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Abstract

We study regression problems in which an
adversary can exercise some control over the
data generation process. Learner and adver-
sary have conflicting but not necessarily per-
fectly antagonistic objectives. We study the
case in which the learner is not fully informed
about the adversary’s objective; instead, any
knowledge of the learner about parameters
of the adversary’s goal may be reflected in a
Bayesian prior. We model this problem as a
Bayesian game, and characterize conditions
under which a unique Bayesian equilibrium
point exists. We experimentally compare the
Bayesian equilibrium strategy to the Nash
equilibrium strategy, the minimax strategy,
and regular linear regression.

1. Introduction

Standard regression algorithms are based on the iid as-
sumption that data processed at training and applica-
tion time are governed by identical distributions. In a
variety of applications, the input distribution at appli-
cation time may be influenced by an adversary whose
interests are in conflict with those of the learner. For
instance, in insurance risk assessment, defrauders con-
tinuously tweak specific attributes of their insurance
applications to make the risk appear lower. For such
applications, the iid assumption amounts to the naive
assumption that the adversary is entirely passive.

When an adversary can exercise some control over the
distribution of the data at application time, the out-
come for the learner, as well as the outcome for the
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adversary, depends on both the predictive model that
the learner chooses and the changes that the adversary
imposes on the input distribution. Such interleaved
optimization problems in which learner and adversary
do not exchange information about their intended ac-
tions constitute non-cooperative games.

In the zero-sum case, the goals of learner and adversary
are directly antagonistic. This amounts to the assump-
tion that the adversary intends to inflict the greatest
possible harm on the learner. In this case, the learner
is best off by choosing a minimax strategy which is
the minimizing argument over the parameter space of
the learner, of the maximum over the action space of
the adversary, of the cost function. For classification,
minimax solutions were derived under several assump-
tions. Globerson & Roweis (2006) study the case of
features that are deleted at test time; El Ghaoui et al.
(2003) study features that are changed within an in-
terval. The minimax probability machine (Lanckriet
et al., 2002) minimizes the maximal probability of mis-
classifying new instances for a given mean and covari-
ance matrix of each class. For regression problems,
Sayed & Chen (2002) derive a minimax model that
handle bounded uncertainty in the feature matrix and
labels. The SVM with invariances (Teo et al., 2007)
solves a convex upper bound of a minimax optimiza-
tion problem for arbitrary feature transformations.

If both players have conflicting but not perfectly an-
tagonistic goals, then the minimax strategy is overly
pessimistic and does not necessarily lead to an optimal
outcome. A Nash equilibrium point of a game is a pair
of strategies that has the property that unilaterally
deviating from it increases the costs for either player.
If a game has a unique equilibrium and one assumes
that the opponent will also act according to that Nash
equilibrium, then acting according to this equilibrium
point is the optimal strategy. Identifying an equilib-
rium point requires complete information about the
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opponent’s cost function. For classification games with
complete information, Brückner et al. (2012) show that
a unique Nash equilibrium point exists if the players’
cost functions meet certain conditions.

In security applications, however, the assumption of
complete information may still be too strong because
the learner may not be fully informed about, for in-
stance, the illicit profit that the adversary can make by
passing a computer virus unnoticed through a detec-
tion mechanism. A further step of relaxation of the as-
sumptions on the adversary leads to a non-cooperative
game with incomplete information (Harsanyi, 1968).
In this model, complete knowledge of the adversary’s
cost function is replaced by uncertainty that is ex-
pressed in terms of a Bayesian prior over parameters
of the cost function.

Finding Equilibrium points in adversarial learning
problems has been studied for regret minimization
problems where it leads to near-optimal solutions (Fre-
und & Schapire, 1996). If players are uncertain about
some parameters of their adversaries’ cost function and
this uncertainty is expressed in terms of a prior distri-
bution over these parameters, then an equilibrium of
the expected costs can be identified using counterfac-
tual regret (Zinkevich et al., 2008). However, both
results rely on finite action spaces and finite ranges of
the variables that players are uncertain about.

In contrast to regret minimization problems, classi-
fication and regression games usually have continu-
ous action spaces. For classification games, the iid
assumption—the assumption of an entirely passive
adversary—has only been relaxed as far as to the point
of non-cooperative non-zero-sum games with complete
information; for regression, to non-cooperative zero-
sum games with complete information. Here, we will
extend this sequence of relaxations to non-cooperative
non-zero-sum regression games with incomplete infor-
mation about the adversary’s cost function. We will
not focus on generalization error bounds, but will in-
stead study equilibrium points of the game defined by
the regularized empirical cost functions.

The rest of this paper is organized as follows. Section 2
introduces the players and cost functions for adversar-
ial regression problems formally. Section 3 introduces
the game with incomplete information, and the con-
cept of optimal responses and equilibrium points. In
Section 4, we show sufficient conditions under which a
unique Bayesian equilibrium point exists for regression
games. Section 5 derives an algorithm that identifies
the unique Bayesian equilibrium point. Section 6 re-
ports on experiments, Section 7 concludes.

2. Players and Cost Functions

We study prediction games between a learner of a re-
gression model and a data generator, which have con-
flicting, but not necessarily antagonistic goals.

At training time, the data generator produces a train-
ing matrix X ∈ Rn×m and a vector y ∈ Rn of values
of the target variable. The matrix rows and corre-
sponding values of the target variable are governed by
an unknown distribution p(x, y). By contrast, at ap-
plication time the data generator produces instances
and values of the target variable according to a dis-
tribution p̄(x, y) which may differ from p(x, y); these
instances are not yet available at training time.

The action of the learner is to select parameters w ∈
W of a linear model fw(x) = xTw. Here, W is called
the learner’s action space. We study the action space
of all possible parameter vectors, W = Rm. The
learner’s theoretical costs at application time are given
by the expected weighted squared loss

θl(w, p̄, cl) =

∫
cl(x, y) (fw(x)− y)

2
dp̄(x, y),

where cl(x, y) ∈ R+ reflects instance-specific costs.

The data generator’s action is to manipulate the data
generation process. By changing features of individual
instances, the data generator transforms the distribu-
tion p(x, y) at training time into a distribution p̄(x, y)
at application time. The adversary can change fea-
tures, but cannot change the target value y. Intu-
itively, a spam sender can make a message look legit-
imate by adding random text, but cannot change the
true nature of the message. This transformation pro-
cess incurs costs which are quantified by Ωd(p, p̄). This
term acts as a regularizer on the transformation and
implicitly constrains the possible discrepancy between
the distributions at training and application time.

The data generator may incur costs when the learner
classifies an instance x as y. We model these with
a squared-loss term (fw(x) − z(x, y))2 weighted by
instance-specific factors cd(x, y) ∈ R+, where z(x, y)
is the target value that renders the costs for the data
generator at zero. For instance, fw may assess the
risk of financial transactions and the data generator
may generate a mixture of legitimate and fraudulent
transaction requests. The target value would then
be z(x, y) = 0 because both legitimate and fraudu-
lent users want their transactions to be found risk-
free and executed. For fraudulent transactions, the
instance-specific costs cd(x, y) are proportional to the
gain that a defrauder loses when the transaction x
is declined. For legitimate transactions, the instance-
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specific costs may reflect the inconvenience experi-
enced by customers whose transactions are denied.
The theoretical costs of the data generator add the
expected prediction costs to the transformation costs:

θd(w, p̄, cd) =∫
cd(x, y) (fw(x)− z(x, y))

2
dp̄(x, y) + Ωd(p, p̄).

The theoretical costs of both players depend on the
unknown distributions p and p̄. We therefore focus
on the regularized empirical counterpart of the the-
oretical costs based on the training sample (X,y, z),
where z = (z1, . . . , zn)T and y = (y1, . . . , yn)T are the
empirical quantities of z(x, y) and y, respectively. The
empirical counterpart of the data generator’s regular-
izer Ωd(p, p̄) penalizes the divergence between training
matrix X and a perturbed sample X̄ that would be
the outcome of applying the transformation that trans-
lates p into p̄ to matrix X. The transformed training
matrix X̄ must not be mistaken for test data which
are not assumed to be available at training time. The
transformed training data X̄ acts as training data from
the test distribution. At application time—after both
players have committed to their strategies—new in-
stances are drawn according to the distribution p̄. In
the following, we use the vectors cv = (cv,1, . . . , cv,n)T,
where v ∈ {d, l}, to denote the players’ empirical costs.
Then, the empirical costs of predictive model fw and
transformation from p to p̄ are:

θ̂l(w, X̄, cl) =

n∑
i=1

cl,i (fw(x̄i)− yi)2
+ Ωl(fw), (1)

θ̂d(w, X̄, cd) =

n∑
i=1

cd,i (fw(x̄i)− zi)2
+ Ωd(X, X̄). (2)

Our analysis will focus on the standard choice of the l2
regularizer Ωl(fw) = ‖w‖22 for the learner and on
the squared Frobenius norm of the difference matrix

Ωd(X, X̄) =
∥∥X− X̄

∥∥2

F
for the data generator. Note

that we do not need additional regularization param-
eters that control the trade-off between loss functions
and regularization terms for the players because this
parameter is implicitly included in the scale of the cost
vectors cv.

3. Bayesian Regression Game

Both players’ cost functions defined in Equation 1
and 2 depend on both the parameters w and the trans-
formation manifested in X̄. In general, no single value
of w minimizes the learner’s costs independently of the
data generator’s strategy—which is the characteristic
property of a game.

In a game with full information, one assumes that both
players disclose their cost functions to their opponent.
We relax this assumption and model the data gen-
erator’s costs as a parameter that the learner is un-
certain about. We relax the full-information assump-
tion asymmetrically: while the adversary maintains
full information about the learner’s cost function, the
learner’s full information is relaxed into uncertainty
about the adversary’s instance-specific costs cd which
is reflected in a Bayesian prior q(cd). This asymmetry
reflects our adoption of the learner’s perspective: in
modeling the learner’s lack of information about the
adversary, we intend to make the learner more robust
against new adversaries. This setting is referred to as
a game with incomplete information between Bayesian
players or, for short, a Bayesian game.

The tuple (W,Φ, θ̂l, θ̂d, cl, q) constitutes a Bayesian

game; W, θ̂l, θ̂d and cl are defined in Section 2.
From the learner’s perspective, the costs cd are a
random variable for which a value is drawn accord-
ing to prior q(cd) at application time. Therefore,
to the learner it appears that at training time the
data generator commits only to a parametric strat-
egy φ : Rn → Rn×m that maps a value of cd—which
is only assigned at application time—to a transforma-
tion that manifests in matrix X̄. The data generator’s
action space Φ therefore contains functions φ that map
from Rn to Rn×m.

To the learner, the data generator’s strategy φ is un-
known. However, if φ were given, then the optimal
response to that strategy that minimizes the expected
costs over q(cd) would be

w∗[φ] = arg min
w

∫
θ̂l(w, φ(cd), cl)dq(cd). (3)

In analogy, if w was known to the data generator, the
optimal response for costs cd would be

φ∗[w](cd) = arg min
X̄

θ̂d(w, X̄, cd). (4)

A pair of parameter vector w and the data generator’s
strategy φ is called a Bayesian equilibrium (Harsanyi,
1967) if it is a fixed point with respect to the optimal
response.

Definition 1 (Bayesian Equilibrium). A pair of w
and φ is called a Bayesian equilibrium if it satisfies

(w, φ(cd)) = (w∗[φ], φ∗[w](cd))

for all cd, where w∗[φ] and φ∗[w](cd) are defined in
Equations 3 and 4, respectively.

If q is a single-point distribution, then a Bayesian
equilibrium is a Nash equilibrium. Deviating unilater-
ally from the Bayesian equilibrium increases the costs
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for either player—in case of the learner, the expected
costs. Therefore, if one player assumes that the op-
ponent plays a Bayesian equilibrium, it is optimal for
this player to play the Bayesian equilibrium as well.
However, it may be the case that more than one equi-
librium exists for a game. If the players choose their
actions according to distinct equilibria, then the out-
come may be arbitrarily bad for either player. It is
therefore crucial to study under which circumstances
a regression game has a unique equilibrium.

We now characterize the optimal responses in a way
that allows to infer them. In the following, the
term diag (v) denotes a diagonal matrix with ele-
ments (diag (v))ii = vi for any arbitrary vector v
and Ik denotes the identity matrix of size k.

Lemma 1 (Optimal Response of the Data Genera-
tor). Let X be a matrix of training data, z the vector
of target labels, and cd a cost vector. Then, the opti-
mal response to a model w as defined in Equation 4 is
uniquely determined by

φ∗[w](cd) =

X−
(

diag (cd)
−1

+ ‖w‖22 In

)−1

(Xw − z) wT.

Lemma 2 (Optimal Response of the Learner). Let y
be the vector of labels and cl a cost vector. Then, the
optimal response to any data generator’s strategy φ ex-
ists and is uniquely determined by

w∗[φ] =

(
Im +

∫
φ(cd)

Tdiag (cl)φ(cd)dq(cd)

)−1

·(∫
φ(cd)dq(cd)

)T

diag (cl)y.

The proofs are included in the online appendix.

4. Existence and Uniqueness of
Equilibrium Points

We will now identify sufficient conditions under which
a game G = (W,Φ, θ̂l, θ̂d, cl, q) has a unique Bayesian
equilibrium. First we will show that for each game G
with W = Rm and Φ = {φ : Rn → Rn×m} a game G′

with compact and convex action spacesW ′ and Φ′ can
be constructed that has identical equilibrium points.
Then, by showing that G′ has at least one Bayesian
equilibrium we prove that this is also the case for G.

Lemma 3 (Compactness of Action Spaces). Let G =

(W,Φ, θ̂l, θ̂d, cl, q) with W = Rm and Φ be the set of
all functions that map from Rn to Rn×m. Let the ex-
pected values

∫
cd,idq(cd) <∞ exist. Then, there is a

game G′ = (W ′,Φ′, θ̂l, θ̂d, cl, q) with nonempty, com-
pact, and convex action spaces Φ′ ⊂ Φ and W ′ ⊂ W,
such that each Bayesian equilibrium in G is a Bayesian
equilibrium in G′ and vice versa.

The proof is included in the online appendix. Lemma 3
leads to the the following existence result.

Theorem 1 (Existence of an Equilibrium). Let the
expected value

∫
cd,idq(cd) < ∞ exist. Then, the

Bayesian regression game G = (W,Φ, θ̂l, θ̂d, cl, q) has
at least one Bayesian equilibrium.

Proof. Following Lemma 3 it is sufficient to show that
game G′ has at least one Bayesian equilibrium. Since
the action spaces W ′ and Φ′ are bounded, w∗[φ] is
continuous in φ (see proof of Lemma 3), and φ∗[w]
is continuous in w, Brouwers theorem implies that
there exists at least one fixed point of (φ,w) 7→
(φ∗[w],w∗[φ]) in Φ′ ×W ′.

We will now derive sufficient conditions for the unique-
ness of a Bayesian equilibrium. The equilibrium is
unique if cl and cd are sufficiently small in relation
to the regularizers; the exact condition is detailed in
Equation 5 and can be validated given cl and q.

Theorem 2 (Uniqueness of Equilibria). Let G′ =

(W ′,Φ′, θ̂l, θ̂d, cl, q) be a regression game, where W ′
and Φ′ are nonempty, convex and compact sets. Fur-
thermore, let the expected values

∫
cd,idq(cd) <∞ ex-

ist. Then, G′ has a unique Bayesian equilibrium if for
all distinct points (w, φ), (w̄, φ̄) ∈ W ′ × Φ′:

‖w − w̄‖22 +

∫ ∥∥φ(cd)− φ̄(cd)
∥∥2
F

dq(cd) >∫ (
φ̄(cd)w̄ − y

)T
diag (cl)φ̄(cd)(w − w̄)dq(cd)−∫

(φ(cd)w − y)T diag (cl)φ(cd)(w − w̄)dq(cd)+∫ (
φ̄(cd)w̄ − z

)T
diag (cd)(φ(cd)− φ̄(cd))w̄dq(cd)−∫

(φ(cd)w − z)T diag (cd)(φ(cd)− φ̄(cd))wdq(cd). (5)

Theorem 2 generalizes Theorem 8 of Brückner et al.
(2012) on the uniqueness of equilibria for games with
complete information. If the players’ costs cd and cl
are too large, Equation 5 is violated, the game G is no
longer locally convex and multiple equilibria can exist.
An experiment on the link between uniqueness and
cost parameters can be found in the online appendix.

Proof. The existence of a Bayesian equilibrium follows
from Theorem 1. We now reformulate the two-player
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game G′ into an (n+1)-player game G′′, where each in-
stance xi is transformed by an individual strategy φi :
R → Rm and any Bayesian equilibrium in G′ corre-
sponds to a distinct Nash equilibrium in G′′. Let G′′ =
(W ′′,Φ′′1 , . . . ,Φ′′n, θ̂′′l , θ̂′′d,1, . . . , θ̂′′d,n) be an (n+1)-player
game without uncertainty, where W ′′ =W ′ and Φ′′i is
the strategy space Φ′ restricted to the data generator
of instance i; the functions

θ̂′′d,i(w, φi) =

∫
‖(φi(cd,i)− xi)‖22dq(cd)+∫

cd,i(φi(cd,i)
Tw − zi)2dq(cd) and (6)

θ̂′′l (w, φ1, . . . , φn) =

‖w‖22 +

n∑
i=1

∫
cl,i(φi(cd,i)

Tw − yi)2dq(cd)

are the corresponding loss functions for i = 1, . . . , n.
Following Theorem 1 of Harsanyi (1968), we now show
that if (w, (φ1, . . . , φn)) is a Bayesian equilibrium in G′

then (w, φ1, . . . , φn) is a Nash equilibrium in G′′. Sup-
pose that (w, φ1, . . . , φn) is not a Nash equilibrium
point in G′′. Then, there exists a better strategy for
at least one player. If w is not an optimal choice,
the point (w, (φ1, . . . , φn)) is not a Bayesian equilib-
rium point in G′ since the learner’s loss functions are
equal for fixed data transformation strategies. How-
ever, if any φi is not optimal, then the expected loss
of the i-th data generator (see Equation 6) can be re-
duced; there exists some point cd, where the i-th data
generator benefits from changing her strategy unilat-
erally. Hence, the i-th summand in the loss function θ̂d
(see Equation 2) decreases while the rest remain un-
changed when the other strategies are kept fixed. Con-
sequently, (w, (φ1, . . . , φn)) is not a Bayesian equilib-
rium point in G′. Hence, it is sufficient to show that
there exists at most one Nash equilibrium point in G′′.

The data generators’ action spaces Φ′′i constitute
Hilbert spaces of square differentiable functions φi :
R → Rm on a Lebesgue measurable set with mea-
sure q(cd). The directional Gâteaux derivative of θ̂′′d,i
in the direction d ∈ Φ′′i is given by〈

∂φi
θ̂′′d,i, d

〉
Φ′′

i

=

2

∫
〈φi(cd,i))〉dq(cd)− 2

∫
〈xi, d(cd)〉dq(cd)+

2

∫
cd,i

〈
w
(
wTφi(cd,i)− zi

)
, d(cd)

〉
dq(cd)

where 〈·, ·〉 denotes the standard Euclidean inner prod-
uct in Rm. Since W ′′ ⊂ Rm, the learner’s directional

derivate for any d ∈ W ′′ is given by〈
∂wθ̂

′′
l ,d

〉
W′′

= 〈w,d〉+

2

n∑
i=1

cl,i

∫ 〈
φi(cd)φi(cd)

Tw − yiφi(cd),d
〉
dq(cd).

Let (w, φ1, . . . , φn), (w̄, φ̄1, . . . , φ̄n) ∈ W ′′×Φ′′1 × · · ·×
Φ′′n be two distinct points. Then, by Theorem 2.5
of Carlson (2001), a unique equilibrium in G′′ exists if

0 <
〈
∂wθ̂

′′
l (w, φ1, . . . , φn),w − w̄

〉
W′′
−〈

∂wθ̂
′′
l (w̄, φ̄1, . . . , φ̄n),w − w̄

〉
W′′

+

n∑
i=1

〈
∂φi

θ̂′′d,i(w, φi)− ∂φi
θ̂′′d,i(w̄, φ̄i), φi − φ̄i

〉
Φ′′

i

= 〈w − w̄,w − w̄〉+
n∑
i=1

∫
ki(w, w̄, φi(cd), φ̄i(cd))dq(cd), (7)

where the instance-specific terms ki are given by

ki(w, w̄,x, x̄) = 〈x− x̄,x− x̄〉+
cl,i
〈(

xTw − yi
)
x−

(
x̄Tw̄ − yi

)
x̄,w − w̄

〉
+

cd,i
〈(

xTw − zi
)
w −

(
x̄Tw̄ − zi

)
w̄,x− x̄

〉
. (8)

Inserting Equation 8 in 7 and rewriting it in matrix
form yields Inequality 5. It is a sufficient condition for
the uniqueness of a Nash equilibrium in the proposed
Hilbert spaces. In the input space, the data generators
can play multiple strategies to reach this unique equi-
librium; they differ for costs q(cd) = 0 of probability
measure zero. However, exactly one of these strategies
corresponds to a Bayesian equilibrium in G′ since the
data generator has to play optimal for all cd regardless
of the probability distribution q. Hence, there exists
at most one Bayesian equilibrium in G′.

5. Finding the Unique Bayesian
Equilibrium

We have derived sufficient conditions for the existence
of a unique Bayesian equilibrium in the linear regres-
sion game. Since the optimal responses are uniquely
defined, the equilibrium in a two-player regression
game is already uniquely determined by one single ac-
tion. Hence, the number of parameters to be esti-
mated in order to find a Bayesian equilibrium can be
reduced from m(n+1) to m. Therefore, we now define
a surrogate function w : w 7→ w∗[φ∗[w]]; every fixed
point w(w) = w with dimension m corresponds to a
Bayesian equilibrium (w, φ[w]) and vice versa.
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Definition 2 (Surrogate Function). For any weight
vector w and a given cost vector cl, the function

w(w; cl) = arg min
w′

∫
θ̂l(w

′, φ∗[w](cd), cl)dq(cd)

returns the optimal response for a data transforma-
tion φ∗[w] which was itself an optimal response to the
vector w.

Following Lemma 2, function w can be expressed as

w(w; cl) =(
Im +

∫
φ∗[w](cd)

Tdiag (cl)φ
∗[w](cd)dq(cd)

)−1

·(∫
φ∗[w](cd)dq(cd)

)T

diag (cl)y. (9)

The fixed point of w can be found by fixed-point algo-
rithms, which evaluate the optimal responses and pos-
sibly their gradients iteratively. Unfortunately, Equa-
tion 9 depends on the matrices

∫
φ∗[w](cd)

Tdq(cd)
and

∫
φ∗[w](cd)

Tdiag (cl)φ
∗[w](cd)dq(cd) which have

no closed-form solutions for arbitrary prior distribu-
tions q. To tackle this problem, we approximate the
data generator’s optimal response φ∗[w](cd) by the
t-th-order Taylor expansion φt;a[w](cd) at point a:

φt;a[w](cd) =

t∑
r=0

diag (cd − a)
r
Cr(a), where (10)

C0(a) = X− diag (a)
(
In + diag

(
‖w‖22 a

))−1

(Xw − z) wT,

Ci(a) = (−1)i
(
In + diag

(
‖w‖22 a

))−(i+1)

‖w‖2(i−1)
2 (Xw − z) wT

for all 0 < i ≤ t. Theorem 3 states that the Approxi-
mation 10 becomes more accurate with increasing t if
the costs cd are bounded.

Theorem 3 (Convergence criterion). Let ‖cd‖ be
bounded from above. Then, there exists a point a, such
that for all points cd with non-zero density q(cd) > 0:

lim
t→∞

‖φ∗[w](cd)− φt;a[w](cd)‖2 = 0.

The proof is included in the online appendix. If the
costs cd are unbounded, there is typically some degree t
that approximates φ∗[w](cd) better than larger values.

The Taylor expansion requires that the first 2t mo-
ments of q exist; let µi(a) =

∫
diag (cd − a)

i
dq(cd) be

the i-th central moment around a. Equation 11 defines

a surrogate function according to Equation 9, where
we made use of the Taylor approximation φt;a[w](cd)
of the response φ∗[w](cd) of the data generator:

wt;a(w; cl)

=

(
Im +

t∑
r,s=0

Cr(a)Tdiag (cl)µr+s(a)Cs(a)

)−1

(
t∑

r=0

Cr(a)µr(a)

)
diag (cl)y. (11)

The existence of the inverse matrices in Equations 9
and 11 follows from Lemma 2.

The choice of the pivotal point a influences the radius
of convergence (see proof of Theorem 3); for small val-
ues of t, it should be located in a high-density region
of q. We will now derive an algorithm that infers a
Bayesian equilibrium based on the Taylor expansion
at a = E [cd]. A fixed point of wt;E[cd](·; cl) can be
found by simplex algorithms (see, e.g., Van der Laan
& Talman, 1982), which, unfortunately, have exponen-
tial worst-case execution time (Hirsch et al., 1989). On
the other hand, standard gradient descend approaches
guarantee only local convergence and are not robust
against poor starting points. We use a graduated op-
timization algorithm to find the fixed point.

Algorithm 1 uses a sequence of increasing costs, termi-
nating at the original costs of the learner. For function
FixedPoint, we use a Newton-like method that ap-
proximates the Jacobi matrix by difference quotients.
The k-th fixed point is a Taylor approximation to the
Bayesian equilibrium (Line 5).

Algorithm 1 Bayesian Equilibrium by Graduated
Optimization

Input: Sequence of costs cl,1, . . . , cl,k, where ‖cl,i‖ <
‖cl,i+1‖, cl,1 = 0n; cl,k = cl; Taylor degree t

Output: Bayesian equilibrium (w∗, φ∗)
1: w0 ← 0m

2: for i = 1, . . . , k do
3: wi ← FixedPoint(wt;E[cd](·; cl,i),wi−1)
4: end for
5: return (wk, φ

∗[wk])

6. Experimental Evaluation

In this section we study the behavior of the Bayesian
regression model in the context of email spam filtering.
Our motivating application is to predict the fraction of
users who perceive an email as unwanted. We collected
about 190,000 emails from an email service provider
between September 2007 and December 2008.
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Figure 1. Evaluation against an adversary that follows a Bayesian equilibrium strategy for varying cost parameters
(left/center). Shift in spam mails over time (right). Error bars show standard errors.

We approximate the actual fraction of users who per-
ceive the message as spam by the log-likelihood for the
class spam of a classifier; we train classifiers using ten-
fold cross validation on all data and label the held-out
data in each iteration with the log-likelihood inferred
by the classifier. Emails are represented by the first
ten principal components (m = 10) of the binary bag-
of-words features (around 226,000 words). The target
score z = 0 reflects that all senders desire their emails
to be perceived as non-spam by all recipients. We
measure the root mean squared error (RMSE).

For the Bayesian regression model, we use the first-
order Taylor approximation, t = 1 (except when we
study different values of t). For t = 1, the Bayesian re-
gression model only depends on mean value µ and vari-
ance σ2 of the prior q; the distributional assumption
about q(cd,i) has no additional influence on the equi-
librium. For higher values of t, we use a gamma dis-
tribution. We compare the Bayesian regression model
(denoted Bayes) to three reference methods: the Nash
regression model that emerges as a special case for one-
point distributions q (denoted Nash), robust ridge re-
gression (denoted Minimax ; Sayed & Chen 2002), and
a regular ridge regression (denoted Ridge). We set the
Nash model’s conjecture for all values of cd,i to the
mean value µ. The perturbation parameter for Min-
imax is chosen as minimal value such that the space
of possible transformations of the input matrix still
includes the solutions of Bayes and Nash.

In the first experiment, we study how the methods
perform against an adversary that chooses a strat-
egy according to a Bayesian equilibrium for varying
parameters of q(cd). In each repetition, we compute
two Bayesian equilibrium points on separate, disjoint
sets drawn at random from September 2007. We ex-
tract the learner’s model from the first, and trans-
formed data points from the second equilibrium point
after drawing actual costs from q(cd,i) and playing ac-

cording to Lemma 1. The regularization parameters
of all methods are set to match the learner’s costs
of cl,i = 0.1. Figure 1 shows the RMSE for varying
expected values (left, with fixed variances σ2 = 1) and
variances (center, with fixed µ = 1) of the data gener-
ator’s costs, averaged over ten training samples of size
200. We observe that Bayes outperforms the iid base-
lines consistently. The advantage of Bayes over Nash
grows with the variance of q. This is plausible be-
cause the Bayesian game accounts for uncertainty on
the data generator’s costs whereas the Nash model as-
sumes that all values are µ. More details are docu-
mented in the online appendix.

In a second experiment, we evaluate all methods into
the future. Here, the models play against actual spam-
mers. The training sample of 200 instances is drawn
from month k. The regularization parameters of all
learners (for Nash and Bayes, we use a single cost pa-
rameter for all instances) are tuned on 1,000 instances
from month k + 1. Test data are drawn from months
k+2 to k+6. Additionally, in order to artificially cre-
ate a mismatch to the assumed adversity of the data
generator, we also evaluate the models on test data
drawn in reverse chronological order; for evaluation
into the past, tuning data are drawn from month k−1
and test data are drawn from months k − 2 to k − 6.
This process is repeated and RMSE measurements are
averaged over ten resampling iterations of the training
set and, in an outer loop, over four training months k
(March to June 2008). The data generator’s costs pa-
rameters are set to µ = 0.01 and σ2 = 0.01 for Bayes
and to µ = 0.01 for Nash.

Figure 2 (left) shows that Bayes and Nash are more
robust over time; they outperform the minimax and
ridge regression models for emails received at least
two months after training. Additionally, Bayes signifi-
cantly outperforms Nash. When test data are drawn in
reverse chronological order, the relative performance of
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Figure 2. Evaluation of regression models with fixed expected costs into the past and future (left) and varying expected
costs into the future (center). Execution Time (right). Error bars show standard errors.

Bayes, Nash and Ridge is reversed. This corresponds
to the mismatch between the assumed adversity of the
test data and the actual tendency of historic email
spam to be less innovative and difficult. Barely regu-
larized ridge regression excels in this setting.

Figure 2 (center) shows experiments in which we mea-
sure the RMSE for a fixed point in the future over a
range of values for µ. The curve shows that Bayes
is robust with respect to the parameter µ of prior q
due to the dominating variance. The online appendix
includes more details.

Figure 1 (right) visualizes the actual chronological
shift of spam emails and compares it to the equilibrium
point. The axes are the two most discriminative prin-
cipal components of the input space. We train a Nash
model on 200 instances from March 2008; the green to
yellow dots visualize the actual chronological shift of
class spam. The red dots visualize the training data,
transformed according to the equilibrium point given
by Lemma 1. Generally, the equilibrium anticipates
the principal trend of the data shift. In the lower right-
hand corner, an entirely new cluster emerges in the test
data that is not present in the equilibrium. Similar ex-
periments for April to June 2008 are included in the
online appendix.

All game-theoretical models are computationally more
intense. Figure 2 (right) shows the execution time
over the number of training emails. The execution
time as a function of the number of attributes can be
found in the online appendix. Bayes computes multi-
ple fixed points using the gradient of the optimal re-
sponses. The optimal responses in a Nash game ignore
the variance of the data generator’s costs leading to a
simplified optimization problem. Minimax has to solve
a costly inner optimization problem to determine the
worst perturbation.

Finally, we study the impact of the degree t of the

Taylor approximation on the accuracy and execution
time of Bayes. Figure 6 in the online appendix shows
that its influence on the RMSE is minimal; t = 3 gives
marginally lower RMSE values than 2 and 1. The
execution time for t = 3 is by a constant factor of
approximately 3 higher than for t = 1.

7. Conclusion

Previous work on adversarial classification has re-
laxed the iid assumption—the assumption of an en-
tirely passive adversary—as far as to the point of non-
cooperative non-zero-sum games with complete infor-
mation (Brückner et al., 2012); for adversarial regres-
sion, to non-cooperative zero-sum games with complete
information (Sayed & Chen, 2002); and for finite ac-
tion spaces, to non-cooperative zero-sum games with
incomplete information (Zinkevich et al., 2008). This
paper extends this to non-cooperative non-zero-sum
regression games with incomplete information about
the cost function of the adversary. We have shown that
regression games have at least one Bayesian equilib-
rium, and that the equilibrium is unique when the cost
functions are sufficiently strongly regularized. We de-
rived an algorithm that identifies the unique Bayesian
equilibrium. From our experiments, we conclude that
the Bayesian model achieves a smaller RMSE than the
Nash model, the minimax model and ridge regression
when playing against a Bayesian adversary for email
data. When evaluating against actual future emails,
the Bayesian models predict the log-likelihood of the
class spam for future emails more accurately than the
Nash, minimax, and ridge regression models.
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