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Abstract

Cross-entropy optimization (CE) has proven
to be a powerful tool for search in control
environments. In the basic scheme, a dis-
tribution over proposed solutions is repeat-
edly adapted by evaluating a sample of so-
lutions and refocusing the distribution on a
percentage of those with the highest scores.
We show that, in the kind of noisy evaluation
environments that are common in decision-
making domains, this percentage-based refo-
cusing does not optimize the expected utility
of solutions, but instead a quantile metric.
We provide a variant of CE (Proportional
CE) that effectively optimizes the expected
value. We show using variants of established
noisy environments that Proportional CE can
be used in place of CE and can improve so-
lution quality.

1. Introduction

Originally designed as a technique for the simulation of
rare events in networks (Rubinstein, 1996), the cross-
entropy (CE) method was later adapted to the task
of optimization by casting optimal events as the rare
events of interest (Rubinstein, 1999). As an optimiza-
tion strategy, CE has been successfully applied in a va-
riety of tasks, such as doing policy search in reinforce-
ment learning (RL) (Mannor et al., 2003) or perform-
ing supervised classification (Mannor et al., 2005). Al-
though its theoretical properties are understood only
in limited settings (Margolin, 2005; Costa et al., 2007),
CE’s empirical success in a wide range of applications
has put it among the state of the art methods for global
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optimization.

Most prior work applies CE directly with no modifi-
cations when optimizing a stochastic evaluation func-
tion. Usually, the underlying assumption is that the
noise is “well behaved” (input-independent Gaussian
noise for example) and that CE performs well on aver-
age. The main focus of this paper will be to show that
this assumption of well behaved noise is commonly vio-
lated, and leads to solutions with poor expected value
(sometimes worse than chance). Formally, it will be
shown that this failure is due to the fact that CE opti-
mizes for quantiles instead of expectation. Therefore,
in domains where the ordering determined by the ex-
pectations is different than the one determined by the
targeted quantile, performance is poor. We will pro-
pose a simple, alternative algorithm that accomplishes
the correct task. Our formal proof will be based on a
model used to establish similar properties for selection
rules in simple genetic algorithms (Vose, 1998; Goschin
et al., 2011).

Empirically, we show that noise distributions with
the above property occur naturally in a variety of
commonly studied stochastic optimization problems.
In particular, we will use domains from operations
research (Inventory Control), policy search in RL
(Tetris) and games (Blackjack) to demonstrate this
claim. We show that even in small Markov Decision
Processes, the noise distributions over the returns of
policies can have a wide variety of shapes, supports,
and variances.

2. Related Work

As mentioned, CE has had significant empirical suc-
cess in a number of settings, among them buffer alloca-
tion (Alon et al., 2005), scheduling, and vehicle rout-
ing. More references and applications are described
in the standard CE tutorial (Boer et al., 2005) or in
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the detailed monographs on the topic (Rubinstein &
Kroese, 2004; Chang et al., 2007). The first paper to
apply the CE method in the context of RL for pol-
icy search was Mannor et al. (2005). The idea of
using CE to search in a parameterized policy space
was subsequently used to obtain results that were or-
ders of magnitude better than previous approaches in
a challenging RL domain—Tetris (Szita & Lörincz,
2006; Szita & Szepesvári, 2010a), which we will also
address here. More recent papers compare CE with
standard RL techniques (Kalyanakrishnan & Stone,
2009) and establish interesting connections with other
policy-search algorithms like CMA-ES and PI2, gen-
eralizing several design choices made in standard CE
(Stulp & Sigaud, 2012).

On the theoretical side, several initial proofs (Rubin-
stein & Kroese, 2004; Margolin, 2005) established con-
vergence properties of modified versions of CE under
certain assumptions. In a more recent paper, Costa
et al. (2007) prove the asymptotic convergence of the
standard version of CE for discrete optimization. An
underlying assumption of the results above is that
there is no noise in the function to be optimized. Pre-
vious empirical evidence (Rubinstein & Kroese, 2004)
suggests that standard CE behaves well in noisy set-
tings at least for certain domains. To the best of our
knowledge, the only theoretical result that discusses
the convergence of a modified CE algorithm in a noisy
setting (Chang et al., 2007), proposes sufficient, but
impractical modifications to CE to address arbitrary
noise, in addition to adding extra parameters to the
algorithm. (See Section 3 for more details.)

3. Algorithms

The key idea of CE is to maintain a distribution over
a space of inputs and update that distribution itera-
tively so that its support focuses only on the optimal
solutions.

The Cross-Entropy Method

For a fixed iteration t, a distribution Dt over an in-
put space X , and query access to a (possibly noisy)
function F : X → R to be optimized, CE proceeds in
three phases that are executed iteratively. In the first
phase, it samples a set of N inputs xi ∼ Dt, i ∈ [1, N ]
and evaluates them. In the second phase, it ranks
the inputs according to their values F (xi) and se-
lects a size ρN top (or “elite”) subset (for some ρ ∈
(0%, 100%)) or, equivalently, the inputs with higher
evaluations than the 1− ρ sample quantile. Finally, in
the third step, it uses the elite subset to set the new
parameters for Dt+1, most commonly by determining

the maximum likelihood estimators for the elite set.
CE is executed either for a fixed number of iterations
or until the distribution is concentrated on a small sub-
region of the input space. In the RL setting, solutions
are encodings of policies, and F executes the policy in
the domain, yielding the return of that trajectory.

The algorithm is parameterized by the choice of N, ρ,
the parameters of the initial distribution D0 over the
input space and the family of distributions Dt (which
includes the initial distribution). The distributions
Dt, t ≥ 0 are usually part of the natural exponential
family and the standard choice is the normal distribu-
tion (for continuous inputs) or the Bernoulli (or multi-
nomial) distribution (for discrete inputs). To instan-
tiate the algorithm for a particular distribution, one
needs to specify the update rule for the third stage. In
general the rule is determined by solving a stochastic
program (for the general version the reader is referred
to algorithm 2.1 in Boer et al. (2005)). We will give
an example of update rules for the case of Dt being
multi-variate Bernoulli distributions over {0, 1}n (for
the normal distribution see Stulp & Sigaud (2012) for
example). In this case, Dt are thus parameterized by
a vector of elements pti ∈ [0, 1], t ≥ 0, i ∈ {1, ..., n}
(where pti is the parameter for the ith Bernoulli distri-
bution at generation t).

In the first stage of generation t, CE samples N
Bernoulli vectors xj and evaluates them. In the sec-
ond stage CE computes the “elite” or the 1 − ρ sam-
ple quantile F ρt based on the evaluations and in the
third stage it updates pi’s using the formula: pt+1

i =∑N
j=1 I[F (xj)≥Fρt ] I[xj,i=1]∑N

j=1 I[F (xj)≥Fρt ]
, where I is the identity func-

tion and xj,i is the ith component of the jth vector.
So each component pt+1

i is set to reflect the ratio of 1
values of the bits at position i among the elite sample.

A number of techniques have been used to address
various practical observations regarding the behavior
of the algorithm. One of the most common problems is
that the distribution sometimes prematurely converges
to a single point. This is because in practice, the vari-
ance of the “elite” population is much smaller than
the population at large, leading to a decrease in the
variance of Dt. One solution is to artificially maintain
the variance of the population high, which was one of
the key ideas leading to the empirical success of CE
in Tetris (Szita & Lörincz, 2006). Another common
technique is to smooth the updates of the parameters
of the distribution over generations.

It is important to note that the algorithm is often ap-
plied “as is” in settings where the evaluation of the
function F is corrupted by an arbitrary noise process.
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The key point of the paper is that the algorithm opti-
mizes a quantile measure that, in certain situations of
practical interest, is different from optimizing for the
expected value of the function.

The m-Cross-Entropy Method (mCE)

An intuitive way to mitigate the impact that the op-
timization for quantiles has on the expectation of the
solution is to take the mean of m samples for each
queried input (for example this was applied by Man-
nor et al. (2003) to address the noise in evaluations).
Then, the standard version of CE can be applied con-

sidering the value of an individual F̂ (x) =
∑m
i=1 Fi(x)

m
(where Fi(x) are i.i.d samples from F (x)). By the
central limit theorem, as m increases, the noise distri-
bution for each evaluated input will become concen-
trated around its mean, thus eliminating (in the limit)
the problem of inconsistent orderings for the mean and
any quantile values.

One obvious problem with mCE is the need to choose
a reasonable value for m when not enough information
is available about the noise distributions. If m is too
small, the undesired phenomenon can still occur. If,
on the other hand, m is too large, for a fixed number
of function evaluations per generation (thus counting
the repeated evaluations of the same point), two prob-
lems can occur. On one hand, it is possible that not
enough inputs are evaluated for mCE to succeed in
finding the optimal (or a reasonable) solution. On the
other hand, improvements in the expected value from
resampling come at the cost of increased variance in
the quality of the final population, as issues of early
convergence are exacerbated when the set of sampled
points shrinks. As has been observed in early work
on evolutionary methods (Fitzpatrick & Grefenstette,
1988), the tradeoff between m, N , and the total num-
ber of generations is a complex one with no universally
“right” answer. We will discuss an example in Section
5.4 to illustrate these tradeoffs in the context of mCE.

A different (but related to mCE) approach to mod-
ifying CE for optimizing in stochastic environments
was proposed by Chang et al. (2007) under the name
of “Model Reference Adaptive Search 2” (MRAS2).
In addition to other modifications, the algorithm re-
quires the designer to specify a rule mk for the num-
ber of times each input is evaluated at each genera-
tion k. For the algorithm to converge (under certain
assumptions), mk is required to increase with k and
the authors suggest mk = Ω(ck) (for some c > 1) or
mk = Ω(k) as possible rules for several classes of noise.
(See Section 4.2.3 in Chang et al. (2007).) While the
above rules are sufficient for convergence in certain sce-
narios, they lead to impractical algorithms for all but

the simplest domains, in addition to adding the need
to specify the correct mk sequence.

Proportional Cross-Entropy

We will now propose a variant of the standard CE
method that seeks the input that optimizes the ex-
pected value of the evaluation function. In addition to
seeking high expected value solutions, the method has
the additional benefit of not requiring the parameter
ρ. The main modification is a change to the second
phase of the CE algorithm: Instead of selecting a sub-
set of the samples from Dt, the algorithm weights each
input according to its value (normalizing with respect
to the difference between the minimum and the maxi-
mum value to address negative evaluations). Then, in
the third stage, it sets the parameters of distribution
Dt+1 according to these weighted inputs.

Concretely, for the same case of the multivariate
Bernoulli distributions and using the same notation
as for CE, the weights for the sampled inputs are

wj =
F (xj)−m
M−m , where m = minNj=1{F (xj)},M =

maxNj=1{F (xj)} (the case of M = m can be handled
by setting all weights to be equal). Then, in the final
stage, the new parameters for the distributions are set

according to the equations: pt+1
i =

∑N
j=1 wjI[xj,i=1]∑N

j=1 wj
.

The idea of modifying the definition of what an “elite”
set represents is not new. In CMA-ES, the mechanism
for deciding the relative importance of the top ρN sam-
ples can be chosen by the algorithm designer (Hansen
& Ostermeier, 2001), but it is still the case that the
samples outside the “elite” set have no influence in
shaping the distribution for the next iteration. In PI2

(Stulp & Sigaud, 2012), an exponential decay scheme
weights all inputs according to their evaluation. Thus,
the algorithm we propose can be viewed as being an
instantiation of a general template for designing CE-
like algorithms. Our contribution is to link the “elite”
set selection mechanism (phase two of the CE algo-
rithm) to the optimization objective of the algorithm.
To simplify comparison and analysis, we keep all the
other design choices unchanged and focus only on com-
paring the standard algorithm with Proportional CE.

A Simple Example

To illustrate the main point of the paper, we will
describe a simple optimization example. We ran an
experiment with a constrained version of the video
game Tetris using a setup similar to Szita & Szepesvári
(2010a). We used a 10× 8 board, the feature set from
Bertsekas & Ioffe (1996), and allowed only the “S”,
“Z,” and “I” tetrominoes to appear with probabilities
of 45%, 45% and 10%. The score bonuses for clear-
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Figure 1. A simple experiment for two policies in Tetris.

ing 1, 2, 3, and 4 lines were 1, 2, 3 and 10, respectively.
The optimization problem is to pick among two poli-
cies the one that has the best average score. Policy 1
is less “risky” and it is represented in Fig. 1(a) (left).
It receives a pair of S tetrominoes that it positions
as shown in the diagram. Policy 2 positions the two
S tetraminoes as in Fig. 1(a) (right). Both policies
continue by executing the same fixed strategy (that
was obtained offline by running a CE algorithm as in
section 5.3) when exposed to random tetrominoes ar-
riving according to the distribution specified above.
We executed each policy for 50k steps and plotted the
distribution over scores in Fig. 1(d). The ordering by
the means is different from the ordering determined
by the 90% quantile and in fact the same holds true
for a wide range of quantiles (as can be observed in
Fig. 1(b), where we plot the empirical quantile func-
tions for the scores of Policy 1 & 2).

We ran CE and Proportional CE with a Bernoulli dis-
tribution with just one component that captures the
binary choice between Policy 1 and 2. Every experi-
ment was executed 100 iterations and was repeated 20
times with N = 200. The result in Fig. 1(c) shows
the two algorithms converging to different solutions,
with CE(ρ = 10%) converging to Policy 2 (which has
a higher 90% quantile) and Proportional CE converg-
ing to Policy 1 (which has a higher expectation). To
verify the phenomenon for a wide range of ρ values,
we ran CE with ρ ∈ (1%, 99%) and plotted the results
in Fig. 1(e). The solution for CE(ρ) is consistent with
the ordering of the quantiles from Fig. 1(b) with a

transition stage for ρ ≈ 40% (i.e. for the 60%th quan-
tile), where the quantiles values for the two policies
are similar.

To illustrate the behavior of mCE, we repeated the
experiment for various values of m. For a fixed m, we
varied ρ ∈ (1%, 99%), keeping the number of evalua-
tions per generation fixed and plotted the results in
Fig. 1(f). For increasing values of m, although the
range of ρ values for which the suboptimal policy is
chosen shrinks, the phenomenon does not disappear.

4. Theoretical Results

In this section we will formally show that CE indeed
optimizes for the quantiles of a function while Propor-
tional CE optimizes for expectation. We will study
the properties of the algorithms in a discrete, stochas-
tic optimization setting under the assumption that
an infinity of evaluations are available at any itera-
tion (we note that the algorithms are fixed and don’t
take advantage of such knowledge). The model is
well known in the evolutionary optimization commu-
nity under the name of “infinite population model”
(Vose, 1998). And, while obviously unrealizable, it is
a reasonable model for studying qualitative properties
of evolutionary methods and is consistent with results
for situations where the number of evaluations is large.
Thus, we opted for model simplicity with the goal of
providing insights about the empirical results.

We assume that given a set X = {1, 2, ..., n} and a
noisy function F : X → [0, 1], whenever F (x), x ∈ X
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is evaluated it will return a sample from a distribu-
tion Px (that depends on x) over [0, 1]. Since our
results are based on the technical tools from Goschin
et al. (2011), we will make similar assumptions. We
will assume that Px have strictly increasing cumula-
tive distribution functions Hx and common support
[0, 1]. Since the cdf’s Hx are strictly increasing, the
quantiles qx(τ) are uniquely defined for any probabil-
ity τ ∈ [0%, 100%]: qx(τ) = (Hx)−1(τ). The stan-
dard goal for optimization in the above model is to
find an x∗ = arg maxx EF (x)∼Px [F (x)]. An alterna-
tive goal is to optimize for quantiles: for a fixed τ , find
xτ = arg maxx q

x(τ). It is possible that the two opti-
mization objectives are aligned (x∗ = xτ ,∀τ) as in the
case of an additive noise distribution like Beta(α, α)
that is input-independent for example. But, for gen-
eral Px and τ , the objectives are different.

We will study the optimization objectives of CE and
Proportional CE assuming they are allowed an infinite
number of evaluations at every iteration. Informally,
the idea of having an infinite number of evaluations is
to allow the entire distribution over F (x) values for a
particular value x to be “present” in the set of samples
for a fixed generation. This assumption naturally re-
moves the need for a parameter N . But we still need
to study the convergence properties for a particular
family of distributions Dt and for a particular setting
of the initial parameters D0. The reason is that in
general, without fixing D0, there will always be a set-
ting for which the algorithms are guaranteed not to
converge:

Proposition 1. In the setting above, there exists an
initial distribution D0 that forces both CE and Propor-
tional CE to never find x∗.

Proof. Assume x∗ is unique in maximizing E[F ]. Let’s
consider a binary encoding of the input space in log(n)
bits and consider Dt to be multivariate Bernoulli dis-
tributions over vectors of size log(n). Let’s assume
wlog that bit 0 of x∗ is set to 1. Let’s now choose the
initial distribution D0 to have a Bernoulli(p = 0) dis-
tribution on the first bit of the representation. Then
x∗ will never be sampled from Dt,∀t ≥ 0.

Since the results are distribution-dependent, we will
prove the convergence properties for a natural choice
of a distribution and initial parameters and conjecture
that the results can be extended to other distributions
as well. Both algorithms will use a multinomial dis-
tributionMt over the input space with all parameters
px0 = 1

n , x ∈ X initially (hence the subscript 0). Using
a multinomial distribution is reasonable in this context
since it encodes the degree of “belief” the algorithm

has in a particular x being the optimal argument of
the function. We will prove that1:

Theorem 1. When running CE(ρ,M0(px0 = 1
n )) to

optimize a function F , the algorithm will asymptot-
ically converge to x1−ρ (i.e. to a multinomial with

px
1−ρ

∞ = 1). When running Proportional CE (M0(pi =
1
n )), the algorithm will asymptotically converge to x∗.

Proof. The first idea of the proof is to use the fact that
the third stage of the CE algorithm is maximum likeli-
hood estimation for the multinomial distribution based
on the top ρ percent (or equivalently, the 1− ρ quan-
tile) of the evaluated, infinite population. For a moti-
vation of the maximum likelihood claim, the reader is
referred to Boer et al. (2005) (Remark 2.5 in partic-
ular). This perspective automatically provides closed
form solutions for the updates of the parameters for
Mt (as opposed to solving a potentially complicated
stochastic program as it is the case in general). In

particular, pxt+1 = pxt
1−Hx(a)

ρ (where a is the thresh-

old value in [0, 1] that separates the elite from the rest
of the population). In words, each component’s new
weight pxt+1 is proportional to the relative tail prob-
ability mass (which also takes into consideration the
previous weight pxt ) with respect to the other compo-
nents among the elite sample. The key insight is to ob-
serve that the parameter update rule above coincides
with the weight update rules for a genetic algorithm
using a truncation selection operator thus reducing the
proof of convergence to the result from Goschin et al.
(2011) (Theorem 4.2).

The proof for Proportional CE is similar, but with
different updates and a reduction to Theorem 4.1 from
Goschin et al. (2011) instead.

5. Experiments

The goal of this section is to present empirical results
in support of the claim that CE fails to optimize for
expectation in naturally occurring noisy environments.

5.1. Die4

Die4 is a game introduced in Goschin et al. (2011) to
study genetic algorithms in the context of optimization
under risk. The game is played with a regular die. At
each point in time the player can decide to roll the die
or to stop and accumulate the sum of all die values
until the current time. If, however, the die comes up 4
at any roll, the game ends and the player gets 0 points.
Depending on the attitude towards risk, policies can

1We note that given the usual values of ρ (ρ < 0.5), CE
is thus risk-seeking which can be dangerous in practice.
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Figure 2. Die4, Inventory Control and Tetris experiments

stop earlier and have a good chance of gaining a non-0
reward or stop later with a high risk of gaining nothing.

Model. The states are the possible sum values for a
die (natural numbers >= 2), the actions are roll and
stop (both can be terminal), the rewards are 0 for fail-
ure and the value of the state for success. The transi-
tions for the roll action are dictated by the roll of the
die according to the definition of the game while the
transition for stop is to the same state (and the game
stops). We follow Goschin et al. (2011) and define
the policy space to be parameterized by a threshold x
encoding a simple rule: “stop as soon as the sum of
die values is at least x or roll otherwise”. The (ex-
pected) optimal value is ≈ 7.2 and it is obtained by
setting x∗ = 17. In Fig. 2(a), we plot the curve for
the mean scores for all the policies with thresholds in
{2, ..., 80}. We also plot the curves corresponding to
the 90, 95, 99%th quantiles.

Setup. We relax x ∈ R+ (even though the sums are
discrete) so as to be able to apply CE easily. Both
algorithms start with a normal distribution N(µ =
50, σ2 = 100) over the set of thresholds, N = 1000
and are executed for 80 iterations. Each experiment is
repeated 50 times and the average scores are reported.

Results. The results in Fig. 2(b) show Proportional
CE converging to the optimal expected value. The
distribution over the thresholds after 80 iterations is
concentrated around the optimal threshold. On the
other hand, CE with ρ = 10%, 5% or 1% converged
to sub-optimal values and actually finds solutions that

are optimal according to the corresponding quantiles.
The results are consistent with what the theory pre-
dicts for such a scenario where the input that yields a
maximum expected value is different from inputs that
determine optimal quantile values.

5.2. Inventory Control

Inventory Control is a standard benchmark problem
from operations research. It was also used as an ex-
perimental domain in the first paper that utilized CE
for policy search in RL (Mannor et al., 2003). We will
describe the simplest version of the problem, which
models a shop owner having to make decisions about
ordering one product.

Model. The state space consists of possible stock val-
ues at the beginning of each day: st ∈ R (with t > 0
denoting the day), and negative stock possible due
to under-ordering. For each state, the action space
at ∈ [0, smax − st] is the amount of stock the owner
can order at the beginning of day t (with smax being
the maximum stock). The transition function is de-
termined by i.i.d. requests from clients dt ∼ P from a
fixed, but unknown probability distribution with the
next state being determined by st+1 = st + at − dt.
The costs for “holding”(h) too much stock, “backlog-
ging” (b) due to insufficient ordering and the price
for one unit of stock c are fixed and known. We will
use the same reward function as Mannor et al. (2003)
rt(st, at, dt) = −hmax{0, st} − bmax{0,−st} − cat.

We will also use the same policy space as Mannor et al.
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Figure 3. Blackjack experiments. Subfigures top (left to right): (a), (b), (c), down (left to right): (d), (e), (f)

(2003): each policy is determined by a threshold x that
sets the stock order as a function of the current stock,
meaning at every time t, at = max{x− st, 0}. Search-
ing in this policy space is thus equivalent to finding
the best threshold x.

Setup. For the experiments, we instantiated an in-
ventory control problem with the following character-
istics: h = 5, b = 6, c = 10, smax = 100 and with P be-
ing a mixture of two normal distributions with equal
weights (N(µ = 5, σ2 = 5) and N(µ = 50, σ2 = 20))
in an attempt to model a mix of small and large re-
quests. Similarly to Die4, both algorithms start with
a Normal distribution N(µ = 50, σ2 = 100) over the
set of thresholds, N = 1000 and are executed for 80
iterations. Each experiment is repeated 50 times. In
Fig. 2(c), we plotted the curves for the means and
the same set of quantiles as for Die4. The optimal
expected value is around −477 and it is obtained by
setting x = 53 while the maximum 99% quantile cor-
responds to an expected value of −514 and is obtained
by setting x = 10.

Results In Fig. 2(d), we plot the algorithms’ conver-
gence curves. It can be observed that Proportional
CE converges to a value close to the expected optimal
value while CE(ρ = 1%) for example converges, as ex-
pected, to the value corresponding to the optimal 99%
quantile. As in the case of Die4, the solutions distribu-
tions over inputs that the algorithms converge to are
centered around the input values that are predicted by
the theoretical results.

5.3. Tetris

The video game Tetris is well known for being a diffi-
cult benchmark for policy search in RL and one where
CE performed very well in the past (Szita & Lörincz,
2006). In our experiments we followed closely the
setup from Szita & Szepesvári (2010a) that defines
a simpler version of Tetris (Stochastic SZTetris) that
only allows the S and Z tetraminoes with the goal
of maintaining the difficulty of the game and make
it more efficient to simulate. We used the code base
from Szita & Szepesvári (2010b) and extended it to
parameterize the domain. We chose the feature rep-
resentation defined in Bertsekas & Ioffe (1996). We
refer the reader to Szita & Szepesvári (2010a) for an
excellent presentation of the challenges of SZTetris.

In an attempt to do simulations more efficiently (so
that we could run parameter search in reasonable
time), we decreased the height of the SZTetris board
to from 20 to 5 (the problem is far from trivial even in
this modified setup). Moreover we decided to give a
bonus of 10 points for clearing two lines (as compared
to the default value of 2) with the goal of “infusing
risk” in the game. We ran a parameter search for a
reasonable value of N (convergence results can be seen
in Fig. 2(e) where ρ is fixed to 10%) and for a good ρ
value for CE (Fig. 2(f) with fixed N = 1000). Every
experiment is repeated 15 times and the results are
averaged. The first observation is that while Propor-
tional CE converges slower than CE, it will converge
to better solutions than the maximum performance of
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CE throughout its execution. The second observation
is that after its performance plateaus, CE is degrad-
ing no matter how we set the initial parameters. We
made significant efforts to find a setting of the algo-
rithm where the divergence phenomenon doesn’t hap-
pen (including setting various smoothing parameters,
initial variance etc.) but we were unable to eliminate
it. To verify that this was not a direct cause of our
setup, we ran the original code base with the origi-
nal algorithm and SZTetris parameters and found the
same phenomenon occurring around generation 2000
(for reasonable tractability reasons, Szita & Szepesvári
(2010a) only ran the algorithm up to generation 50).

While the experiments above offer a less clear-cut per-
spective with respect to the main goal of the paper,
we believe they are interesting enough to report. Even
in the region where CE converges, its performance is
worse than what Proportional CE can achieve. We
note that this seems to be a direct cause of the in-
creased bonus for clearing two lines. In experiments
with the original scores for clearing lines, the average
best performances of the two algorithms are essentially
the same (even though CE still degrades). This sug-
gests that the phenomenon of optimizing for different
objectives affects this “risky” version of Tetris.

5.4. Blackjack

In this section, we discuss two variants of blackjack
and describe how differences in mechanics can lead to
changes in policies when optimizing for quantiles or
expectation. The first variant of the game reduces the
game to its most important dynamics, as described
in Sutton & Barto (1998). We also adopt the policy
representation of Sutton & Barto (1998). The state
is represented by the dealer’s showing card, the sum
of the player’s hand, and whether or not the player
holds a usable ace. On hand values less than 12, the
player automatically hits, because there is no chance
of busting. Therefore, the game can be represented
with n = 200 states with 2 actions (the distribution
over which is binomial).

The experiment is run for 2,000 generations, with
N = 10000. Each experiment is repeated 10 times.
Fig. 3(a) shows the average reward per generation over
each of the 10 executions of CE with various selection
methods. As can be seen, policy improvement occurs
most rapidly with ρ = 50%, but levels off quite rapidly.
It is then surpassed by CS Proportional, which pro-
duces the highest quality policies for the rest of the
experiment. The distribution of rewards according to
strategy is depicted in Fig. 3(d), with error bars dis-
playing the standard deviation of the average of the

10 final populations in each experiment. While Pro-
portional CE produces the best policy, the difference
between Proportional CE and CE is minimal.

In the second variant tested, the option to double is in-
troduced. This action causes the player to double the
wager (after which payoffs can be only −2, 0, or 2), hit,
and then stick. All other details are identical to the
first setting, and the dealer is not able to apply this
action. The performance of the various CE variants
is rendered in Fig. 3(b). While in the original vari-
ant, CE improved all policies over time, only the pro-
portional strategy resulted in consistent improvement
over time when doubling was allowed. Both CE with
ρ = 20%, 50% initially improved, but later degraded,
with ρ = 50% being essentially equal to chance per-
formance by the end of the experiment, and all other
policies produced by non-proportional selection being
worse than chance. As can be seen in the distributions
over rewards in Fig. 3(e), Proportional CE exercises
the double action less than 10% of the time, and has
a PDF markedly different from the other strategies.
In particular, CE with ρ = 10%, 20% both performed
the worst, and doubled the most (almost 95% of the
time), and lost almost 1/3 of all bets where doubling
was used, resulting in very poor performance.

mCE. We also ran experiments to verify the behavior
of mCE in the context of the second variant of Black-
jack. As rendered in Fig. 3(c) and (f) (for two values
of ρ), even with as high as m = 30 samples per individ-
ual, the quality of the mCE algorithm doesn’t match
Proportional CE. The performance improves (as com-
pared to CE) as more samples per input are added (up
to a point due to the finite size of the population), but
it is not clear how to set m and N such that mCE
performs at least as good as Proportional CE.

6. Conclusion

The goal of the paper was to discuss the impact of nat-
urally occurring evaluation noise on the performance
of a well known optimization algorithm: the cross-
entropy method. We proved that sometimes CE opti-
mizes for a different criterion than the maximum ex-
pected value of a function, namely a quantile metric.
We proposed an algorithm that has the same struc-
ture but optimizes for the correct objective. We also
described a variety of naturally occurring optimization
problems which determine CE to behave sub-optimally
in a way consistent with the theoretical results.
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