled
with high probability after finitely many steps for the
standard estimate. The assumption Ey′∼PY

l(y, y′) ≥ q
guarantees that we have a good approximate point
evaluator at y′.

4.3. A Short Note on Convergence Rates

Convergence rates are obviously a big topic and we do
not want to go into too much depth here. We there-
fore keep the necessary assumptions simple, and we
derive rates only for the approximate sum rule, which
we compare with the rates of (Fukumizu et al., 2012).
We make a number of assumptions, which can be found
in Sec. E.1. The main assumption is that HX and HY

are finite dimensional. The HY assumption is crucial,
however the HX assumption can be avoided with some
extra effort. Another assumption concerns the proba-
bility measures over which the convergence occurs. We
refer the reader here to Caponnetto & De Vito (2007)
for details, and we take P to be the class of priors from
Def. 1 with b = ∞. There is an approximation error
in the theorem which measures how well we can ap-
proximate the true conditional expectation (see Supp.
E for the definition). Finally, we assume that we have
a rate of α ∈]0, 1] to estimate the mean of QX .

Theorem 4.3 (Proof in Supp. E). Let E∗ be a
minimiser of the approximation error EA, and let the
schedule for the regulariser for En be chosen accord-
ing to Caponnetto & De Vito (2007)[Thm 1]. Under
assumptions E.1 and if QX � PX with a bounded
Radon-Nikodým derivative, we have that for every
ε > 0 there exist constants a, b, c, d such that

lim sup
n→∞

sup
P∈P

(P ⊗ Q)n
[
Em[mn

Y ] >
(
a‖En‖2Ξn−α

+ EA[E∗]
(

1 +
√
b+ c‖En‖Ξ

)
+ dn−

1
2

)2]
< ε.

The value ‖En‖Ξ is of obvious importance. En is the
minimiser of the empirical regularised risk, and if this
minimiser converges with high probability to the min-
imiser of the regularised risk, then one can infer from
Caponnetto & De Vito (2007)[Prop. 3] that En will
be bounded with high probability. This then guaran-
tees a rate of convergence of n−α, which matches the
state of art rates of Fukumizu et al. (2012)[Th. 6.1]
which are between n−2/3α and n−α, depending on the
smoothness assumptions made.

5. Conclusion

We have presented an approach for estimating linear
operators acting on an RKHS. Derivations of estimates
are often generic, and operations can naturally be com-
bined to form complex estimates. Risk bounds for
these complex rules can be expressed straightforwardly
in terms of risk bounds of the basic estimates used in
building them. There are obviously many routes to
explore from here. Most immediately, improved es-
timation techniques would be helpful, incorporating
sparsity and other constraints. It would also be inter-
esting to consider additional machine learning settings
in this framework.
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