
Large-Scale Learning with Less RAM via Randomization

Daniel Golovin dgg@google.com
D. Sculley dsculley@google.com
H. Brendan McMahan mcmahan@google.com
Michael Young mwyoung@google.com

Google, Inc., Pittsburgh, PA, and Seattle, WA

Abstract

We reduce the memory footprint of popular
large-scale online learning methods by pro-
jecting our weight vector onto a coarse dis-
crete set using randomized rounding. Com-
pared to standard 32-bit float encodings, this
reduces RAM usage by more than 50% during
training and by up to 95% when making pre-
dictions from a fixed model, with almost no
loss in accuracy. We also show that random-
ized counting can be used to implement per-
coordinate learning rates, improving model
quality with little additional RAM. We prove
these memory-saving methods achieve regret
guarantees similar to their exact variants.
Empirical evaluation confirms excellent per-
formance, dominating standard approaches
across memory versus accuracy tradeoffs.

1. Introduction

As the growth of machine learning data sets contin-
ues to accelerate, available machine memory (RAM)
is an increasingly important constraint. This is true
for training massive-scale distributed learning systems,
such as those used for predicting ad click through rates
(CTR) for sponsored search (Richardson et al., 2007;
Craswell et al., 2008; Bilenko & Richardson, 2011;
Streeter & McMahan, 2010) or for filtering email spam
at scale (Goodman et al., 2007). Minimizing RAM use
is also important on a single machine if we wish to uti-
lize the limited memory of a fast GPU processor, or to
simply use fast L1-cache more effectively. After train-
ing, memory cost remains a key consideration at pre-
diction time as real-world models are often replicated
to multiple machines to minimize prediction latency.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Efficient learning at peta-scale is commonly achieved
by online gradient descent (OGD) (Zinkevich, 2003)
or stochastic gradient descent (SGD), (e.g., Bottou &
Bousquet, 2008), in which many tiny steps are accu-
mulated in a weight vector β ∈ Rd. For large-scale
learning, storing β can consume considerable RAM,
especially when datasets far exceed memory capacity
and examples are streamed from network or disk.

Our goal is to reduce the memory needed to store β.
Standard implementations store coefficients in single
precision floating-point representation, using 32 bits
per value. This provides fine-grained precision needed
to accumulate these tiny steps with minimal roundoff
error, but has a dynamic range that far exceeds the
needs of practical machine learning (see Figure 1).

We use coefficient representations that have more lim-
ited precision and dynamic range, allowing values to
be stored cheaply. This coarse grid does not provide
enough resolution to accumulate gradient steps with-
out error, as the grid spacing may be larger than the
updates. But we can obtain a provable safety guaran-
tee through a suitable OGD algorithm that uses ran-
domized rounding to project its coefficients onto the
grid each round. The precision of the grid used on each
round may be fixed in advance or changed adaptively
as learning progresses. At prediction time, more ag-
gressive rounding is possible because errors no longer
accumulate.

Online learning on large feature spaces where some
features occur very frequently and others are rare often
benefits from per-coordinate learning rates, but this
requires an additional 32-bit count to be stored for
each coordinate. In the spirit of randomized rounding,
we limit the memory footprint of this strategy by using
an 8-bit randomized counter for each coordinate based
on a variant of Morris’s algorithm (1978). We show the
resulting regret bounds are only slightly worse than the
exact counting variant (Theorem 3.3), and empirical
results show negligible added loss.

Large-Scale Learning with Less RAM via Randomization

Figure 1. Histogram of coefficients in a typical large-scale
linear model trained from real data. Values are tightly
grouped near zero; a large dynamic range is superfluous.

Contributions This paper gives the following theo-
retical and empirical results:

1. Using a pre-determined fixed-point representation
of coefficient values reduces cost from 32 to 16 bits
per value, at the cost of a small linear regret term.

2. The cost of a per-coordinate learning rate sched-
ule can be reduced from 32 to 8 bits per coordinate
using a randomized counting scheme.

3. Using an adaptive per-coordinate coarse represen-
tation of coefficient values reduces memory cost
further and yields a no–regret algorithm.

4. Variable-width encoding at prediction time allows
coefficients to be encoded even more compactly
(less than 2 bits per value in experiments) with
negligible added loss.

Approaches 1 and 2 are particularly attractive, as they
require only small code changes and use negligible ad-
ditional CPU time. Approaches 3 and 4 require more
sophisticated data structures.

2. Related Work

In addition to the sources already referenced, related
work has been done in several areas.

Smaller Models A classic approach to reducing
memory usage is to encourage sparsity, for example via
the Lasso (Tibshirani, 1996) variant of least-squares
regression, and the more general application of L1 reg-
ularizers (Duchi et al., 2008; Langford et al., 2009;
Xiao, 2009; McMahan, 2011). A more recent trend
has been to reduce memory cost via the use of feature
hashing (Weinberger et al., 2009). Both families of ap-
proaches are effective. The coarse encoding schemes
reported here may be used in conjunction with these
methods to give further reductions in memory usage.

Randomized Rounding Randomized rounding
schemes have been widely used in numerical com-
puting and algorithm design (Raghavan & Tompson,
1987). Recently, the related technique of random-
ized counting has enabled compact language models

(Van Durme & Lall, 2009). To our knowledge, this
paper gives the first algorithms and analysis for online
learning with randomized rounding and counting.

Per-Coordinate Learning Rates Duchi et al.
(2010) and McMahan & Streeter (2010) demon-
strated that per-coordinate adaptive regularization
(i.e., adaptive learning rates) can greatly boost pre-
diction accuracy. The intuition is to let the learning
rate for common features decrease quickly, while keep-
ing the learning rate high for rare features. This adap-
tivity increases RAM cost by requiring an additional
statistic to be stored for each coordinate, most often
as an additional 32-bit integer. Our approach reduces
this cost by using an 8-bit randomized counter instead,
using a variant of Morris’s algorithm (Morris, 1978).

3. Learning with Randomized
Rounding and Probabilistic Counting

For concreteness, we focus on logistic regression with
binary feature vectors x ∈ {0, 1}d and labels y ∈
{0, 1}. The model has coefficients β ∈ Rd, and gives
predictions pβ (x) ≡ σ(β · x), where σ(z) ≡ 1/(1+e−z)
is the logistic function. Logistic regression finds the
model that minimizes the logistic–loss L. Given a la-
beled example (x, y) the logistic–loss is

L(x, y;β) ≡ −y log (pβ (x))− (1− y) log (1− pβ (x))

where we take 0 log 0 = 0. Here, we take log to be
the natural logarithm. We define ‖x‖p as the `p norm
of a vector x; when the subscript p is omitted, the
`2 norm is implied. We use the compressed summa-
tion notation g1:t ≡

∑t
s=1 gs for scalars, and similarly

f1:t(x) ≡
∑t
s=1 fs(x) for functions.

The basic algorithm we propose and analyze is a vari-
ant of online gradient descent (OGD) that stores coef-
ficients β in a limited precision format using a discrete
set (εZ)d. For each OGD update, we compute each
new coefficient value in 64-bit floating point represen-
tation and then use randomized rounding to project
the updated value back to the coarser representation.

A useful representation for the discrete set (εZ)d is
the Qn.m fixed-point representation. This uses n bits
for the integral part of the value, and m bits for the
fractional part. Adding in a sign bit results in a total
of K = n + m + 1 bits per value. The value m may be
fixed in advance, or set adaptively as described below.
We use the method RandomRound from Algorithm 1
to project values onto this encoding.

The added CPU cost of fixed-point encoding and ran-
domized rounding is low. Typically K is chosen to
correspond to a machine integer (say K = 8 or 16),

Large-Scale Learning with Less RAM via Randomization

Algorithm 1 OGD-Rand-1d

input: feasible set F = [−R,R], learning rate schedule
ηt, resolution schedule εt
define fun Project (β) = max(−R,min(β,R))

Initialize β̂1 = 0
for t=1, . . . , T do

Play the point β̂t, observe gt
βt+1 = Project

(
β̂t − ηtgt

)
β̂t+1 ← RandomRound(βt+1, εt)

function RandomRound(β, ε)

a← ε
⌊
β
ε

⌋
; b← ε

⌈
β
ε

⌉
return

{
b with prob. (β − a)/ε

a otherwise

so converting back to a floating point representa-
tions requires a single integer-float multiplication (by
ε = 2−m). Randomized rounding requires a call to
a pseudo-random number generator, which may be
done in 18-20 flops. Overall, the added CPU overhead
is negligible, especially as many large-scale learning
methods are I/O bound reading from disk or network
rather than CPU bound.

3.1. Regret Bounds for Randomized Rounding

We now prove theoretical guarantees (in the form of
upper bounds on regret) for a variant of OGD that
uses randomized rounding on an adaptive grid as well
as per-coordinate learning rates. (These bounds can
also be applied to a fixed grid). We use the standard
definition

Regret ≡
T∑
t=1

ft(β̂t)− arg min
β∗∈F

T∑
t=1

ft(β
∗)

given a sequence of convex loss functions ft. Here the
β̂t our algorithm plays are random variables, and since
we allow the adversary to adapt based on the pre-
viously observed β̂t, the ft and post-hoc optimal β∗

are also random variables. We prove bounds on ex-
pected regret, where the expectation is with respect
to the randomization used by our algorithms (high-
probability bounds are also possible). We consider
regret with respect to the best model in the non-
discretized comparison class F = [−R,R]d.

We follow the usual reduction from convex to lin-
ear functions introduced by Zinkevich (2003); see also
Shalev-Shwartz (2012, Sec. 2.4). Further, since we
consider the hyper-rectangle feasible set F = [−R,R]d,
the linear problem decomposes into n independent
one-dimensional problems.1 In this setting, we con-
sider OGD with randomized rounding to an adaptive

1Extension to arbitrary feasible sets is possible, but

grid of resolution εt on round t, and an adaptive learn-
ing rate ηt. We then run one copy of this algorithm
for each coordinate of the original convex problem,
implying that we can choose the ηt and εt schedules
appropriately for each coordinate. For simplicity, we
assume the εt resolutions are chosen so that −R and
+R are always gridpoints. Algorithm 1 gives the one-
dimensional version, which is run independently on
each coordinate (with a different learning rate and dis-
cretization schedule) in Algorithm 2. The core result
is a regret bound for Algorithm 1 (omitted proofs can
be found in the Appendix):

Theorem 3.1. Consider running Algorithm 1 with
adaptive non-increasing learning-rate schedule ηt, and
discretization schedule εt such that εt ≤ γηt for a con-
stant γ > 0. Then, against any sequence of gradi-
ents g1, . . . , gT (possibly selected by an adaptive ad-
versary) with |gt| ≤ G, against any comparator point
β∗ ∈ [−R,R], we have

E[Regret(β∗)] ≤ (2R)2

2ηT
+

1

2
(G2 + γ2)η1:T + γR

√
T .

By choosing γ sufficiently small, we obtain an expected
regret bound that is indistinguishable from the non-
rounded version (which is obtained by taking γ = 0).
In practice, we find simply choosing γ = 1 yields ex-
cellent results. With some care in the choice of norms
used, it is straightforward to extend the above result
to d dimensions. Applying the above algorithm on a
per-coordinate basis yields the following guarantee:

Corollary 3.2. Consider running Algorithm 2 on
the feasible set F = [−R,R]d, which in turn runs
Algorithm 1 on each coordinate. We use per-
coordinate learning rates ηt,i = α/

√
τt,i with α =√

2R/
√
G2 + γ2, where τt,i ≤ t is the number of non-

zero gs,i seen on coordinate i on rounds s = 1, . . . , t.
Then, against convex loss functions ft, with gt a sub-
gradient of ft at β̂t, such that ∀t, ‖gt‖∞ ≤ G, we have

E[Regret] ≤
d∑
i=1

(
2R
√

2τT,i(G2 + γ2) + γR
√
τT,i

)
.

The proof follows by summing the bound from The-
orem 3.1 over each coordinate, considering only the
rounds when gt,i 6= 0, and then using the inequality∑T
t=1 1/

√
t ≤ 2

√
T to handle the sum of learning rates

on each coordinate.

The core intuition behind this algorithm is that for fea-
tures where we have little data (that is, τi is small, for

choosing the hyper-rectangle simplifies the analysis; in
practice, projection onto the feasible set rarely helps per-
formance.

Large-Scale Learning with Less RAM via Randomization

Algorithm 2 OGD-Rand

input: feasible set F = [−R,R]d, parameters α, γ > 0

Initialize β̂1 = 0 ∈ Rd; ∀i, τi = 0
for t=1, . . . , T do

Play the point β̂t, observe loss function ft
for i=1, . . . , d do

let gt,i = ∇ft(xt)i
if gt,i = 0 then continue
τi ← τi + 1
let ηt,i = α/

√
τi and εt,i = γηt,i

βt+1,i ← Project
(
β̂t,i − ηt,igt,i

)
β̂t+1,i ← RandomRound(βt+1,i, εt,i)

example rare words in a bag-of-words representation,
identified by a binary feature), using a fine-precision
coefficient is unnecessary, as we can’t estimate the cor-
rect coefficient with much confidence. This is in fact
the same reason using a larger learning rate is ap-
propriate, so it is no coincidence the theory suggests
choosing εt and ηt to be of the same magnitude.

Fixed Discretization Rather than implementing
an adaptive discretization schedule, it is more straight-
forward and more efficient to choose a fixed grid res-
olution, for example a 16-bit Qn.m representation is
sufficient for many applications.2 In this case, one can
apply the above theory, but simply stop decreasing the
learning rate once it reaches say ε (= 2−m). Then, the
η1:T term in the regret bound yields a linear term like
O(εT); this is unavoidable when using a fixed reso-
lution ε. One could let the learning rate continue to
decrease like 1/

√
t, but this would provide no benefit;

in fact, lower-bounding the learning-rate is known to
allow online gradient descent to provide regret bounds
against a moving comparator (Zinkevich, 2003).

Data Structures There are several viable ap-
proaches to storing models with variable–sized coef-
ficients. One can store all keys at a fixed (low) preci-
sion, then maintain a sequence of maps (e.g., as hash-
tables), each containing a mapping from keys to coeffi-
cients of increasing precision. Alternately, a simple lin-
ear probing hash–table for variable length keys is effi-
cient for a wide variety of distributions on key lengths,
as demonstrated by Thorup (2009). With this data
structure, keys and coefficient values can be treated as
strings over 4-bit or 8-bit bytes, for example. Bland-
ford & Blelloch (2008) provide yet another data struc-
ture: a compact dictionary for variable length keys.
Finally, for a fixed model, one can write out the string

2If we scale x → 2x then we must take β → β/2 to
make the same predictions, and so appropriate choices of
n and m must be data-dependent.

s of all coefficients (without end of string delimiters),
store a second binary string of length s with ones at
the coefficient boundaries, and use any of a number of
rank/select data structures to index into it, e.g., the
one of Patrascu (2008).

3.2. Approximate Feature Counts

Online convex optimization methods typically use a
learning rate that decreases over time, e.g., setting ηt
proportional to 1/

√
t. Per-coordinate learning rates

require storing a unique count τi for each coordinate,
where τi is the number of times coordinate i has ap-
peared with a non-zero gradient so far. Significant
space is saved by using a 8-bit randomized counting
scheme rather than a 32-bit (or 64-bit) integer to store
the d total counts. We use a variant of Morris’ prob-
abilistic counting algorithm (1978) analyzed by Flajo-
let (1985). Specifically, we initialize a counter C = 1,
and on each increment operation, we increment C with
probability p(C) = b−C , where base b is a parameter.

We estimate the count as τ̃(C) = bC−b
b−1 , which is an

unbiased estimator of the true count. We then use
learning rates ηt,i = α/

√
τ̃t,i + 1, which ensures that

even when τ̃t,i = 0 we don’t divide by zero.

We compute high-probability bounds on this counter
in Lemma A.1. Using these bounds for ηt,i in conjunc-
tion with Theorem 3.1, we obtain the following result
(proof deferred to the appendix).

Theorem 3.3. Consider running the algorithm of
Corollary 3.2 under the assumptions specified there,
but using approximate counts τ̃i in place of the exact
counts τi. The approximate counts are computed using
the randomized counter described above with any base
b > 1. Thus, τ̃t,i is the estimated number of times
gs,i 6= 0 on rounds s = 1, . . . , t, and the per–coordinate
learning rates are ηt,i = α/

√
τ̃t,i + 1. With an appro-

priate choice of α we have

E[Regret(g)] = o
(
R
√
G2 + γ2T 0.5+δ

)
for all δ > 0,

where the o-notation hides a small constant factor and
the dependence on the base b.3

4. Encoding During Prediction Time

Many real-world problems require large-scale predic-
tion. Achieving scale may require that a trained model
be replicated to multiple machines (Buciluǎ et al.,
2006). Saving RAM via rounding is especially at-
tractive here, because unlike in training accumulated

3Eq. (5) in the appendix provides a non-asymptotic (but
more cumbersome) regret bound.

Large-Scale Learning with Less RAM via Randomization

Figure 2. Rounding at Training Time. The fixed q2.13 encoding is 50% smaller than control with no loss. Per-coordinate
learning rates significantly improve predictions but use 64 bits per value. Randomized counting reduces this to 40 bits.
Using adaptive or fixed precision reduces memory use further, to 24 total bits per value or less. The benefit of adaptive
precision is seen more on the larger CTR data.

roundoff error is no longer an issue. This allows even
more aggressive rounding to be used safely.

Consider a rounding a trained model β to some β̂.
We can bound both the additive and relative effect on
logistic–loss L(·) in terms of the quantity |β ·x− β̂ ·x|:
Lemma 4.1 (Additive Error). Fix β, β̂ and (x, y). Let

δ = |β · x− β̂ · x|. Then the logistic–loss satisfies

L(x, y; β̂)− L(x, y;β) ≤ δ.

Proof. It is well known that
∣∣∣∂L(x,y;β)∂βi

∣∣∣ ≤ 1 for all

x, y, β and i, which implies the result.

Lemma 4.2 (Relative Error). Fix β, β̂ and (x, y) ∈
{0, 1}d × {0, 1}. Let δ = |β · x− β̂ · x|. Then

L(x, y; β̂)− L(x, y;β)

L(x, y;β)
≤ eδ − 1.

Proofs for results in this section can be found in the
extended version of this paper. Now, suppose we are
using fixed precision numbers to store our model coeffi-
cients such as the Qn.m encoding described earlier, with
a precision of ε. This induces a grid of feasible model
coefficient vectors. If we randomly round each coeffi-
cient βi (where |βi| ≤ 2n) independently up or down

to the nearest feasible value β̂i, such that E[β̂i] = βi,

then for any x ∈ {0, 1}d our predicted log-odds ratio,

β̂ · x is distributed as a sum of independent random
variables {β̂i | xi = 1}.

Let k = ‖x‖0. In this situation, note that |β · x − β̂ ·
x| ≤ ε‖x‖1 = εk, since |βi − β̂i| ≤ ε for all i. Thus
Lemma 4.1 implies

L(x, y; β̂)− L(x, y;β) ≤ ε ‖x‖1.

Similarly, Lemma 4.2 immediately provides an upper
bound of eεk − 1 on relative logistic error; this bound
is relatively tight for small k, and holds with proba-
bility one, but it does not exploit the fact that the
randomness is unbiased and that errors should cancel
out when k is large. The following theorem gives a
bound on expected relative error that is much tighter
for large k:

Theorem 4.3. Let β̂ be a model obtained from β
using unbiased randomized rounding to a precision ε
grid as described above. Then, the expected logistic–
loss relative error of β̂ on any input x is at most
2
√

2πk exp
(
ε2k/2

)
ε where k = ‖x‖0.

Additional Compression Figure 1 reveals that co-
efficient values are not uniformly distributed. Stor-
ing these values in a fixed-point representation means
that individual values will occur many times. Basic
information theory shows that the more common val-

Large-Scale Learning with Less RAM via Randomization

Table 1. Rounding at Prediction Time for CTR Data.
Fixed-point encodings are compared to a 32-bit floating
point control model. Added loss is negligible even when
using only 1.5 bits per value with optimal encoding.

Encoding AucLoss Opt. Bits/Val

q2.3 +5.72% 0.1

q2.5 +0.44% 0.5

q2.7 +0.03% 1.5

q2.9 +0.00% 3.3

ues may be encoded with fewer bits. The theoret-
ical bound for a whole model with d coefficients is
−

∑d
i=1 log p(βi)

d bits per value, where p(v) is the proba-
bility of occurrence of v in β across all dimensions d.
Variable length encoding schemes may approach this
limit and achieve further RAM savings.

5. Experimental Results

We evaluated on both public and private large data
sets. We used the public RCV1 text classification
data set, specifically from Chang & Lin (2011). In
keeping with common practice on this data set, the
smaller “train” split of 20,242 examples was used for
parameter tuning and the larger “test” split of 677,399
examples was used for the full online learning exper-
iments. We also report results from a private CTR
data set of roughly 30M examples and 20M features,
sampled from real ad click data from a major search
engine. Even larger experiments were run on data sets
of billions of examples and billions of dimensions, with
similar results as those reported here.

The evaluation metrics for predictions are error rate
for the RCV1 data, and AucLoss (or 1-AUC) relative
to a control model for the CTR data. Lower values
are better. Metrics are computed using progressive
validation (Blum et al., 1999) as is standard for online
learning: on each round a prediction is made for a
given example and record for evaluation, and only after
that is the model allowed to train on the example. We
also report the number of bits per coordinate used.

Rounding During Training Our main results are
given in Figure 2. The comparison baseline is online
logistic regression using a single global learning rate
and 32-bit floats to store coefficients. We also test the
effect of per-coordinate learning rates with both 32-
bit integers for exact counts and with 8-bit random-
ized counts. We test the range of tradeoffs available
for fixed-precision rounding with randomized counts,
varying the number of precision m in q2.m encoding to
plot the tradeoff curve (cyan). We also test the range

of tradeoffs available for adaptive-precision rounding
with randomized counts, varying the precision scalar
γ to plot the tradeoff curve (dark red). For all ran-
domized counts a base of 1.1 was used. Other than
these differences, the algorithms tested are identical.

Using a single global learning rate, a fixed q2.13 en-
coding saves 50% of the RAM at no added loss com-
pared to the baseline. The addition of per-coordinate
learning rates gives significant improvement in predic-
tive performance, but at the price of added memory
consumption, increasing from 32 bits per coordinate to
64 bits per coordinate in the baselines. Using random-
ized counts reduces this down to 40 bits per coordi-
nate. However, both the fixed-precision and the adap-
tive precision methods give far better results, achiev-
ing the same excellent predictive performance as the
64-bit method with 24 bits per coefficient or less. This
saves 62.5% of the RAM cost compared to the 64-bit
method, and is still smaller than using 32-bit floats
with a global learning rate.

The benefit of adaptive precision is only apparent on
the larger CTR data set, which has a “long tail” distri-
bution of support across features. However, it is useful
to note that the simpler fixed-precision method also
gives great benefit. For example, using q2.13 encod-
ing for coefficient values and 8-bit randomized counters
allows full-byte alignment in naive data structures.

Rounding at Prediction Time We tested the ef-
fect of performing coarser randomized rounding of a
fully-trained model on the CTR data, and compared to
the loss incurred using a 32-bit floating point represen-
tation. These results, given in Table 1, clearly support
the theoretical analysis that suggests more aggressive
rounding is possible at prediction time. Surprisingly
coarse levels of precision give excellent results, with
little or no loss in predictive performance. The mem-
ory savings achievable in this scheme are considerable,
down to less than two bits per value for q2.7 with the-
oretically optimal encoding of the discrete values.

6. Conclusions

Randomized storage of coefficient values provides an
efficient method for achieving significant RAM savings
both during training and at prediction time.

While in this work we focus on OGD, similar ran-
domized rounding schemes may be applied to other
learning algorithms. The extension to algorithms that
efficiently handle L1 regularization, like RDA (Xiao,
2009) and FTRL-Proximal (McMahan, 2011), is rela-

Large-Scale Learning with Less RAM via Randomization

tively straightforward.4 Large scale kernel machines,
matrix decompositions, topic models, and other large-
scale learning methods may all be modifiable to take
advantage of RAM savings through low precision ran-
domized rounding methods.

A. Appendix: Proofs

A.1. Proof of Theorem 3.1

Our analysis extends the technique of Zinkevich
(2003). Let β∗ be any feasible point (with possibly in-
finite precision coefficients). By the definition of βt+1,

‖βt+1−β∗‖2 = ‖β̂t−β∗‖2−2ηtgt · (β̂t−β∗)+η2t ‖gt‖2.

Rearranging the above yields

gt · (β̂t − β∗)

≤ 1

2ηt

(
‖β̂t − β∗‖2 − ‖βt+1 − β∗‖2

)
+
ηt
2
‖gt‖2

=
1

2ηt

(
‖β̂t − β∗‖2 − ‖β̂t+1 − β∗‖2

)
+
ηt
2
‖gt‖2 + ρt,

where the ρt = 1
2ηt

(
‖β̂t+1 − β∗‖2 − ‖βt+1 − β∗‖2

)
terms will capture the extra regret due to the random-
ized rounding. Summing over t, and following Zinke-
vich’s analysis, we obtain a bound of

Regret(T) ≤ (2R)2

2ηT
+
‖gt‖22

2
η1:T + ρ1:T .

It remains to bound ρ1:T . Letting dt = βt+1 − β̂t+1

and at = dt/ηt, we have

ρ1:T =

T∑
t=1

1

2ηt

(
(β̂t+1 − β∗)2 − (βt+1 − β∗)2

)
≤

T∑
t=1

1

2ηt

(
β̂2
t+1 − β2

t+1

)
+ β∗a1:T

≤
T∑
t=1

1

2ηt

(
β̂2
t+1 − β2

t+1

)
+R |a1:T | .

We bound each of the terms in this last expression
in expectation. First, note |dt| ≤ εt ≤ γηt by defi-
nition of the resolution of the rounding grid, and so
|at| ≤ γ. Further E[dt] = 0 since the rounding is
unbiased. Letting W = |a1:T |, by Jensen’s inequal-
ity we have E[W]2 ≤ E[W 2]. Thus, E[|a1:T |] ≤√
E[(a1:T)2] =

√
Var(a1:T), where the last equality

4Some care must be taken to store a discretized ver-
sion of a scaled gradient sum, so that the dynamic range
remains roughly unchanged as learning progresses.

follows from the fact E[a1:T] = 0. The at are not inde-
pendent given an adaptive adversary.5 Nevertheless,
consider any as and at with s < t. Since both have
expectation zero, Cov(as, at) = E[asat]. By construc-
tion, E[at | gt, βt,histt] = 0, where histt is the full
history of the game up until round t, which includes
as in particular. Thus

Cov(as, at) = E[asat] = E
[
E[asat | gt, βt,histt]

]
= 0.

For all t, |at| ≤ γ so Var(at) ≤ γ2, and Var(a1:T) =∑
t Var(at) ≤ γ2T . Thus, E[|a1:T |] ≤ γ

√
T .

Next, consider E[β̂2
t+1 − β2

t+1 | βt+1]. Since E[β̂t+1 |
βt+1] = βt+1, for any shift s ∈ R, we have E

[
(β̂t+1 −

s)2 − (βt+1 − s)2 | βt+1

]
= E

[
β̂2
t+1 − β2

t+1 | βt+1

]
, and

so taking s = βt+1,

1

ηt
E
[
β̂2
t+1 − β2

t+1 | βt+1

]
=

1

ηt
E
[
(β̂t+1 − βt+1)2 | βt+1

]
≤ ε2t
ηt
≤ γ2η2t

ηt
= γ2ηt.

Combining this result with E[|a1:T |] ≤ γ
√
T , we have

E [ρ1:T] ≤ γ2η1:T + γR
√
T ,

which completes the proof.

A.2. Approximate Counting

We first provide high–probability bounds for the ap-
proximate counter.

Lemma A.1. Fix T and t ≤ T . Let Ct+1 be the
value of the counter after t increment operations using
the approximate counting algorithm described in Sec-
tion 3.2 with base b > 1. Then, for all c > 0, the
estimated count τ̃(Ct+1) satisfies

Pr

[
τ̃(Ct+1) <

t

bc log(T)
− 1

]
≤ 1

T c−1
(1)

and

Pr

[
τ̃(Ct+1) >

et

b− 1
b
√

2c logb(T)+2

]
≤ 1

T c
. (2)

Both T and c are essentially parameters of the bound;
in the Eq. (2), any choices of T and c that keep T c

constant produce the same bound. In the first bound,
the result is sharpest when T = t, but it will be con-
venient to set T equal to the total number of rounds
so that we can easily take a union bound (in the proof
of Theorem 3.3).

5For example the adversary could ensure at+1 = 0 (by
playing gt+1 = 0) iff at > 0.

Large-Scale Learning with Less RAM via Randomization

Proof of Lemma A.1. Fix a sequence of T increments,
and let Ci denote the value of the approximate counter
at the start of increment number i, so C1 = 1. Let
Xj = |{i : Ci = j}|, a random variable for the number
of increments for which the counter stayed at j.

We start with the bound of Eq. (1). When C = j, the
update probability is pj = p(j) = b−j , so for any `j
we have Xj ≥ `j with probability at most (1− pj)`j ≤
exp(−pj)`j = exp(−pj`j) since (1− x) ≤ exp(−x) for
all x. To make this at most T−c it suffices to take
`j = c(log T)/pj = cbj log T . Taking a (rather loose)
union bound over j = 1, 2, . . . , T , we have

Pr
[
∃j, Xj > cbj log T

]
≤ 1/T c−1.

For Eq. (1), it suffices to show that if this does not oc-

cur, then τ̃(Ct) ≥ t/(bc log(T))−1. Note
∑Ct

j=1Xj ≥ t.
With our supposition that Xj ≤ cbj log T for all j, this

implies t ≤
∑Ct

j=1 cb
j log T = cb log T

(
bCt−1
b−1

)
, and

thus Ct ≥ logb

(
t(b−1)
bc log T + 1

)
. Since τ̃ is monotoni-

cally increasing and b > 1, simple algebra then shows
τ̃(Ct+1) ≥ τ̃(Ct) ≥ t/(bc log(T))− 1.

Next consider the bound of Eq. (2). Let j0 be the
minimum value such that p(j0) ≤ 1/et, and fix k ≥ 0.
Then Ct+1 ≥ j0 + k implies the counter was incre-
mented k times with an increment probability at most
p(j0). Thus,

Pr[Ct ≥ j0 + k] ≤
(
t

k

) j0+k−1∏
j=j0

p(j)

≤
(
te

k

)kk−1∏
j=0

p(j0)b−j

=

(
te

k

)k
p(j0)

k
b−k(k−1)/2

≤ k−k · b−k(k−1)/2

Note that j0 ≤ dlogb (et)e. Taking k =
√

2c logb(T)+1
is sufficient to ensure this probability is at most T−c,
since k−k ≤ 1 and k2 − k ≥ 2c logb T . Observing that

τ̃
(
dlogb (et)e+

√
2c logb(T) + 1

)
≤ et

b−1b
√

2c logb(T)+2

completes the proof.

Proof of Theorem 3.3. We prove the bound for
the one-dimensional case; the general bound then fol-
lows by summing over dimensions. Since we con-
sider a single dimension, we assume |gt| > 0 on all
rounds. This is without loss of generality, because
we can implicitly skip all rounds with zero gradients,

which means we don’t need to make the distinction be-
tween t and τt,i. We abuse notation slightly by defining
τ̃t ≡ τ̃(Ct+1) ≈ t = τt for the approximate count on
round t. We begin from the bound

E[Regret] ≤ (2R)2

2ηT
+

1

2
(G2 + γ2)η1:t + γR

√
T .

of Theorem 3.1, with learning rates ηt = α/
√
τ̃t + 1.

Lemma A.1 with c = 2.5 then implies

Pr[τ̃t + 1 < k1t] ≤
1

T 1.5
and Pr[τ̃t > k2t] ≤

1

T 2.5
,

where k1 = 1/(bc log T) and k2 = eb
√

2c logb T+2

b−1 . A
union bound on t = 1, ..., T on the first bound implies
with probability 1− 1√

T
we have ∀t, τ̃t + 1 ≥ k1t, so

η1:T =

T∑
t=1

α√
τ̃t + 1

≤ 1√
k1

T∑
t=1

α√
t
≤ 2α

√
T√

k1
, (3)

where we have used the inequality
∑T
t=1

1√
t
≤ 2
√
T .

Similarly, the second inequality implies with probabil-
ity at least 1− 1

T 2.5 ,

ηT =
α√

τ̃T + 1
≥ α√

k2T + 1
. (4)

Taking a union bound, Eqs. (3) and (4) hold with prob-
ability at least 1−2/

√
T , and so at least one fails with

probability at most 2/
√
T . Since ft(β)−ft(β′) ≤ 2GR

for any β, β′ ∈ [−R,R] (using the convexity of ft and
the bound on the gradients G), on any run of the algo-
rithm, regret is bounded by 2RGT . Thus, these failed
cases contribute at most 4RG

√
T to the expected re-

gret bound.

Now suppose Eqs. (3) and (4) hold. Choosing α =
R√
G2+γ2

minimizes the dependence on the other con-

stants, and note for any δ > 0, both 1√
k1

and
√
k2 are

o(T δ). Thus, when Eqs. (3) and (4) hold,

E[Regret] ≤ (2R)2

2ηT
+

1

2
(G2 + γ2)η1:t + γR

√
T

≤ 2R2
√
k2T + 1

α
+ (G2 + γ2)

α
√
T√
k1

+ γR
√
T

= o
(
R
√
G2 + γ2T 0.5+δ

)
.

Adding 4RG
√
T for the case when the high-probability

statements fail still leaves the same bound.

It follows from the proof that we have the more precise
but cumbersome upper bound on E[Regret]:

2R2
√
k2T + 1

α
+ (G2 + γ2)

α
√
T√
k1

+ γR
√
T + 4RG

√
T .

(5)

Large-Scale Learning with Less RAM via Randomization

References

Bilenko, Mikhail and Richardson, Matthew. Predictive
client-side profiles for personalized advertising. In Pro-
ceedings of the 17th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 2011.

Blandford, Daniel K. and Blelloch, Guy E. Compact dic-
tionaries for variable-length keys and data with applica-
tions. ACM Trans. Algorithms, 4(2), May 2008.

Blum, Avrim, Kalai, Adam, and Langford, John. Beating
the hold-out: bounds for k-fold and progressive cross-
validation. In Proceedings of the twelfth annual confer-
ence on Computational learning theory, 1999.

Bottou, Léon and Bousquet, Olivier. The tradeoffs of large
scale learning. In Advances in Neural Information Pro-
cessing Systems, volume 20. 2008.

Buciluǎ, Cristian, Caruana, Rich, and Niculescu-Mizil,
Alexandru. Model compression. In Proceedings of the
12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2006.

Chang, Chih-Chung and Lin, Chih-Jen. LIBSVM: A li-
brary for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2, 2011. Datasets
from http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Craswell, Nick, Zoeter, Onno, Taylor, Michael, and Ram-
sey, Bill. An experimental comparison of click position-
bias models. In Proceedings of the international confer-
ence on Web search and web data mining, 2008.

Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and
Chandra, Tushar. Efficient projections onto the l1-
ball for learning in high dimensions. In Proceedings of
the 25th international conference on Machine learning,
2008.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic
optimization. In COLT, 2010.

Flajolet, Philippe. Approximate counting: A detailed anal-
ysis. BIT, 25(1):113–134, 1985.

Goodman, Joshua, Cormack, Gordon V., and Heckerman,
David. Spam and the ongoing battle for the inbox. Com-
mun. ACM, 50(2), 2 2007.

Langford, John, Li, Lihong, and Zhang, Tong. Sparse on-
line learning via truncated gradient. Journal of Machine
Learning Research, 10, June 2009.

McMahan, H. Brendan. Follow-the-Regularized-Leader
and Mirror Descent: Equivalence Theorems and L1 Reg-
ularization. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2011.

McMahan, H. Brendan and Streeter, Matthew. Adaptive
bound optimization for online convex optimization. In
COLT, 2010.

Morris, Robert. Counting large numbers of events in small
registers. Communications of the ACM, 21(10), October
1978. doi: 10.1145/359619.359627.

Patrascu, M. Succincter. In IEEE Symposium on Founda-
tions of Computer Science, pp. 305–313. IEEE, 2008.

Raghavan, Prabhakar and Tompson, Clark D. Randomized
rounding: a technique for provably good algorithms and
algorithmic proofs. Combinatorica, 7(4), 12 1987.

Richardson, Matthew, Dominowska, Ewa, and Ragno,
Robert. Predicting clicks: estimating the click-through
rate for new ads. In Proceedings of the 16th international
conference on World Wide Web, 2007.

Shalev-Shwartz, Shai. Online learning and online con-
vex optimization. Foundations and Trends in Machine
Learning, 4(2), 2012.

Streeter, Matthew J. and McMahan, H. Brendan. Less
regret via online conditioning. CoRR, abs/1002.4862,
2010.

Thorup, Mikkel. String hashing for linear probing. In Pro-
ceedings of the 20th ACM-SIAM Symposium on Discrete
Algorithms, 2009.

Tibshirani, Robert. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society. Series
B (Methodological), 58(1), 1996.

Van Durme, Benjamin and Lall, Ashwin. Probabilistic
counting with randomized storage. In Proceedings of
the 21st international jont conference on Artifical intel-
ligence, 2009.

Weinberger, Kilian, Dasgupta, Anirban, Langford, John,
Smola, Alex, and Attenberg, Josh. Feature hashing for
large scale multitask learning. In Proceedings of the 26th
Annual International Conference on Machine Learning,
2009.

Xiao, Lin. Dual averaging method for regularized stochas-
tic learning and online optimization. In NIPS, 2009.

Zinkevich, Martin. Online convex programming and gen-
eralized infinitesimal gradient ascent. In ICML, 2003.

