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Abstract

We extend kernelized matrix factorization
with a fully Bayesian treatment and with an
ability to work with multiple side information
sources expressed as different kernels. Kernel
functions have been introduced to matrix fac-
torization to integrate side information about
the rows and columns (e.g., objects and users
in recommender systems), which is necessary
for making out-of-matrix (i.e., cold start) pre-
dictions. We discuss specifically bipartite
graph inference, where the output matrix is
binary, but extensions to more general matri-
ces are straightforward. We extend the state
of the art in two key aspects: (i) A fully con-
jugate probabilistic formulation of the kernel-
ized matrix factorization problem enables an
efficient variational approximation, whereas
fully Bayesian treatments are not computa-
tionally feasible in the earlier approaches.
(ii) Multiple side information sources are in-
cluded, treated as different kernels in multi-
ple kernel learning that additionally reveals
which side information sources are informa-
tive. Our method outperforms alternatives in
predicting drug–protein interactions on two
data sets. We then show that our framework
can also be used for solving multilabel learn-
ing problems by considering samples and la-
bels as the two domains where matrix fac-
torization operates on. Our algorithm ob-
tains the lowest Hamming loss values on 10
out of 14 multilabel classification data sets
compared to five state-of-the-art multilabel
learning algorithms.
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1. Introduction

Matrix factorization algorithms are very popular ma-
trix completion methods (Srebro, 2004), successfully
used in many applications including recommender sys-
tems and image inpainting. The main idea behind
these methods is to factorize a partially observed data
matrix by finding a low-dimensional latent representa-
tion for both its rows and columns. The prediction for
a missing entry can be calculated as the inner product
between the latent representations of the correspond-
ing row and column. Salakhutdinov & Mnih (2008a;b)
give a probabilistic formulation for matrix factoriza-
tion and its fully Bayesian extension. However, these
approaches are still incomplete in two major aspects:
(i) It is not possible to integrate side information (e.g.,
social network or user profiles for recommender sys-
tems) into the model. (ii) It is not possible to make
predictions for completely empty columns or rows (i.e.,
out-of-matrix prediction).

Algorithms for integrating side information into ma-
trix factorization have been proposed earlier in the
recommender systems literature. Ma et al. (2008) pro-
pose a probabilistic matrix factorization method that
uses a social network and the rating matrix together
to find better latent components. Shan & Banerjee
(2010) integrate side information into a probabilis-
tic matrix factorization model using topic models to
generate latent components of the rated items (e.g.,
movies). Agarwal & Chen (2010) use a similar strat-
egy to generate latent components of both users and
items using topic models. Wang & Blei (2011) also
combine matrix factorization and topic models for sci-
entific article recommendation using textual content
of articles as side information. All these algorithms
are based on explicit feature representations; some are
specific to count (e.g., text) data, and all are able to
model linear dependencies. We use kernels to include
nonlinear dependencies.
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Lawrence & Urtasun (2009) formulate a nonlinear ma-
trix factorization method by generating latent compo-
nents via Gaussian processes without integrating any
side information. Recently, Zhou et al. (2012) propose
a kernelized probabilistic matrix factorization method
using Gaussian process priors with covariance matri-
ces on side information. However, with the modeling
assumptions, only a maximum a posteriori (MAP) es-
timate for the latent components is computationally
feasible, and even then the used gradient descent ap-
proach can be very slow. Furthermore, the method
uses only a single kernel for each domain and needs
test instances while training to be able to calculate
their latent components (i.e., transductive learning).

In this paper, we focus on modeling interaction net-
works between two domains (e.g., biological networks
between drugs and proteins), and estimating unknown
interactions between objects from these two domains,
which is also known as bipartite graph inference (Ya-
manishi, 2009). The standard pairwise kernel ap-
proaches are based on a kernel matrix over object pairs
in the training set and are computationally expen-
sive (Ben-Hur & Noble, 2005). There are also kernel-
based (non-Bayesian) dimensionality reduction algo-
rithms that map objects from both domains into the
same subspace and perform prediction there (Yaman-
ishi, 2009; Yamanishi et al., 2008; 2010).

In biological interaction networks, being composed of
structured objects such as drugs and proteins, there
exist several feature representations or similarity mea-
sures for the objects (Schölkopf et al., 2004). Instead of
using a single specific kernel, we can combine multiple
kernel functions to obtain a better similarity measure,
which is known as multiple kernel learning (Gönen &
Alpaydin, 2011).

We introduce a kernelized Bayesian matrix factoriza-
tion method and give its details for the bipartite graph
inference scenario; it can also be applied to other types
of matrices with slight modifications. Our two main
contributions are: (i) We formulate a novel fully con-
jugate probabilistic model that allows us to develop
an efficient variational approximation scheme, the first
fully Bayesian treatment which is still significantly
faster than the earlier method for computing MAP
point estimates (Zhou et al., 2012). (ii) The proposed
method is able to integrate multiple side information
sources by coupling matrix factorization with multi-
ple kernel learning. We show the effectiveness of our
approach on one toy data set and two drug–protein
interaction data sets. We then show how our method
can be used to solve multilabel learning problems and
report classification results on 14 benchmark data sets.

2. Preliminaries and Notation

We assume that the objects come from two domains X
and Z. We are given two samples of independent and
identically distributed training instances from each,
denoted by X = {xi ∈ X}Nx

i=1 and Z = {zj ∈ Z}Nz

j=1.
In order to calculate similarities between the objects
of the same domain, we have multiple kernel functions
for each domain, namely, {kx,m : X ×X → R}Px

m=1 and

{kz,n : Z ×Z → R}Pz

n=1. If the side information comes
in the form of features instead of similarities, the set
of kernels defined for a specific domain correspond to
different notions of similarity on the same feature rep-
resentation or may be using information coming from
multiple feature representations (i.e., views).

The (i, j)th entry of the target label matrix Y ∈
{−1,+1}Nx×Nz is

yij =

{
+1 if xi and zj are interacting,

−1 otherwise.

The superscript indexes the rows and the subscript in-
dexes the columns. The prediction task is to estimate
unknown interactions for out-of-matrix objects, which
is also known as cold start prediction in recommender
systems.

Figure 1 illustrates the method we propose; it is com-
posed of four main parts: (a) kernel-based nonlinear
dimensionality reduction, (b) multiple kernel learning,
(c) matrix factorization, and (d) binary classification.
The first two kernel-based parts are applied to each
domain separately and they are completely symmet-
ric, hence we call them twins. One of the twins (i.e.,
the one that operates on domain Z) is omitted for clar-
ity. In this section, we briefly explain each part and
introduce the notation used. In the following sections,
we formulate a fully conjugate probabilistic model and
derive a variational approximation.

(a)

(b) (c)

(d)
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Figure 1. Flowchart of kernelized matrix factorization with
twin multiple kernel learning (the twin domain Z is omit-
ted for clarity).

Kernel-Based Nonlinear Dimensionality Re-
duction. In this part, we perform feature extraction
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using the input kernel matrices {Kx,m ∈ RNx×Nx}Px

m=1

and the common projection matrix Ax ∈ RNx×R

where R is the corresponding subspace dimensionality.
We obtain the kernel-specific components {Gx,m =

A>x Kx,m}Px

m=1 after the projection. The main idea
is very similar to kernel principal component analy-
sis or kernel Fisher discriminant analysis, where the
columns of the projection matrix can be solved with
eigendecompositions (Schölkopf & Smola, 2002). How-
ever, this solution strategy is not possible for the more
complex model formulated here.

Multiple Kernel Learning. This part is respon-
sible for combining the kernel-specific components
linearly to obtain the composite components Hx =∑Px

m=1 ex,mGx,m where the kernel weights can take ar-
bitrary values ex ∈ RPx . If we have a single kernel
function for a specific domain, we can safely ignore the
composite components and the kernel weights, and use
the single available kernel-specific components to rep-
resent the objects in that domain (Gönen, 2012a). The
details of our method with a single kernel function for
each domain are explained in the supplementary ma-
terial.

Matrix Factorization. In this part, we propose to
use the low-dimensional representations of objects in
the unified subspace, namely, Hx and Hz, to calculate
the predicted output matrix F = H>x Hz. This corre-
sponds to factorizing the predicted outputs into two
low-rank matrices.

Binary Classification. This part just assigns a class
label to each object pair (xi, zj) by looking at the sign
of the predicted output f ij in the matrix factorization
part. The proposed method can also be extended to
handle other types of outputs (e.g., real-valued out-
puts used in recommender systems) by removing the
binary classification part and directly generating the
target outputs in the matrix factorization part. This
corresponds to removing the predicted output matrix
F and generating target label matrix Y directly from
the composite components Hx and Hz. The details of
our method for real-valued outputs are also given in
the supplementary material.

3. Kernelized Bayesian Matrix
Factorization with Twin Multiple
Kernel Learning

For the method described in the previous section,
we formulate a probabilistic model, called kernelized
Bayesian matrix factorization with twin multiple ker-
nel learning (KBMF2MKL), which has two key prop-
erties that enable us to perform efficient inference:

(i) The kernel-specific and composite components are
modeled explicitly by introducing them as latent vari-
ables. (ii) Kernel weights are assumed to be nor-
mally distributed without enforcing any constraints
(e.g., non-negativity) on them. The reasons for intro-
ducing these two properties to our probabilistic model
becomes clear when we explain our inference method.

Figure 2 gives the graphical model of KBMF2MKL
with latent variables and their corresponding priors.
There are some additions to the notation described
earlier: The Nx ×R matrix of priors for the entries of
the projection matrix Ax is denoted by Λx. The Px×1
vector of priors for the kernel weights ex is denoted by
ηx. The standard deviations for the kernel-specific and
composite components are represented as σg and σh,
respectively; these hyper-parameters are not shown for
clarity.

Λx

Kx,m

Ax

Gx,m

ex,mηx,m

Hx

Px

F

Y

Figure 2. Graphical model of kernelized Bayesian matrix
factorization with twin multiple kernel learning.

The distributional assumptions of the dimensionality
reduction part are

λix,s ∼ G(λix,s;αλ, βλ) ∀(i, s)
aix,s|λix,s ∼ N (aix,s; 0, (λix,s)

−1) ∀(i, s)
gsx,m,i|ax,s,kx,m,i ∼ N (gsx,m,i;a

>
x,skx,m,i, σ

2
g) ∀(m, s, i)

where N (·;µ,Σ) is the normal distribution with mean
vector µ and covariance matrix Σ, and G(·;α, β) de-
notes the gamma distribution with shape parameter α
and scale parameter β. The multiple kernel learning
part has the following distributional assumptions:

ηx,m ∼ G(ηx,m;αη, βη) ∀m
ex,m|ηx,m ∼ N (ex,m; 0, η−1x,m) ∀m

hsx,i|{ex,m, gsx,m,i}
Px

m=1 ∼ N

(
hsx,i;

Px∑
m=1

ex,mg
s
x,m,i, σ

2
h

)
∀(s, i)

where kernel-level sparsity can be tuned by changing
the hyper-parameters (αη, βη). Setting the gamma pri-
ors to induce sparsity, e.g., (αη, βη) = (0.001, 1000),
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produces results analogous to using the `1-norm on
the kernel weights, whereas using uninformative priors,
e.g., (αη, βη) = (1, 1), resembles using the `2-norm.
The matrix factorization part calculates the predicted
outputs using the inner products between the low-
dimensional representations of the object pairs:

f ij |hx,i,hz,j ∼ N (f ij ;h
>
x,ihz,j , 1) ∀(i, j)

where the predicted outputs are introduced to speed
up the inference procedures (Albert & Chib, 1993).
The binary classification part forces the predicted out-
puts to have the same sign with their target labels:

yij |f ij ∼ δ(f ijyij > ν) ∀(i, j)

where the margin parameter ν is introduced to remove
ambiguity in the scaling and to place a low-density
region between two classes, similar to the margin idea
in SVMs, which is generally used for semi-supervised
learning (Lawrence & Jordan, 2005). Here, δ(·) is the
Kronecker delta function that returns 1 if its argument
is true and 0 otherwise.

4. Efficient Inference Using Variational
Approximation

Exact inference for the model is intractable and of
the two readily available alternatives, Gibbs sampling
and variational approximation, we choose the latter
for computational efficiency. Variational methods op-
timize a lower bound on the marginal likelihood, which
involves a factorized approximation of the posterior, to
find the joint parameter distribution (Beal, 2003).

As short-hand notations, all hyper-parameters in the
model are denoted by ζ = {αη, βη, αλ, βλ, σg, σh, ν},
all prior variables by Ξ = {ηx,ηz,Λx,Λz},
and the remaining random variables by Θ =
{Ax,Az, ex, ez,F, {Gx,m}Px

m=1, {Gz,n}Pz

n=1,Hx,Hz}.
We omit the dependence on ζ for clarity. We factorize
the variational approximation as

p(Θ,Ξ|{Kx,m}Px

m=1, {Kz,n}Pz

n=1,Y) ≈ q(Θ,Ξ) =

q(Λx)q(Ax)q({Gx,m}Px

m=1)q(ηx)q(ex)q(Hx)

q(Λz)q(Az)q({Gz,n}Pz

n=1)q(ηz)q(ez)q(Hz)q(F)

and define each factor according to its full conditional:

q(Λx) =

Nx∏
i=1

R∏
s=1

G(λix,s;α(λix,s), β(λix,s))

q(Ax) =

R∏
s=1

N (ax,s;µ(ax,s),Σ(ax,s))

q({Gx,m}Px

m=1) =

Px∏
m=1

Nx∏
i=1

N (gx,m,i;µ(gx,m,i),Σ(gx,m,i))

q(ηx) =

Px∏
m=1

G(ηx,m;α(ηx,m), β(ηx,m))

q(ex) = N (ex;µ(ex),Σ(ex))

q(Hx) =

Nx∏
i=1

N (hx,i;µ(hx,i),Σ(hx,i))

q(F) =

Nx∏
i=1

Nz∏
j=1

T N (f ij ;µ(f ij),Σ(f ij), ρ(f ij))

where α(·), β(·), µ(·), and Σ(·) denote the shape pa-
rameter, scale parameter, mean vector, and covariance
matrix, respectively. Here, T N (·;µ,Σ, ρ(·)) denotes
the truncated normal distribution with mean vector
µ, covariance matrix Σ, and truncation rule ρ(·) such
that T N (·;µ,Σ, ρ(·)) ∝ N (·;µ,Σ) if ρ(·) is true and
T N (·;µ,Σ, ρ(·)) = 0 otherwise.

We can bound the marginal likelihood using Jensen’s
inequality:

log p(Y|{Kx,m}Px

m=1, {Kz,n}Pz

n=1) ≥
Eq(Θ,Ξ)[log p(Y,Θ,Ξ|{Kx,m}Px

m=1, {Kz,n}Pz

n=1)]

− Eq(Θ,Ξ)[log q(Θ,Ξ)]

and optimize this bound by maximizing with respect
to each factor separately until convergence. The ap-
proximate posterior distribution of a specific factor τ
can be found as

q(τ ) ∝
exp(Eq({Θ,Ξ}\τ )[log p(Y,Θ,Ξ|{Kx,m}Px

m=1, {Kz,n}Pz

n=1)]).

For our model, thanks to the conjugacy, the resulting
approximate posterior distribution of each factor fol-
lows the same distribution as the corresponding factor.
The variational updates for the approximate posterior
distributions are given in the supplementary material.

Modeling Choices. Note that using the kernel-
specific and composite components as latent variables
in our probabilistic model introduces extra conditional
independencies between the random variables and en-
ables us to derive efficient update rules for the approx-
imate posterior distributions. The other key property
of our model is the assumption of normality of the
kernel weights, which allows us to obtain a fully con-
jugate probabilistic model (Gönen, 2012b). In earlier
Bayesian multiple kernel learning algorithms, the com-
bined kernel has usually been defined as a convex sum
of the input kernels, by assuming a Dirichlet distribu-
tion on the kernel weights (Girolami & Rogers, 2005;
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Damoulas & Girolami, 2008). As a consequence of the
nonconjugacy between Dirichlet and normal distribu-
tions, they need to use a sampling strategy (e.g., im-
portance sampling) to update the kernel weights when
deriving variational approximations.

Convergence. The inference mechanism sequentially
updates the approximate posterior distributions of the
latent variables and the corresponding priors until con-
vergence, which can be checked by monitoring the
lower bound. The first term of the lower bound cor-
responds to the sum of exponential-form expectations
of the distributions in the joint likelihood. The second
term is the sum of negative entropies of the approx-
imate posteriors in the ensemble. The only nonstan-
dard distribution in these terms is the truncated nor-
mal distribution used for the predicted outputs, and
the truncated normal distribution has a closed-form
formula also for its entropy.

Computational Complexity. The most time-
consuming operations of the update equations are co-
variance calculations because they need matrix inver-
sions. The time complexity of the covariance updates
for the projection matrices is O(Rmax(N3

x , N
3
z )) and

we can cache
∑Px

m=1 Kx,mK>x,m and
∑Pz

n=1 Kz,nK>z,n
before starting inference procedure to reduce the com-
putational cost of these updates. The covariance up-
dates for the kernel-specific components require invert-
ing diagonal matrices. The time complexities of the
covariance updates for the kernel weights and the com-
posite components are O(max(P 3

x , P
3
z )). The other

calculations in these updates can be done efficiently
using matrix-matrix or matrix-vector multiplications.
Finding the posterior expectations of the predicted
outputs only requires evaluating the standardized nor-
mal cumulative distribution function and the stan-
dardized normal probability density. In summary, the
total time complexity of each iteration in our varia-
tional approximation scheme is O(Rmax(N3

x , N
3
z ) +

max(P 3
x , P

3
z )), which makes the algorithm more effi-

cient than standard pairwise kernel approaches (Ben-
Hur & Noble, 2005) that require calculating a kernel
matrix over pairs and training a kernel-based classifier
using this kernel, resulting in O(N3

xN
3
z ) complexity.

Prediction. Given a test pair (x?, z∗), we want to
predict the corresponding score f?∗ or target label y?∗ .
We first replace posterior distributions of Ax, Az, ex,
and ez with their approximate posterior distributions
q(Ax), q(Az), q(ex), and q(ez). Using the approximate
distributions, we obtain the predictive distributions of
the kernel-specific and composite components. The
predictive distribution of the target label can finally
be formulated as

p(y?∗ = +1|{kx,m,?,Kx,m}Px

m=1, {kz,n,∗,Kz,n}Pz

n=1,Y) =

(Z?∗ )−1Φ

(
µ(f?∗ )− ν

Σ(f?∗ )

)
where Z?∗ is the normalization coefficient calculated
for the test pair and Φ(·) is the standardized normal
cumulative distribution function.

5. Experiments

We first run our method on a toy data set to illustrate
its kernel learning capability. We then test its perfor-
mance in a real-life application with experiments on
two drug–protein interaction data sets. One of them
is a standard data set with a single view for each do-
main and the other one is a larger multiview data
set we have collected. We also perform experiments
on 14 benchmark multilabel classification data sets in
order to show the suitability of our matrix factoriza-
tion framework with side information in a nonstan-
dard application scenario. Our Matlab implementa-
tions are available at http://research.ics.aalto.

fi/mi/software/kbmf/.

5.1. Toy Data Set

We create a toy data set consisting of samples from
two domains and real-valued outputs for object pairs.
The data generation process is:

xmi ∼ N (xmi ; 0, 1) ∀(m, i)
znj ∼ N (znj ; 0, 1) ∀(n, j)

yij |xi, zj ∼ N (yij ;x
1
i z

3
j + x4i z

8
j + x7i z

10
j , 1) ∀(i, j)

where (Nx, Nz) = (40, 60), the samples from X and Z
are generated from 15- and 10-dimensional isotropic
normal distributions with unit variance (i.e., m ∈
{1, . . . , 15} and n ∈ {1, . . . , 10}), respectively, and the
target outputs are generated using only three features
from each domain. Note that this data set has not
been generated from our probabilistic model.

In order to have multiple kernel functions for each do-
main, we calculate a separate linear kernel for each
feature of the data points, i.e., (Px, Pz) = (15, 10).
We then learn our model, intended to work as a pre-
dictive model that identifies the relevant features for
the prediction task and has a good generalization per-
formance. We use uninformative priors for the pro-
jection matrices and the kernel weights by setting
(αη, βη, αλ, βλ) = (1, 1, 1, 1). The standard deviations
are set to (σg, σh, σy) = (0.1, 0.1, 1), where σy de-
notes the noise level used for the target outputs. The
subspace dimensionality is arbitrarily set to five (i.e.,
R = 5).

http://research.ics.aalto.fi/mi/software/kbmf/
http://research.ics.aalto.fi/mi/software/kbmf/
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Figure 3 shows the found posterior means of the ker-
nel weights. We see that our method correctly iden-
tifies the relevant features for each domain (i.e., the
first, fourth, and seventh features for X and the third,
eighth, and tenth features for Z). The root mean
square error between the target and predicted outputs
is 0.9865 in accordance with the level of noise added.

1 2 3 4 5 6 7 8 9 101112131415
−0.25

0.00

0.25

0.50

0.75
kernel weights on X

1 2 3 4 5 6 7 8 9 10
−0.25

0.00

0.25

0.50

0.75
kernel weights on Z

Figure 3. Posterior means of the kernel weights found by
our method on the toy data set.

5.2. Drug–Protein Interaction Data Sets

As the first case study, we analyze a drug–protein
interaction network of humans, involving enzymes in
particular. This drug–protein interaction network con-
tains 445 drugs, 664 proteins, and 2926 experimen-
tally validated interactions between them. The data
set consists of the chemical similarity matrix between
drugs, the genomic similarity matrix between proteins,
and the target matrix of known interactions provided
by Yamanishi et al. (2008).

We compare one baseline and three matrix factoriza-
tion methods: (i) Baseline simply calculates the tar-
get output averages over each column or row as the
predictions, (ii) kernelized probabilistic matrix factor-
ization (KPMF) method of Zhou et al. (2012) with real-
valued outputs, (iii) our kernelized Bayesian matrix
factorization (KBMF) method with real-valued outputs,
and (iv) KBMF method with binary outputs.

Our experimental methodology is as follows: For KPMF,
the standard deviation σy is set to one. For both KBMF

variants, we use uninformative priors for the projection
matrices and the kernel weights, i.e., (αη, βη, αλ, βλ) =
(1, 1, 1, 1), and the standard deviations (σg, σh) are set
to (0.1, 0.1). For KBMF with real-valued outputs, the
standard deviation σy is set to one. For KBMF with
binary outputs, the margin parameter ν is arbitrarily
set to one. We perform simulations with eight different

numbers of components, i.e., R ∈ {5, 10, . . . , 40}. We
run five replications of five-fold cross validation over
drugs and report the average area under ROC curve
(AUC) over the 25 results as the performance measure.

In the results, C and G mark the chemical similarity be-
tween drugs and the genomic similarity between pro-
teins, respectively, whereas N marks the similarity be-
tween proteins calculated from the interaction network
and it is defined as the ratio between (i) the number
of drugs that are interacting with both proteins and
(ii) the number of drugs that are interacting with at
least one of the proteins, (i.e., Jaccard index).

The results in Figure 4 reveal that KPMF is above the
baseline for more than 5 components, and both vari-
ants of KBMF for all component numbers. Both variants
of our new KBMF outperform the earlier KPMF for all
types of inputs, where the differences between KPMF

and KBMF are statistically significant (paired t-test,
p < 0.01). The difference is not due to KPMF having
been introduced only for real-valued outputs, as even
the real-output variant of KBMF is better. The differ-
ence is not due to the inability of the current version
of KPMF to handle multiple data views either, as the
single-kernel KBMF outperforms it. Hence the differ-
ences in the performance are due to the differences
in the inference: MAP point estimates versus fully
Bayesian inference. The best results are obtained with
the binary-output KBMF when using all data sources.

5 10 15 20 25 30 35 40

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

number of components

A
U

C

 

 

Baseline
(C)+(G)
(C)+(N)
(C)+(G,N)

Figure 4. Average prediction performances (area under
ROC curve, AUC) on the drug–protein data set of Ya-
manishi et al. (2008). Gray solid line: Baseline; other
solid lines: KBMF with binary outputs; dashed lines: KBMF;
dash-dotted lines: KPMF.

Note that when we combine the genomic and network
similarities between proteins using our method, the re-
sulting similarity measure for proteins is better than
those of single-kernel scenarios, leading to better pre-
diction performance. This shows that when we have
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multiple side information sources about the objects,
integrating them into the matrix factorization model
in a principled way improves the results.

We study an additional drug–protein interaction net-
work of humans, containing 855 drugs, 800 proteins,
and 4659 experimentally validated interactions be-
tween them, extracted from the drugs and proteins
of the data set provided by Khan et al. (2012). We
have two views consisting of two standard 3D chem-
ical structure descriptors for drugs, namely, 1120-
dimensional Amanda (Duran et al., 2008) and 76-
dimensional VolSurf (Cruciani et al., 2000). In order to
calculate the similarity between drugs, we use a Gaus-
sian kernel whose width parameter is selected as the
square root of the dimensionality of the data points.

We repeat the same experimental procedure as in the
previous experiment with one minor change only. We
perform simulations with 16 different numbers of com-
ponents, i.e., R ∈ {5, 10, . . . , 80}, due to the larger size
of the interaction network.

We compare four different ways of including the drug
property data. Amanda and VolSurf correspond to us-
ing a single view when calculating the kernel between
drugs. Early corresponds to concatenating the two
views, which is known as early combination (Schölkopf
et al., 2004), before calculating the kernel between
drugs. MKL corresponds to calculating two different
kernels between drugs and combining them with our
kernel combination approach.

The overall ordering of the results of the different ma-
trix factorization methods is the same as in the pre-
vious case study (Figure 5). The results of KBMF with
real-valued outputs, which are omitted not to clut-
ter the figure, are in between KPMF and KBMF with bi-
nary outputs. The KPMF outperforms Baseline after
20 components, whereas KBMF is consistently better
(by at least four percentage units) than KPMF for all
single-kernel scenarios and the differences are statisti-
cally significant (paired t-test, p < 0.01). KBMF with
five components is already better than Baseline for
all scenarios.

For KBMF with binary outputs, we see that Amanda and
VolSurf are significantly better than Baseline and
obtain similar prediction performances. Early out-
performs Amanda and VolSurf with a slight margin,
whereas MKL obtains consistently better results than
all the other scenarios after five components.

Our method can also be interpreted as a metric learn-
ing algorithm since each kernel function can be con-
verted into a distance metric. We test this property
on the task of finding or retrieving drugs with similar
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Figure 5. Average prediction performances (area under
ROC curve, AUC) on the drug–protein data set of Khan
et al. (2012). Gray solid line: Baseline; solid lines: KBMF

with binary outputs; dash-dotted lines KPMF.

functions. The idea is that since the targets are cen-
trally important for the action mechanisms of drugs,
a metric useful for predicting targets could be useful
for retrieval of drugs as well. As the ground truth
for relevance we use a standard therapeutic classifi-
cation of the drugs according to the organ or system
on which they act and/or their chemical characteristics
(not used during learning); drugs having the same class
are considered relevant. Figure 6 gives the precision at
top-k retrieved drugs, when each drug in turn is used
as the query and the rest of the 855 drugs are retrieved
in the order of similarity according to the learned met-
ric. Early is better than Amanda and VolSurf, and
MKL is the best. This shows that our method is able
to learn a kernel function between drugs that is bet-
ter for retrieval than the kernels either on single or
concatenated views.
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Figure 6. Average precision (over query drugs) of retrieval
as a function of number k of retrieved drugs. See the text
for details.
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Table 1. Classification performances (i.e., Hamming loss values) on the multilabel classification data sets. Here, Ntrain,
Ntest, D, and L denote the numbers of training instances, test instances, features, and labels, respectively. The first
three data sets are obtained from http://mulan.sourceforge.net/datasets.html, whereas the remaining 11 data sets
are obtained from http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz. The figures for comparison algorithms
are taken from Zhang et al. (2012) and the best result for each data set is marked in bold face.

Data Set Ntrain Ntest D L KBMF Zhang’s ML-KNN RML Tang’s RankSVM
Emotions 391 202 72 6 0.176 0.195 0.202 0.241 0.240 0.234
Scene 1211 1196 294 6 0.086 0.089 0.099 0.109 0.130 0.127
Yeast 1500 917 103 14 0.189 0.196 0.195 0.204 0.190 0.201
Arts 2000 3000 462 26 0.057 0.057 0.061 0.058 0.094 0.063
Business 2000 3000 681 33 0.025 0.026 0.027 0.032 0.092 0.027
Computers 2000 3000 640 21 0.036 0.036 0.041 0.037 0.097 0.042
Education 2000 3000 606 22 0.039 0.038 0.039 0.050 0.038 0.048
Entertainment 2000 3000 743 40 0.046 0.055 0.063 0.059 0.053 0.062
Health 2000 3000 636 27 0.036 0.037 0.047 0.041 0.222 0.042
Recreation 2000 3000 438 30 0.044 0.057 0.062 0.057 0.057 0.064
Reference 2000 3000 550 33 0.027 0.025 0.032 0.027 0.087 0.034
Science 2000 3000 612 32 0.032 0.031 0.033 0.051 0.057 0.038
Social 2000 3000 793 33 0.022 0.021 0.022 0.101 0.072 0.027
Society 2000 3000 1047 39 0.038 0.052 0.054 0.096 0.056 0.060

Average Rank 1.536 1.964 3.750 4.464 4.607 4.679

5.3. Multilabel Classification Data Sets

In multilabel learning, each sample is associated with
a set of labels instead of just a single label. Multil-
abel classification can be cast into our formulation as
follows: Samples and labels are assumed to be from
domains X and Z, respectively. Class membership
matrix corresponds to target label matrix Y in our
model. Our method allows us to integrate side infor-
mation about samples and labels in the form of kernel
matrices. For example, we can exploit the correlation
between labels by integrating a kernel calculated over
them into the model.

We compare our algorithm KBMF with five state-
of-the-art multilabel learning algorithms, namely,
(i) RankSVM (Elisseeff & Weston, 2002), (ii) ML-KNN

(Zhang & Zhou, 2007), (iii) Tang’s (Tang et al., 2009),
(iv) RML (Petterson & Caetano, 2010), and (v) Zhang’s
(Zhang et al., 2012). We perform experiments on 14
benchmark multilabel classification data sets whose
characteristics are given in Table 1.

For KBMF, the similarities between samples are mea-
sured with five different Gaussian kernels whose widths
are selected as

√
D/4,

√
D/2,

√
D,
√

2D, and
√

4D,
whereas the similarity between labels is measured with
the Jaccard index over the labels of training sam-
ples. The number of components R is selected from
{1, . . . ,min(L, 15)} according to training performance.

Table 1 reports the classification results on multilabel
data sets. KBMF obtains the best results on 10 out of
14 data sets, whereas it obtains the second best results
on the remaining four data sets. These results validate
the suitability of our framework to multilabel learning.

6. Discussion

We introduce a kernelized Bayesian matrix factoriza-
tion method that can make use of multiple side in-
formation sources about the objects (both rows and
columns) and be applied in various scenarios including
recommender systems, interaction network modeling,
and multilabel learning. Our two main contributions
are: (i) formulating an efficient variational approxi-
mation scheme for inference with the help of a novel
fully conjugate probabilistic model and (ii) coupling
matrix factorization with multiple kernel learning to
integrate multiple side information sources into the
model. In contrast to the earlier kernelized probabilis-
tic matrix factorization method of Zhou et al. (2012),
for our probabilistic model, it is possible to derive a
computationally feasible fully Bayesian treatment. We
illustrate the usefulness of the method on one toy data
set, two molecular biological data sets, and 14 multil-
abel classification data sets.

An interesting topic for future research is to optimize
the dimensionality of the latent components using a
Bayesian model selection procedure. For example, we
can share the same set of precision priors for the pro-
jection matrices and determine the dimensionality us-
ing automatic relevance determination (Neal, 1996).
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