
One-bit Compressed Sensing: Provable Support and Vector

Recovery

Sivakant Gopi gopisivakanth@gmail.com

IIT Bombay, Mumbai, India

Praneeth Netrapalli praneethn@utexas.edu

The University of Texas at Austin, Austin, TX, 78705 USA

Prateek Jain prajain@microsoft.com

Microsoft Research India, Bangalore, India

Aditya Nori adityan@microsoft.com

Microsoft Research India, Bangalore, India

Abstract

In this paper, we study the problem of one-
bit compressed sensing (1-bit CS), where the
goal is to design a measurement matrix A
and a recovery algorithm such that a k-sparse
unit vector x∗ can be efficiently recovered
from the sign of its linear measurements, i.e.,
b = sign(Ax∗). This is an important problem
for signal acquisition and has several learning
applications as well, e.g., multi-label classi-
fication (Hsu et al., 2009). We study this
problem in two settings: a) support recov-
ery: recover the support of x∗, b) approx-
imate vector recovery: recover a unit vec-
tor x̂ such that ‖x̂ − x∗‖2 ≤ ǫ. For sup-
port recovery, we propose two novel and ef-
ficient solutions based on two combinatorial
structures: union free families of sets and ex-
panders. In contrast to existing methods for
support recovery, our methods are universal
i.e. a single measurement matrix A can re-
cover all the signals. For approximate recov-
ery, we propose the first method to recover a
sparse vector using a near optimal number of
measurements. We also empirically validate
our algorithms and demonstrate that our al-
gorithms recover the true signal using fewer
measurements than the existing methods.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

1. Introduction

Several machine learning tasks require estimating a
large number of parameters using a small number of
training samples. In general, this problem is degener-
ate as many parameter vectors can be consistent with
the same training data. However, recent works in the
area of compressed sensing as well as high-dimensional
statistics have shown that if the true parameter vector
has certain structure (for example, sparsity, low-rank),
then the estimation problem can be solved efficiently
(Candès & Tao, 2005; Candès & Recht, 2009; Negah-
ban et al., 2009).

The above problem can be studied in a number of dif-
ferent settings such as compressed sensing, statistical
learning etc. In this paper, we mostly focus on the pop-
ular compressed sensing setting, where the goal is to
design measurement matrices and recovery algorithms
to estimate sparse vectors using a few linear measure-
ments (Baraniuk et al., 2010). While the key appli-
cation of this problem has been in the area of signal
acquisition, it has also found applications in several
learning related problems (Hsu et al., 2009; Duarte
et al., 2008; Wright et al., 2010).

In compressive sensing, a k-sparse signal x∗ ∈ Rn is
encoded as

b = Ax∗, A ∈ Rm×n,
so that given b and A, the sparse signal x∗ can be
recovered exactly. In this paper, we mostly focus on
recovering sparse signals; we briefly discuss extensions
to other compressible signals in Section 4.1.

Several results in compressive sensing (Candès & Tao,
2005; Garg & Khandekar, 2009) have shown that x∗

One-Bit Compressed Sensing: Provable Support and Vector Recovery

Table 1. Support Recovery: Comparison of different algorithms for 1-bit CS support recovery in terms of number of
measurements required, running time and universality. Note that our methods require slightly more measurements but
are universal which is critical for compressed sensing algorithms as sampling a new matrix A for each signal is practically
infeasible.

Algorithm No. of measurements (m) Running Time Universal Negative x∗ allowed
HB (Haupt & Baraniuk, 2011) O (k log n) O (n log n) No Yes

UFF (Algorithm 2) O
`
k

2 log n
´

O (nk log n) Yes No
Expanders (Algorithm 3) O

`
k

3 log n
´

O (nk log n) Yes Yes

Table 2. Approximate Vector Recovery: Comparison of different algorithms for 1-bit CS approximate vector recovery.
Note that both our methods have a dependence on error (ǫ) that is near optimal while existing methods require a
significantly larger number of measurements and in typical settings, higher running time complexity as well.

Algorithm No. of measurements (m) Running Time Universal
Plan and Vershynin (Plan & Vershynin, 2011) O

`
1

ǫ5
k log2 n

k

´
O

`
1

ǫ5
kn

4 log2 n

k

´
Yes

Plan and Vershynin (Plan & Vershynin, 2012) O
`

1

ǫ6
k log n

k

´
O

`
1

ǫ6
nk log n

k

´
Yes

Two-stage Algorithm (Algorithm 6) eO
`

1

ǫ
k log n

k

´ eO
`
nk log n

k
+ 1

ǫ5
(k log n

k
)5

´
Yes

S-Approx (Algorithm 7) eO
`
k

3 log n

k
+ k

ǫ

´ eO
“
nk log n

k
+ k

5

ǫ5

”
Yes

can be recovered using only m = O (k log n) linear
measurements. However, all the above approaches re-
quire the measurements b to be known exactly (up
to infinite precision). Naturally, this requirement is
not practical, e.g., image sensors cannot store mea-
surements up to arbitrary accuracy. Furthermore, ar-
bitrarily quantized measurements might lead to large
errors in recovery.

To address this issue and to simplify the signal acqui-
sition process, (Boufounos & Baraniuk, 2008) intro-
duced the problem of one-bit compressed sensing (or
1-bit CS) where only one bit of the linear measure-
ments, specifically their signs are observed. In partic-
ular, given A and

b = sign(Ax∗), (1)

we need to recover the k-sparse signal x∗. Apart from
ease of their implementation using comparators, the
above measurements are also known to be more ro-
bust to noise and non-linearity, and in certain situa-
tions perform better than standard compressive sens-
ing (Laska & Baraniuk, 2012).

Note that using 1-bit measurements (1), we cannot re-
cover the norm of x∗ from b because scaling x∗ does
not change the measurements. Similarly, a small per-
turbation in x∗ may not change b. Therefore, exact
recovery of x∗ is in general not possible, even when x∗

is a unit vector.

Instead, 1-bit CS is typically studied in these two
settings:
Support recovery: recover the support of x∗,
Approximate vector recovery: recover x̂

that is close to x∗ (up to normalization), i.e.,∣∣∣
∣∣∣ x̂

‖x̂‖2

− x
∗

‖x
∗‖2

∣∣∣
∣∣∣
2
≤ ǫ, where ǫ > 0 is a given

approximation factor.

For both of the above problems, a solution is evaluated
on the following three critical parameters: 1) Number
of measurements (m), 2) Running time of the recov-
ery algorithm, and 3) Universality of the measurement
matrix. A 1-bit CS method is universal if a fixed de-
sign matrix A can be used to recover all sparse signals.
Note that universality is a crucial requirement, as it is
practically infeasible in several 1-bit CS applications
(for instance, a single-pixel camera) to construct a new
A for each signal.

In this paper, we study one-bit compressive sensing in
both the above mentioned settings and improve upon
the state-of-the-art results in those settings.

1.1. Support Recovery

Existing work: The best known solution for support
recovery is by (Haupt & Baraniuk, 2011) that uses
O(k log n) measurements. However, their solution is
not universal, which is crucial for several real-world
applications.
Our Results: We propose the first universal mea-
surement matrices for support recovery in the 1-bit
compressed sensing problem. Our solutions are based
on two combinatorial structures, called union free sets
and expander graphs. Compared to existing work, our
measurement schemes however require a factor of O(k)
and O(k2) more measurements respectively. See Ta-
ble 1 for a comparison of our methods with the method
by (Haupt & Baraniuk, 2011) with respect to the above
mentioned critical problem parameters. We would like
to note that while expanders have previously been used
in compressed sensing (Jafarpour et al., 2009), to the
best of our knowledge, union free sets have so far not
been used in this domain and might have applications
to other related tasks as well.

One-Bit Compressed Sensing: Provable Support and Vector Recovery

1.2. Approximate Recovery

Existing work: (Plan & Vershynin, 2011) and
(Plan & Vershynin, 2012) provide provable and ef-
ficient recovery methods for this problem. In par-
ticular, (Plan & Vershynin, 2012) provides a pow-
erful framework for recovering a large class of com-
pressible signals using only one-bit measurements.
However, the number of measurements required by
both (Plan & Vershynin, 2011) and (Plan & Ver-
shynin, 2012) are sub-optimal in the dependence on
ǫ
(
O

(
ǫ−5

)
and O

(
ǫ−6

)
respectively

)
.

Our Results: We propose a novel solution that ex-
ploits well-known results for the standard compressed
sensing problem to guarantee recovery using an opti-
mal number of measurements, i.e., O

(
ǫ−1

)
– see sup-

plementary material for a lower bound. See Table 2
for a comparison of our proposed method with the ex-
isting methods.

Finally, our experimental results show that our meth-
ods are also empirically competitive with existing
methods. Since the focus of this paper is on practical
and provable methods for 1-bit CS, we draw a com-
parison only against known state-of-the-art provable
methods.

Notation: We denote vectors using bold-faced letters
(e.g., x) and matrices using capital letters (e.g., A).
xi denotes the i-th element of x, and a(i) denotes i-
th row of A. x(S) denotes elements of x restricted
to set S, and A(S) denotes columns of A from set S.
A ∈ Rm×n denotes a design matrix, and x∗ ∈ Rn

denotes the true signal. ‖x‖p denotes the ℓp norm of
x, and ‖x‖0 denotes the number of non-zeros in x.
supp(x) denotes the set of non-zero elements of x. We

use Õ (·) to ignore poly(log k+log log n) factors. Wlog
stands for with out loss of generality, and s.t. stands
for such that.

2. Related Work

Compressive sensing (CS) using precise linear mea-
surements is a well-studied problem and several meth-
ods (Candès & Tao, 2005; Tropp & Gilbert, 2007; Ja-
farpour et al., 2009) are known to achieve efficient re-
covery using a near optimal number of measurements.
In comparison, the problem of 1-bit CS is relatively
new and the state-of-the-art algorithms still lack in
certain regards. For support recovery, existing algo-
rithms are not universal while for approximate recov-
ery they do not have information theoretic optimal
measurement complexity bounds (See previous section
for more detailed discussion).

Apart from provable recovery methods, several heuris-

tics have also been proposed for this problem
(Boufounos, 2009; Laska et al., 2011; Jacques et al.,
2011); these methods have good empirical performance
but lack theoretical guarantees. Apart from the stan-
dard 1-bit CS problem, several variants/extensions
have also been studied. For instance, (Davenport
et al., 2012) recently studied a similar problem called
1-bit matrix completion . (Ai et al., 2012) recently
extended recovery results to measurement matrices
A sampled from more general sub-Gaussian distribu-
tions.

3. Support Recovery

Problem statement: Design a measurement matrix A ∈
Rm×n, and a recovery algorithm for the following prob-
lem: given b = sign(Ax∗) with x∗ ∈ Rn, ‖x∗‖0 ≤ k,
find supp(x∗).
For this problem, we propose two different approaches
based on: a) union free family (UFF) of sets, b) ex-
pander graphs. For both these approaches, we provide
the design matrix as well as the corresponding recovery
algorithm.

3.1. Support Recovery using Union Free
Family (UFF)

In this section, we describe an efficient algorithm that
recovers the support of any non-negative vector using
O

(
k2 log n

)
measurements.

3.1.1. UFF Background

Let U be a fixed set, and let Bi ⊆ U, 1 ≤ i ≤ n. Then,
the family of sets F = {B1, · · · , Bn} is said to be k-
union free if no Bi lies in the union of any other k sets
from F .

Definition 1. A family of sets F : = {B1, · · · , Bn}
with underlying set U = ∪n

i=1Bi is called a k-union-
free family (k-UFF) iff: Bi0 * Bi1 ∪ · · · ∪Bik

,
for all distinct Bi0 , Bi1 , · · · , Bik

∈ F .

Definition 2. A k-UFF is called d-regular-k-union-
free (d, k)-UFF if: ∀Bi ∈ F , |Bi| = d.

The following theorem from (Erdös et al., 1982) guar-
antees existence of a large (d, k)-UFF.

Theorem 1. (Erdös et al., 1982) Let n(m, k, d) de-
note the maximum cardinality of a (d, k)-UFF over an
m-element underlying set (|U | = m). Let h = ⌈ d

k
⌉.

Then,

n(m, k, d) ≥

(
m

h

)
/

(
kh

h

)2

It is well known that such a family can be constructed
using a randomized method: form subsets Bi, 1 ≤ i ≤
n by selecting d elements of the underlying set U uni-
formly at random. The algorithm is formally given in
Algorithm 1.

One-Bit Compressed Sensing: Provable Support and Vector Recovery

Algorithm 1 Probabilistic construction of a size n,
(d, k)-UFF from an m-element underlying set.

input m, n, d
1: U ← {1, 2, . . . ,m}, F ← ∅
2: for i = 1, · · · , n do
3: Obtain Bi by randomly sampling d distinct ele-

ments of U with replacement
4: F ← F ∪ {Bi}
5: end for

output F

The following theorem shows that with high probabil-
ity, for appropriate choice of the parameters m and d,
Algorithm 1 outputs a (d, k)-UFF with high probabil-
ity.

Theorem 2. For m = 10k2 log
(

3n
δ

)
and d =

k log
(

3n
δ

)
, Algorithm 1 outputs a (d, k)-UFF with

probability greater than 1− δ.

We provide a proof of Theorem 2 in the supplementary
material.

3.1.2. UFF based sensing matrix

We now provide a novel method of constructing mea-
surement matrix A using a given (d, k)-UFF.

Using the randomized construction mentioned in Al-
gorithm 1, construct a (k log

(
3n
δ

)
, k)-UFF F , where

|F| = n with underlying set U = {1, 2, . . . ,m}.
Note that, from Theorem 2, we can choose m =
10k2 log

(
3n
δ

)
.

Next, the sensing matrix A is defined as follows:

Aij = 1{i∈Bj}. (2)

That is, the j-th column of A is the incidence vec-
tor of Bj . Also, if x∗ ∈ Rn is a non-negative vec-
tor, then Ax∗ ≥ 0. Hence, the ith measurement
bi = sign(a(i)x∗) is given by:

bi = 1{
P

j:i∈Bj
x∗

j
>0}. (3)

Note that A ∈ {0, 1}m×n
, b ∈ {0, 1}m

where m =
O(k2 log n).
Support Recovery Algorithm: We now present our
support recovery algorithm that estimates the support
set Ŝ of x∗ using measurements b constructed by the
above described (d, k)-UFF based design matrix A.

Our algorithm proceeds in n steps: at the j-th step
(1 ≤ j ≤ n), we add element j to the support set Ŝ if
mini∈Bj

bi is positive. See Algorithm 2 for a detailed
pseudo code.

The following theorem proved in the supplementary
material establishes the correctness of Algorithm 2.

Algorithm 2 UFF based Support Recovery (UFF)

input A : measurement matrix, b : measurement vec-
tor (b = sign(Ax∗))

1: Ŝ ← ∅
2: for j = 1, · · · , n do
3: if mini∈Bj

bi > 0 then

4: Ŝ ← Ŝ ∪ {j}
5: end if
6: end for

output Ŝ

Theorem 3. Suppose x∗ ∈ Rn is a non-negative
vector s.t. ‖x∗‖0 ≤ k, A is a sensing matrix con-
structed according to (2) and b is computed using (3).

Then, the set Ŝ returned by Algorithm 2 satisfies:
Ŝ = supp(x∗).

3.1.3. Discussion

Above, we described our UFF based algorithm for the
support recovery problem. Note that, the algorithm
is universal, i.e., one design matrix A can be used to
recover the support of every k-sparse non-negative vec-
tor. Furthermore, the algorithm is efficient, with time
complexity O(nk log n), and is easy to implement.

Also, note that the measurements given by (3) are bi-
nary measurements (i.e., in {0, 1}m) rather than signed
measurements (i.e., in {−1, 1}m), but they are essen-
tially of the same nature.

Robustness to noise: Note that Algorithm 2 re-
quires exact measurements without any noise. How-
ever, we can easily extend our method for handling
arbitrary adversarial noise in measurements b. That
is, for the case where value of a small number of bi’s
can be flipped arbitrarily. To this end, we use the
following robust version of UFFs:

Definition 3. A family of sets F = {B1, B2 · · · , Bn}
is called a (d, k, ǫ)-UFF if |Bi0∩(Bi1∪Bi2∪· · ·∪Bik

)| <
ǫ|Bi0 | holds for all distinct Bi0 , Bi1 , · · ·Bik

∈ F and
each set in F has size d.

Theorem 4. (de Wolf, 2012) There exists a (d, k, ǫ)-
UFF F over an m-element underlying set such that

|F| = n, m = O(k2 log n
ǫ2

), d = O(k log n
ǫ

).

Using a (d, k, ǫ) UFF as in Theorem 4, Algorithm 2
can be modified to make it robust up to

(
1
2 − ǫ

)
d ad-

versarial errors, i.e.,
(

1
2 − ǫ

)
d arbitrarily flipped mea-

surements. See Algorithm 8 and Theorem 8 in the
supplementary material for further details.

Handling Vectors with Negative Elements: One
drawback of our UFF based algorithm is that it cannot
handle cases where the underlying signal x∗ has nega-
tive entries. A solution to this problem is to select each
non-zero Aij uniformly at random from [0, 1] (instead

One-Bit Compressed Sensing: Provable Support and Vector Recovery

of fixing it to be 1). This will ensure the following with
probability 1:

• if ℓ ∈ S∗ then
∑

j:i∈Bj
x∗

j 6= 0 ∀i ∈ Bℓ, and

• if ℓ /∈ S∗ then ∃j∗ ∈ Bl such that
∑

i:j∗∈Bi
x∗

j = 0

The above observations along with proof of Theorem 3
shows that we can recover support of x∗ even if it has
negative entries. However, a drawback of this solution
is that the resulting algorithm is not universal as the
values of A need to be sampled afresh for each x∗.
In the next section, we present a solution based on
expanders that can handle vectors with negative ele-
ments and is universal as well (although with higher
measurement complexity).

3.2. Support Recovery using Expanders

We now describe an expanders based algorithm that
recovers the support using O

(
k3 log n

)
measurements.

3.2.1. Expanders Background

A left regular bipartite graph is called an expander if
every small enough subset of the nodes on the left have
a large enough neighborhood set on the right.

Definition 4. A d-left-regular bipartite graph (U, V),
s.t. |U | = n, |V | = m, is an (n, m, d, k, ǫ)-expander if

∀S ⊂ U , |S| ≤ k ⇒ |N(S)| > (1− ǫ)d|S|,
where N(S) is the neighborhood of nodes in set S.

Expanders are closely related to UFF and hence can
be constructed in the same way as in Algorithm 1. For
the sake of completeness, we recall the following result
that establishes the existence of good expanders.

Lemma 1. (Claim 1, (Berinde & Indyk, 2008)) For
any n/2 ≥ k ≥ 1, ǫ > 0 there exists an (n, m, d, k, ǫ)

expander with d = O
(

log n
k

ǫ

)
and m = O

(
k log n

k

ǫ2

)

3.2.2. Expander based Sensing Matrix

In this section, we present a method to construct a
sensing matrix A using a given expander. We first
construct a (n, m, d, k + 1, ǫ)-expander with ǫ = 1

16k
.

Using Theorem 1, we can choose m = O(k3 log n
k
) and

d = O(k log n
k
). Let A ∈ Rm×n be the adjacency ma-

trix of the expander:

Aij =

{
1 if (i, j) is an edge of the expander
0 otherwise.

Then, we use A as the sensing matrix and observe
b = sign(Ax∗), with x∗ ∈ Rn, ‖x∗‖0 ≤ k.

Support Recovery Algorithm: We now present our
support recovery algorithm that estimates support set
Ŝ of x∗ using measurements b constructed using the

Algorithm 3 Support recovery algorithm when A is
constructed from a (n, m, d, k, ǫ)-expander.

input A : measurement matrix, b : measurement vec-
tor (b = sign(Ax∗))

1: Ŝ ← ∅
2: for j = 1, · · · , n do
3: if |N(j) ∩ supp(b)| > d

2 then

4: Ŝ ← Ŝ ∪ {j}
5: end if
6: end for

output Ŝ

above described design matrix A. Our algorithm pro-
ceeds in n steps: at the j-th step (1 ≤ j ≤ n), we

add element j to Ŝ if the measurement corresponding
to at least half of the neighbors of j (i.e. N(j)) are
non-zero i.e.,|N(j) ∩ supp(b)| > d

2 . See Algorithm 3
for a detailed pseudo code.

The following theorem proved in the supplementary
material shows correctness of Algorithm 3.

Theorem 5. Let b = sign(Ax∗) with k-sparse x∗ ∈
Rn and A as constructed in Section 3.2.2, then Al-
gorithm 3 correctly identifies S∗ = supp(x∗), i.e.,

Ŝ = S∗.

Discussion: Note that Algorithm 3 can exactly re-
cover x∗ ∈ {−1, 0, 1}n: first recover supp(x∗) and then

set sign of each element x̂j (j ∈ Ŝ) to be the sign of
the majority of elements in N(j) ∩ supp(b).

Robustness: for our choice of parameters, the algo-
rithm can tolerate up to d

4 adversarial bit flips in b.
Robustness up to d adversarial errors can be obtained
by choosing graphs with better expansion property.

Finally, observe that the computational complexity of
Algorithm 3 is O

(
nk log n

k

)
.

3.2.3. Divide and Conquer

In this section, we present a “Divide and Conquer” ap-
proach that in conjunction with our support recovery
algorithms can achieve even lower measurement com-
plexity than our support recovery algorithms. How-
ever, the obtained approach is no longer universal.

The key idea is to first partition the n coordinates of
x∗ into k disjoint random sets of equal size; Wlog we
can assume that k divides n. Since the sparsity of x∗

is k, on an average, each of the random partitions has
sparsity 1. Using standard concentration bounds, with
high probability, each of the partitions has at most
O(log k) non-zeros. We can then use our algorithms
from Sections 3.1 or 3.2 to recover the support of each
of the k subsets.

One-Bit Compressed Sensing: Provable Support and Vector Recovery

Algorithm 4 Measurements for Algorithm 5

input m, n, d, k
1: P ← random permutation matrix
2: Generate A′

1, A
′
2, . . . , A

′
k using Algorithm 1 with

input (m
k

, n
k
, d)

3: B : generate block diagonal matrix using
A′

1, . . . , A
′
k similar to (4)

output B · P

Algorithm 5 Support Recovery for Divide and Con-
quer Approach

input A′
ℓ : ℓ-th block UFF-based sensing matrix, B:

block matrix (4), P : permutation matrix, b : mea-
surement vector (b = sign(B · Px∗))

1: Ŝ ← ∅
2: for l = 1, · · · , k do
3: bℓ ← b((ℓ − 1)m

k
, · · · , ℓm

k
− 1) i.e. ℓ-th block of

b

4: Run Algorithm 2 on bℓ and A′
ℓ to recover Ŝℓ

5: Ŝ ← Ŝ ∪ P−1(Ŝℓ)
6: end for

output Ŝ

Similar to the result by (Haupt & Baraniuk, 2011), we
can show that the number of measurements needed by
this approach is optimal up to poly (log k), although
the obtained approach is not universal. Algorithm 4
provides a pseudo-code for generating sensing matrix
and Algorithm 5 provides the recovery algorithm.

Construction of the measurement matrix: The
measurement matrix A is given by A = B · P where
P is a random permutation matrix and B is a block
diagonal matrix with k equal blocks, each block being
a UFF-based matrix A′

ℓ, constructed using Algorithm
1 with parameters (m

k
, n

k
, d).

B =

A′
1 · · · 0
...

. . .
...

0 · · · A′
k

 , (4)

where A′
ℓ =Algorithm 1(m

k
, n

k
, d)

Theorem 6. Suppose x∗ ∈ Rn
+ s.t. ||x∗||0 ≤ k, A =

B · P is a sensing matrix as in Algorithm 4 with m =
Õ

(
k log n

k

)
and d = O

(
log k log n

k

)
. Then, Algorithm

5 returns supp(x∗) in time Õ
(
n log n

k

)
with probability

at least 1− e−
eΩ(log k).

See the supplementary material for a detailed proof.

4. Approximate Vector Recovery

Problem Statement: Design matrix A ∈ Rm×n and
an algorithm to solve: given b = sign(Ax∗) (where

x∗ ∈ Rn, ‖x∗‖0 ≤ k and ‖x∗‖2 = 1), output x̂ such
that: ∥∥∥∥

x̂

‖x̂‖2
− x∗

∥∥∥∥
2

≤ ǫ,

where ǫ > 0 is a given tolerance parameter. Note
that assuming x∗ to be of unit norm entails no loss
of generality since scaling x∗ doesn’t change b. In
particular, we can never recover ‖x∗‖2 from b.

For this problem, we propose two novel solutions which
are both universal, provide their measurement com-
plexity and also provide their time complexity. Our
first solution is based on combining standard com-
pressed sensing techniques with Gaussian measure-
ments (see Section 4.1). Our second method first re-
covers the true support using methods of Section 3 and
then uses Gaussian measurements to approximately
recover elements of x∗ (see Section 4.1).

4.1. Two-stage Approximate Recovery

In this section, we present our first approach for two-
stage approximate recovery that exploits existing com-
pressed sensing methods. Broadly, we design the
measurement matrix A as a product of two matrices
A1 ∈ Rm′×n and A2 ∈ Rm×m′

(i.e., A = A2A1). We
select A1 to be a standard compressed sensing matrix
and A2 to be an iid Gaussian matrix. So the measure-
ments are:

b = sign(A2A1x
∗).

Now, let z∗ = A1x
∗ and b = sign(A2z

∗). The main
idea is that given b and A2, we can find a vector ẑ that
satisfies each of the measurement, i.e., sign(A2ẑ) = b.
Furthermore, using Theorem 10 (Theorem 2, Jacques
et al. (2011)), ẑ should closely approximate z∗. Next,
given ẑ and A1, using standard compressed sensing
algorithms we estimate x̂ which should be a close ap-
proximation to x∗.

Construction of the measurement matrix: Let
A = A2 · A1 where A1 ∈ Rm′×n and A2 ∈ Rm×m′

.
A1 is a matrix that satisfies the restricted isometry
property (RIP) (Candès & Tao, 2005) with δ2k < 1

6 .
A1 is said to satisfy k-RIP with constant δk if, ∀x ∈
Rn, ‖x‖0 ≤ k:

(1− δk)‖x‖22 ≤ ‖A1x‖
2
2 ≤ (1 + δk)‖x‖22.

Also, if m′ = O(k log n
k
) and each entry of A1 is sam-

pled from a centered sub-Gaussian then A1 satisfies
2k-RIP with constant δ2k < 1

6 (Candès & Tao, 2005).

Next, select m = O
(

1
ǫ
m′ log m′

ǫ

)
= Õ

(
1
ǫ
k log n

k

)

and sample each entry of A2 independently from
N (0, 1). Using Theorem 10 (supplementary material)
by (Jacques et al., 2011), with high probability such a

One-Bit Compressed Sensing: Provable Support and Vector Recovery

Algorithm 6 Two-stage Approximate Recovery

input A1, A2: measurement matrices (see Sec-
tion 4.1), b : measurement vector (b =
sign(A2A1x

∗))
1: Stage 1: Run an LP solver for the following LP:

find ẑ s.t. bia
(i)
2 ẑ > 0,∀i.

2: Stage 2: Run GradeS algorithm (Garg & Khan-
dekar, 2009) (supplementary material) with inputs
ẑ and A1 to obtain x̂

output x̂

measurement matrix ensures that:

∀x,y, sign(A2x) = sign(A2y) ⇒

∥∥∥∥
x

‖x‖2
−

y

‖y‖2

∥∥∥∥
2

≤ ǫ.

Algorithm for approximate recovery: In this sec-
tion, we present our two-stage algorithm for approx-
imate recovery. As mentioned earlier, the algorithm
first uses a half space learning algorithm to obtain
an estimate ẑ of A1x

∗ and then uses the GradeS al-
gorithm, a robust compressed sensing algorithm by
(Garg & Khandekar, 2009), on ẑ to obtain an estimate
x̂ of x∗. See Algorithm 6 for a pseudo-code of our
approach. For completeness, we provide the GradeS
algorithm in the supplementary material.

Below, we provide proof of correctness of Algorithm 6.

Theorem 7. Let x∗ ∈ Rn be a k-sparse vector
with ‖x∗‖2 = 1 and let A1 and A2 be chosen as
described in the previous section. Also, let b =
sign(A2A1x

∗). Then for x̂ returned by Algorithm 6,

we have,
∥∥∥ x̂

‖x̂‖2

− x∗
∥∥∥

2
≤ 20ǫ, where 0 < ǫ < 1

4 .

See the supplementary material for a detailed proof.

Note that the computational complexity of solving the
LP in Stage 1 of our algorithm can be bounded by

O

((
k log n

ǫ

)5
)

.

Remarks: The above algorithm can be made robust
to classification noise by repeating each measurement a
fixed number of times and taking a majority vote. For
instance, suppose each measurement is correct with
probability 1

2 +p and is flipped with probability 1
2 −p.

Then repeating each measurementO
(

log m
p

)
times, we

can argue that a majority vote of measurements will
give us the true measurements (with high probability).
We can then use Algorithm 6 to recover x∗.

Extension to Other Compressible Signals: Note
that, the second stage of Algorithm 6 is essentially just
a “standard” compressed sensing module, whose goal
is used to recover x∗ from “standard” (noisy) linear
measurement of x∗, i.e., ẑ = A1x

∗ +η. Hence, we can

Algorithm 7 Support Recovery based Approximate
Recovery (S-Approx)

input A1 and A2, b =

[
b1

b2

]
= sign

(
A1x

∗

A2x
∗

)

1: Stage 1: Run Expanders algorithm (Algorithm 3)

with inputs b1 = sign(A1x
∗) and A1 to output Ŝ.

2: x̂ ← 0n×1

3: Stage 2: Run an LP solver for the following LP:

find x̂ s.t. b2(i)a
(i)
2 (Ŝ)x̂(Ŝ) > 0, ∀1 ≤ i ≤ m′.

output x̂

modify our second stage to recover other compressible
signals as well, by directly using the corresponding re-
covery method. Examples of such compressible signals
include low-rank matrices, low-rank + sparse matrices,
wavelet based sparse vectors etc.

The framework by (Plan & Vershynin, 2012) can also
recover a large class of compressible signals. However,
as in the case of sparse vectors, their dependence on
the error ǫ is ǫ−6 while ours is only ǫ−1. Furthermore,
(Plan & Vershynin, 2012) needs to compute “Gaussian
width” for each of these class of functions; in contrast,
we can directly use the existing results for these class
of signals to provide measurement complexity.

Support Recovery based Approximate Recov-
ery: In this section, we present another approach
for approximate vector recovery that first recovers the
support of x∗ using our Expanders algorithm (Algo-
rithm 3) and then solves the resulting low dimensional
problem. That is, we choose the design matrix to

be: A =

[
A1

A2

]
where A1 is a design matrix based

on expanders (as in Section 3.2) and A2 is an iid stan-
dard Gaussian matrix. Using the measurements corre-
sponding to A1, we can first recover the support using
Algorithm 3.

Once we have the support, we can solve an LP re-
stricted to the support, to obtain x̂ that is consis-
tent with the measurements. That is, sign(A2x̂) =
sign(A2x

∗). Again using Theorem 10 (supplementary
material) by (Jacques et al., 2011), we can conclude

that
∥∥∥ x̂

‖x̂‖
2

− x∗
∥∥∥

2
< ǫ. See Algorithm 7 for a pseudo-

code of our approach.

Now, the first step of support recovery re-
quires O

(
k3 log n

k

)
measurements (Theorem 5) and

O
(
nk log n

k

)
time. The second step needs Õ

(
k
ǫ

)
mea-

surements and Õ
(

k5

ǫ5

)
time for recovery. So overall,

the algorithm needs Õ
(
k3 log n

k
+ k

ǫ

)
measurements

and Õ
(
nk log n

k
+ k5

ǫ5

)
time.

One-Bit Compressed Sensing: Provable Support and Vector Recovery

(a) (b) (c) (d)
Figure 1. (a), (b): Error (|S∗∆bS|) incurred by various support-recovery methods (n = 3000, varying k, m). (c), (d):

Error (
˛̨
˛
˛̨
˛ x̂

‖x̂‖2
− x

∗

‖x
∗‖2

˛̨
˛
˛̨
˛
2

) incurred by various approximate recovery methods with fixed n = 3000 but varying k, m.

TwoStage (Algorithm 6) and PV incurs comparable error while S-approx (Algorithm 7) is significantly more accurate.

(a) (b) (c) (d) (e)

Figure 2. Phase transition diagrams for different methods when applied to support recovery (a, b) and approximate
recovery (c, d, e). Each figure plots probability of success in 100 trials for different values of n and k. Red represents high
probability of success (see plot (a) for color coding). Clearly, UFF recovers the support in a larger regime as compared
to BH. For approximate recovery, S-approx performs better in a larger regime of the parameters as compared to both
TwoStage and PV, while TwoStage slightly outperforms PV.

5. Experiments

In this section, we present empirical results for our al-
gorithms for support recovery as well as approximate
vector recovery. For support recovery, we evaluate
our UFF algorithm (Algorithm 2) against the sketch
based algorithm by (Haupt & Baraniuk, 2011) (HB).
For support recovery, we evaluate our TwoStage algo-
rithm and S-Approx algorithm against the algorithm
by (Plan & Vershynin, 2012) (PV).

Support Recovery: For these experiments, we gen-
erate a k-sparse signal x∗ ∈ {0, 1}n randomly and esti-
mate its support using linear measurements proposed
by each of the algorithms. We report the L1 error in
support estimation: ErrorSupport(Ŝ, S∗) = |S∗∆Ŝ|.

We first compare recovery properties of different meth-
ods using phase transition diagrams that are com-
monly used in the compressive sensing literature (see
Figure 2 (a), (b)). For this, we fix the number of mea-
surements (m = 500) while varying n and k. For each
problem size (k, n, m) we generate 20 synthetic prob-
lems and plot probability of exact support recovery;
probability values in Figure 2 are color coded with red
representing high probability of recovery while blue
represents low probability of recovery. Figure 2 (a),
(b) show the phase transition diagrams of our UFF
method (Algorithm 2) and the HB method, respec-
tively. Note that UFF is able to recover the support
for a significantly larger fraction of problems than HB.

Next, we study error incurred by different methods
when the number of measurements are not enough for
recovery. First, we fix n = 3000, m = 500 and vary
k. Figure 1(a) compares the error incurred by our

UFF algorithm against the HB algorithm. Clearly,
our UFF based algorithm incurs smaller error than
HB for large k. For example, for k = 20, UFF is able
to recover the support exactly, while HB incurs around
20% error. Next, we fix n = 3000, k = 20 while varying
m. Figure 1(b) shows that UFF is able to achieve
exact recovery with around 400 measurements while
HB requires around 800 measurements.

Approximate Recovery: Here, we generate k-
sparse signals x∗ ∈ Rn where non-zeros are sampled
using the standard k-variate Gaussian. We report er-

ror in recovery, i.e., ErrorApprox =
∣∣∣
∣∣∣ x̂

‖x̂‖2

− x
∗

‖x
∗‖2

∣∣∣
∣∣∣
2
.

Here again, we first plot phase transition diagrams for
different methods. We fix m = 500 and vary n, k; for
each problem size (m, n, k) we measure probability of
success (out of 20 runs) where a method is considered
to be successful for an instance if the error incurred is
less than 0.3. Figures 2 (c), (d), (e) clearly show that
S-Approx is significantly better than both TwoStage
and PV; TwoStage is also marginally better than PV.

Next, we fix n = 3000 and m = 500, while varying
k. Figure 1(c) compares TwoStage and S-approx algo-
rithms with the PV algorithm. Here again, TwoStage
and PV are comparable while S-approx incurs signif-
icantly less error for k < 24. For larger k, TwoStage
and PV are significantly better than S-approx. Finally,
we fix n = 3000 and k = 20, while varying m. Here
again, for small number of measurements, S-approx in-
curs more error compared to TwoStage and PV. But,
for larger number of measurements, it is significantly
more accurate.

One-Bit Compressed Sensing: Provable Support and Vector Recovery

References

Ai, A., Lapanowski, A., Plan, Y., and Vershynin, R.
One-bit compressed sensing with non-gaussian mea-
surements. arXiv preprint arXiv:1208.6279, 2012.

Baraniuk, Richard G., Cevher, Volkan, Duarte,
Marco F., and Hegde, Chinmay. Model-based com-
pressive sensing. IEEE Transactions on Information
Theory, 56(4):1982–2001, 2010.

Berinde, Radu and Indyk, Piotr. Sparse recovery using
sparse random matrices, 2008.

Boufounos, Petros and Baraniuk, Richard G. 1-bit
compressive sensing. In CISS, pp. 16–21, 2008.

Boufounos, Petros T. Greedy sparse signal reconstruc-
tion from sign measurements. In Proceedings of the
43rd Asilomar conference on Signals, systems and
computers, pp. 1305–1309, 2009.

Candès, Emmanuel J. and Recht, Benjamin. Exact
matrix completion via convex optimization. Founda-
tions of Computational Mathematics, 9(6):717–772,
December 2009.

Candès, Emmanuel J. and Tao, Terence. Decoding by
linear programming. IEEE Transactions on Infor-
mation Theory, 51(12):4203–4215, 2005.

Davenport, M.A., Plan, Y., Berg, E., and Woot-
ters, M. 1-bit matrix completion. arXiv preprint
arXiv:1209.3672, 2012.

de Wolf, Ronald. Efficient data structures from union-
free families of sets. http://homepages.cwi.nl/

~rdewolf/unionfree_datastruc.pdf, 2012.

Duarte, M.F., Davenport, M.A., Takhar, D., Laska,
J.N., Sun, Ting, Kelly, K.F., and Baraniuk, R.G.
Single-pixel imaging via compressive sampling. Sig-
nal Processing Magazine, IEEE, 25(2):83 –91, march
2008. ISSN 1053-5888. doi: 10.1109/MSP.2007.
914730.

Erdös, Péter L., Frankl, Peter, and Füredi, Zoltán.
Families of finite sets in which no set is covered by
the union of two others. J. Comb. Theory, Ser. A,
33(2):158–166, 1982.

Garg, Rahul and Khandekar, Rohit. Gradient de-
scent with sparsification: an iterative algorithm for
sparse recovery with restricted isometry property. In
ICML, 2009.

Haupt, Jarvis and Baraniuk, Richard G. Robust sup-
port recovery using sparse compressive sensing ma-
trices. In CISS, pp. 1–6, 2011.

Hsu, D., Kakade, S. M., Langford, J., and Zhang,
T. Multi-label prediction via compressed sensing.
In Advances in Neural Information Processing Sys-
tems, 2009.

Jacques, Laurent, Laska, Jason N., Boufounos, Petros,
and Baraniuk, Richard G. Robust 1-bit compressive
sensing via binary stable embeddings of sparse vec-
tors. CoRR, abs/1104.3160, 2011.

Jafarpour, Sina, Xu, Weiyu, Hassibi, Babak, and
Calderbank, A. Robert. Efficient and robust com-
pressed sensing using optimized expander graphs.
IEEE Transactions on Information Theory, 55(9):
4299–4308, 2009.

Laska, Jason N. and Baraniuk, Richard G. Regime
change: Bit-depth versus measurement-rate in com-
pressive sensing. IEEE Transactions on Signal Pro-
cessing, 60(7):3496–3505, 2012.

Laska, Jason N., Wen, Zaiwen, Yin, Wotao, and Bara-
niuk, Richard G. Trust, but verify: Fast and accu-
rate signal recovery from 1-bit compressive measure-
ments. IEEE Transactions on Signal Processing, 59
(11):5289–5301, 2011.

Negahban, Sahand, Ravikumar, Pradeep D., Wain-
wright, Martin J., and Yu, Bin. A unified framework
for high-dimensional analysis of m-estimators
with decomposable regularizers. In NIPS, pp. 1348–
1356, 2009.

Plan, Y. and Vershynin, R. One-bit compressed
sensing by linear programming. arXiv preprint
arXiv:1109.4299, 2011.

Plan, Yaniv and Vershynin, Roman. Robust 1-
bit compressed sensing and sparse logistic regres-
sion: A convex programming approach. CoRR,
abs/1202.1212, 2012.

Tropp, Joel A. and Gilbert, Anna C. Signal recovery
from random measurements via orthogonal match-
ing pursuit. IEEE Transactions on Information
Theory, 53(12):4655–4666, 2007.

Wright, J., Ma, Yi, Mairal, J., Sapiro, G., Huang, T.S.,
and Yan, Shuicheng. Sparse representation for com-
puter vision and pattern recognition. Proceedings of
the IEEE, 98(6):1031 –1044, june 2010. ISSN 0018-
9219. doi: 10.1109/JPROC.2010.2044470.

