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Abstract

We provide rigorous guarantees for the re-
gression approach to structured output pre-
diction. We show that the quadratic regres-
sion loss is a convex surrogate of the pre-
diction loss when the output kernel satisfies
some condition with respect to the predic-
tion loss. We provide two upper bounds of
the prediction risk that depend on the em-
pirical quadratic risk of the predictor. The
minimizer of the first bound is the predictor
proposed by Cortes et al. (2007) while the
minimizer of the second bound is a predictor
that has never been proposed so far. Both
predictors are compared on practical tasks.

1. Introduction

Structured output prediction is a supervised learning
problem where the goal of the learner is to predict
the correct output y associated to some given input
x. Here, the output y can be a complex structure
such as a sequence of symbols, a parse tree, or a
graph. The predictor generally consists of a vector w
of real-valued weights and each input-output example
(x, y) is mapped to a high-dimensional feature vec-
tor Z(x, y). The output predicted by w on input x
is then the output y that maximizes the inner prod-
uct 〈w|Z(x, y)〉. However, as emphasized by Gärtner
& Vembu (2009), this pre-image problem is often NP-
hard. Consequently, any learning algorithm that needs
to solve this pre-image problem, for several weight vec-
tors and every training example, will often take a pro-
hibitive running time. This is probably the most im-
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portant problem facing several state-of-the-art struc-
tured output learning algorithms such as max-margin
Markov networks (Taskar et al., 2004) and the struc-
tural SVM (Tsochantaridis et al., 2005).

One of the first attempts to design a learning algorithm
that avoids the pre-image problem is due to Cortes
et al. (2007). They have proposed to find the pre-
dictor that minimizes an `2-regularized regression ob-
jective (which does not depend on the predicted out-
put for a given input) and have obtained empirical
results that compare favorably to those of structural
SVM and max-margin Markov networks on the word-
recognition data set used by Taskar et al. (2004). In
this paper, we provide guarantees for such a regres-
sion approach by first showing that the quadratic loss
function used by Cortes et al. (2007) provides a con-
vex upper bound on the original prediction loss (that
depends on the predicted output) provided that the
output kernel satisfies some condition with respect to
the prediction loss. We also provide two PAC-Bayes
upper bounds (McAllester, 2003; Langford, 2005) for
the prediction risk that depend on the quadratic em-
pirical loss used by Cortes et al. (2007). The minimizer
of the first bound turns out to be the same as the one
proposed by Cortes et al. (2007) while the minimizer
of the second bound, valid for arbitrary reproducing
kernel Hilbert spaces (RKHS), is proposed for the first
time. Both predictors are compared on practical tasks.

PAC-Bayes theory has also been applied re-
cently (McAllester, 2007) to structured output predic-
tion for a stochastic predictor that aims at minimizing
the expected prediction risk. The resulting learning al-
gorithms need to solve the pre-image problem on each
example of the training set for each update of the pre-
dictor. In contrast, we present here risk bounds for
learning algorithms that avoid solving the pre-image
problem and that produce a deterministic predictor
instead of a stochastic one.
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2. From Structured Output Prediction
to Regression

In the supervised learning setting, the learner has ac-

cess to a set S
def
= {(x1, y1), . . . , (xm, ym)} of m train-

ing examples where each example consists of an input-
output pair (x, y) ∈ X×Y. The input space X and the
output space Y are both arbitrary but we assume the
existence of both an input feature map X : X → HX
and an output feature map Y : Y → HY , where
both HX and HY are high-dimensional vector spaces
and, more generally, reproducing kernel Hilbert spaces
(RKHS). In HY , we use 〈Y (y)|Y (y′)〉 to denote the in-

ner product and use ‖Y (y)‖2 def
= 〈Y (y)|Y (y)〉 for the

squared norm. The same notation is used in HX .

Given access to a training set S, the task of the learner
is to construct a structured predictor which is repre-
sented by a linear operator W that transforms vectors
of HX into vectors of HY . For any x ∈ X and any W,
the output yw(x) predicted by W is given by

yw(x)
def
= argmin

y∈Y
‖Y (y)−WX(x)‖ . (1)

Note that yw(x) = argmaxy∈Y〈Y (y)|WX(x)〉 when-
ever ‖Y (y)‖ is the same for all y ∈ Y. In this case, we
recover the usual structured output prediction method
when the joint feature vectors Z(x, y) are tensor prod-
ucts X(x)⊗Y (y). Since finding yw(x) given x and W
is generally NP-hard (Gärtner & Vembu, 2009), we
want to avoid solving this pre-image problem.

We consider feature maps that are defined by kernels
such that KY(y, y′) = 〈Y (y)|Y (y′)〉 ∀(y, y′) ∈ Y2 and
KX (x, x′) = 〈X(x)|X(x′)〉 ∀(x, x′) ∈ X 2. We will see
that the proposed solutions for W will have the prop-
erty that WX(x) =

∑m
i=1

∑m
j=1 Y (yi)Ai,jKX (xj , x)

for some m×m matrix A. Consequently, the predicted
output yw(x) only requires the use of the kernels KX
and KY (instead of the feature maps X and Y ).

We assume that each example (x, y) is generated inde-
pendently according to some unknown distribution D.
Given a function L : Y×Y → R that quantifies the loss
incurred on (x, y) when the predicted output is yw(x),
the task of the learner is to find the predictor that min-
imizes the expected loss (or risk) E(x,y)∼DL(yw(x), y) .
We refer to L as the prediction loss.

Note that the output kernel KY , being a similarity
measure on Y2, induces a loss function LKY defined as

LKY (yw(x), y)
def
=

1

2
‖Y (y)− Y (yw(x))‖2 =

KY(y, y) +KY(yw(x), yw(x))

2
−KY(y, yw(x)) . (2)

We refer to LKY as the output kernel loss.

Both the prediction loss and the output kernel loss
on (x, y) depend on the predicted output yw(x).
This is in sharp contrast with the quadratic loss
‖Y (y)−WX(x)‖2 which does not depend on yw(x).
However we can show that the quadratic loss provides
an upper bound to the output kernel loss.

Lemma 1. For any structured predictor W giving pre-
dictions as defined by Equation (1), for any (x, y) ∈
X × Y, we have

LKY (yw(x), y) ≤ 2 ‖Y (y)−WX(x)‖2 .

Proof. From the triangle inequality, we have, for all
W and for all (x, y),

‖Y (y)− Y (yw(x))‖ ≤ ‖Y (y)−WX(x)‖
+ ‖Y (yw(x))−WX(x)‖ .

From Equation (1), we have ‖Y (yw(x))−WX(x)‖ ≤
‖Y (y) −WX(x)‖ for all W and for all (x, y). From
these two inequalities, we have ‖Y (y) − Y (yw(x))‖ ≤
2‖Y (y)−WX(x)‖, which gives the lemma.

Lemma 1 has far-reaching consequences whenever
we use an output kernel KY such that L(y, y′) ≤
LKY (y, y′) for all (y, y′) ∈ Y2 because, in that case,
we have

L(yw(x), y) ≤ 2 ‖Y (y)−WX(x)‖2 ,

for all predictors W and all (x, y) ∈ X × Y.

Under these circumstances, a predictor W having a
small quadratic risk E(x,y)∼D ‖Y (y)−WX(x)‖2 has
also a small prediction risk E(x,y)∼DL(yw(x), y) . To
minimize the structured prediction risk, we need to
solve the (usually hard) pre-image problem of find-
ing the predicted output yw(x) for every example in
the training set and for all predictors W tried by the
learning algorithm. Thanks to Lemma 1, we can avoid
this computational burden by performing the simpler
regression task of minimizing the quadratic risk when-
ever we use an output kernel KY for which the output
kernel loss LKY upper bounds the prediction loss L.

Consider the case when the prediction loss L is the
zero-one loss. In that case any output kernel KY for
which there exists two different outputs y and y′ hav-
ing KY(y, y) = KY(y′, y′) = KY(y, y′) will not give an
output kernel loss LKY which upper bounds L. But
the Dirac kernel for which KY(y, y′) = 1 if y = y′ and
0 otherwise gives an LKY which is identical to L.

In the case where the prediction loss L is the Ham-
ming distance, the Hamming kernel provides an out-
put structured loss LKY identical to L but one could
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also use any output kernel giving an LKY which upper
bounds the Hamming distance at the expense of intro-
ducing an additional slackness between the quadratic
risk and the prediction risk.

A predictor achieving a small quadratic risk also
achieves a small prediction risk when the output kernel
KY gives an LKY which upper bounds L. However,
their exists data-generating distributions where the
predictor achieving the smallest possible quadratic risk
has a substantially larger prediction risk than the pre-
dictor achieving the smallest possible prediction risk.
In other words, there is no consistency guarantee for
the regression approach to structured output predic-
tion because no such guarantee exists for the particular
case of binary classification1. However, the regression
approach avoids the computational burden of dealing
with the pre-image problem and, under some distri-
butions, there might be some kernels for which there
exists predictors achieving a small quadratic risk.

Thanks to Lemma 1, any upper bound on the
quadratic risk also provides a bound on the predic-
tion risk (provided that there exists an output kernel
loss that upper bounds the prediction loss). Conse-
quently, the upper bounds proposed by Caponnetto
& De Vito (2007); Baldassarre et al. (2012) also pro-
vide bounds on the prediction risk for predictors min-
imizing the `2-regularized least-squares. However, in-
stead of focussing explicitly on such predictors, we pro-
vide bounds that hold simultaneously for any predic-
tor W and that depend on the empirical quadratic risk
achieved by W on the training data.

3. PAC-Bayes with Isotropic Gaussians

Values of the prediction loss L(yw(x), y) are always be-
tween zero an one. However, this is clearly not the case
for the quadratic loss ‖Y (y)−WX(x)‖2. Theoretically
attainable very large loss values are well known to give
very loose concentration inequalities and, unavoidably,
very large risk bounds. Therefore, to obtain a tighter
risk bound, we use the following lemma which upper
bounds the prediction loss in terms of a bounded func-
tion of the quadratic loss.

Lemma 2. For any prediction loss L upper-bounded
by the output kernel loss LKY , for any (x, y), any W,
and any a ≥ 1, we have

L(yw(x), y) ≤ ae

e− 1

(
1− e− 2

a‖Y (y)−WX(x)‖2
)
.

1Indeed, it is easy to find distributions for which the
minimizer of the quadratic risk gives a classifier which
achieves a much larger 0-1 risk than the optimal classifier.
See the supplementary material for a simple example.

Proof. For any 0 ≤ x ≤ 1, we have x ≤ e
e−1 (1− e−x).

Therefore

1

a
L(yw(x), y) ≤ e

e− 1

(
1− e− 1

aL(yw(x),y)
)

≤ e

e− 1

(
1− e− 2

a‖Y (y)−WX(x)‖2
)
,

where the last equality follows from Lemma 1 and the
fact that L is upper-bounded by LKY .

3.1. The Risk Bound

We propose here an upper bound on the prediction
risk that uses PAC-Bayes theory to upper bound

E(x,y)∼D

(
1− e− 2

a‖Y (y)−WX(x)‖2
)

for some a ≥ 0.

However, PAC-Bayes theory does not directly provide
bounds on deterministic predictors such as W. In-
stead, it provides guarantees for stochastic Gibbs pre-
dictors that are described in terms of a posterior dis-
tribution Q over deterministic predictors. More pre-
cisely, PAC-Bayes theory provide bounds for Gibb’s
risk defined as the Q-average of the risk of determin-
istic predictors. The following theorem, due to Zhang
(2006), provides an example of such a bound2.

Theorem 3. (from Zhang (2006)) Let ζ be any loss
function, and let P be any prior distribution on V.
Then, for any D on X × Y, with probability at least
1−δ over all training sets S sampled according to Dm,
we have, simultaneously for all distributions Q on V,

− E
v∼Q

ln E
(x,y)∼D

e−ζ(v,x,y) ≤

1

m

(
E

v∼Q

m∑
i=1

ζ(v, xi, yi) + KL(Q,P ) + ln
1

δ

)
,

where KL(Q,P ) denotes the Kullback-Leibler diver-
gence between distributions Q and P .

To use Theorem 3, we restrict ourselves (in this sec-
tion) to the case where both feature spaces HX and
HY are finite-dimensional vector spaces of dimensions
NX and NY respectively. The set of predictors thus
coincides with the set of NY × NX matrices. Each
posterior is chosen to be an isotropic Gaussian of vari-
ance σ2 and expectation W. If QW,σ(V) denotes the
density at matrix V of this posterior, we have

QW,σ(V) =

(
1√
2πσ

)NXNY
e−

1
2σ2
‖V−W‖2 , (3)

where, for any matrix V, ‖V‖2 def
=

∑NY
i=1

∑NX
j=1 V

2
i,j

(also called the Frobenius norm).

2Unfortunately, there is no dependence on the sample-
size m in the theorem sated by Zhang (2006) because the
one-example formulation was used. We obtain Theorem 3
if we use m examples instead of one.
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For the Prior P , we chose the (non-informative)
isotropic Gaussian centered at the origin, i.e., P =
Q0,σ. In that case, we have

KL(QW,σ, P ) =
1

2

‖W‖2

σ2
. (4)

The next theorem provides an upper bound on the risk
of the (deterministic) predictor W which depends on
its empirical quadratic risk—not on the empirical risk
of a stochastic (Gibbs) predictor. This new result was
made possible by performing Gaussian integrals over
functions of the quadratic loss and by observing that
we can choose a value for σ such that the noise of the
empirical quadratic risk is cancelled by the noise of the
true quadratic risk whenever KX (x, x) is the same for
all x ∈ X .

Theorem 4. Consider any input kernel KX and any
output kernel KY inducing finite-dimensional feature
spaces. Suppose that KX (x, x) = 1 for all x ∈ X . Let
D be any distribution on X × Y. Then, for any pre-
diction loss L upper-bounded by the output kernel loss
LKY , with probability at least 1−δ over all training sets
S sampled according to Dm, we have, simultaneously
for all predictors W,

E
(x,y)∼D

L(yw(x), y) ≤

5e

e− 1

[
1− e−

1
m (2

∑m
i=1 ‖Y (yi)−WX(xi)‖2+ 9

8‖W‖
2+ln 1

δ )
]
.

Proof. If we use Theorem 3 in the case of the quadratic
loss with the proposed posterior QW,σ and prior P ,
and if we use equations (4) and (5) and exploit the
convexity of− lnx, we then have that, with probability
at least 1− δ,

− ln

(
E

(x,y)∼D
E

V∼QW,σ

e−2‖Y (y)−VX(x)‖2
)
≤

1

m

(
E

V∼QW,σ

2

m∑
i=1

‖Y (yi)−VX(xi)‖2+
‖W‖2

2σ2
+ln

1

δ

)
.

In the supplementary material we provide proofs of the
following Gaussian integrals:

E
V∼QW,σ

‖Y (y)−VX(x)‖2

= ‖Y (y)−WX(x)‖2 + σ2NY‖X(x)‖2 . (5)

E
V∼QW,σ

e−2‖Y (y)−VX(x)‖2 =[
σNX√

1 + 4σ2‖X(x)‖2

]NY
e
− 2‖Y (y)−WX(x)‖2

1+4σ2‖X(x)‖2 .

(6)

Since, by hypothesis, ‖X(x)‖ is a constant indepen-
dent of x, with probability at least 1− δ,

E
(x,y)∼D

1− e−2
‖Y (y)−WX(x)‖2

1+4‖X(x)‖2σ2 ≤

1−e
−ξ− 1

m

(
2
∑m
i=1 ‖Y (yi)−WX(xi)‖2+

‖W‖2

2σ2
+ln 1

δ

)
,

(7)

where ξ
def
= NY

[
2‖X(x)‖2σ2 + ln

(
σNX√

1+4‖X(x)‖2σ2

)]
.

For ‖X(x)‖ = 1, the value of σ2 satisfying ξ = 0 is
monotonously increasing with NX ; going from σ2 =
0, 6752... for NX = 1 to σ2 = 1 when NX → ∞.
Consider Inequality (7) when ξ = 0. In that case
2/3 < σ2 ≤ 1. Then its right-hand side can be upper-
bounded by the same quantity but with σ2 replaced by
2/3, and its left-hand side can be lower-bounded by the
same quantity but with σ2 replaced by 1. The theorem
then follows by applying Lemma 2 for a = 5.

3.2. The Risk Bound Minimizer

The predictor W that minimizes the risk bound of
Theorem 4 is the one that minimizes the multiple-
output ridge regression objective Frr, where

Frr(W)
def
= C

m∑
i=1

‖Y (yi)−WX(xi)‖2 + ‖W‖2 ,

for some value of C > 0. Note that Frr is exactly the
objective to minimize that was proposed by Cortes
et al. (2007). At optimality, the gradient of Frr must
vanish. As shown by Cortes et al. (2007), the solution
W∗ is unique for finite C and is given by

W∗ =

m∑
i=1

m∑
j=1

Y (yi)(KX +
1

C
I)−1
i,jX

ᵀ(xj) , (8)

where Xᵀ(x) denotes the transpose of vector X(x),
KX denotes the input kernel matrix, and I denotes
the m×m identity matrix.

Since W∗ is the minimizer of the `2-regularized
least squares Frr, the convergence rates established
by Caponnetto & De Vito (2007) also apply to W∗.

4. PAC-Bayes with Sample-compression

Note that the predictor minimizing the ridge regres-
sion objective is a linear combination of simple pre-
dictors Y (yi)X

ᵀ(xj) that are identified by two train-
ing examples. Inspired by some recent work on PAC-
Bayes sample-compression (Laviolette & Marchand,
2007; Germain et al., 2011), we want to establish a
guarantee on the true risk for arbitrary linear combi-
nations of these simple structured output predictors.
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In contrast with Theorem 4, the obtained risk bound
will be valid for feature spaces HX and HY that are
arbitrary RKHS (of possibly infinite dimensionality).
For that purpose, let X†(x) denote the dual of vec-
tor X(x). The dual X†(x) is a map from HX to
R such that ∀(x, x′) ∈ X 2 we have X†(x)X(x′) =
〈X(x)|X(x′)〉 = KX (x, x′). Thus, given a training set
S of m examples, we consider predictors that can be
written as

W =

m∑
i=1

m∑
j=1

Y (yi)Ai,jX
†(xj) , (9)

where Ai,j ∈ R ∀(i, j) ∈ {1, . . . ,m}2. In this case, the
quadratic loss ‖Y (y)−WX(x)‖2 is now given by∥∥∥∥∥∥Y (y)−

m∑
i=1

m∑
j=1

Ai,jKX (xj , x)Y (yi)

∥∥∥∥∥∥
2

def
= R(A, x, y) .

(10)

To connect with PAC-Bayes sample-compression, let
us write A in terms of a distribution q over 2m2 pre-
dictors. For this purpose, let q+

i,j ≥ 0 be the weight on

predictor Y (yi)X
†(xj) and let q−i,j ≥ 0 be the weight

on the opposite predictor −Y (yi)X
†(xj) such that

m∑
i=1

m∑
j=1

∑
s∈{−1,+1}

qsi,j = 1 .

Now, w.l.o.g., for all (i, j), let Ai,j = κ · (q+
i,j − q

−
i,j)

for some κ > 0. For notational brevity, let R(q, x, y)
be the quadratic loss obtained from R(A, x, y) when
each Ai,j is replaced by κ · (q+

i,j − q
−
i,j). In addition, let

I def
= {1, . . . ,m}2 denote the set of all pairs of indices

and let W def
= {−1,+1}. We then have

R(q, x, y) =
∑
i∈I

∑
j∈I

∑
s∈W

∑
t∈W

qsi q
t
j`
s,t
i,j (x, y) ,

where, for i = (i, i′) and j = (j, j′), we have

`s,ti,j (x, y)
def
= 〈Y (y)− κsY (yi)KX (xi′ , x)|

Y (y)− κtY (yj)KX (xj′ , x)〉 .
(11)

An upper bound on R(q)
def
= E(x,y)∼DR(q, x, y)

also provides an upper bound on the prediction risk
E(x,y)∼DL(yw(x), y) since, by Lemma 1, we have
L(yw(x), y) ≤ 4R(q, x, y) whenever Ai,j is replaced
by κ · (q+

i,j − q
−
i,j) in Equation (9) and whenever the

L is upper-bounded by LKY . Our goal is thus to find
a tight upper bound on R(q) and then design an al-
gorithm that finds q (hence, the predictor W) that
minimizes this upper bound.

4.1. The Risk Bound

The proposed risk bound follows from PAC-Bayes the-
ory and depends on how far is the posterior distri-
bution q from a prior p. For p, we choose the

uniform distribution over I def
= {1, . . . , 2m}2 so that

psi = 1/(2m2)∀(i, s) ∈ I ×W, where W def
= {−1,+1}.

The posterior q is chosen to be quasi-uniform. By this
we mean that for all i ∈ I we have q+

i +q−i = 1/m2. In
that case, each qsi ∈ [0, 1/m2] and, consequently, the
KL-divergence KL(q,p) is always at most ln 2. Such
a small upper bound on KL(q,p) contributes signif-
icantly at reducing the risk bound closer to the em-

pirical risk R(q, S)
def
= (1/m)

∑m
i=1R(q, xi, yi). More-

over, restricting q to quasi-uniform distributions does
not restrict the class of predictors considered by the
learner. Indeed, for any predictor W described by
some matrix A in Equation (9), there exists κ > 0
and a quasi-uniform q such that Ai,j = κ · (q+

i,j − q
−
i,j).

Theorem 5. Let a ≤ `s,ti,j (x, y) ≤ b ∀(x, y) ∈ X × Y,

∀(s, t) ∈ W2, ∀(i, j) ∈ I2, and for some interval [a, b].
Let D be any distribution on X ×Y. Let m ≥ 8. Then,
with probability at least 1 − δ over all training sets S
sampled according to Dm, we have, simultaneously for
all quasi-uniform distributions q on I,

R(q) ≤ R(q, S) +

√
b− a

2(m− 4)

[
20 + ln

(
8
√
m

δ

)]
.

Proof. Given the uniform prior p, consider the Laplace
transform

Lp
def
=
∑
i∈I

∑
j∈I

∑
s∈W

∑
t∈W

psi p
t
je

2(m−4)

(
`
s,t
i,j

(S)−a
b−a −

`
s,t
i,j
−a

b−a

)2

,

where `s,ti,j
def
= E (x,y)∼D`

s,t
i,j (x, y) and `s,ti,j (S)

def
=

(1/m)
∑m
i=1 `

s,t
i,j (xi, yi). Note that `s,ti,j (S) is a biased

estimate of `s,ti,j since it considers the loss on exam-

ples that are used for the predictors described by (i, s)

and (j, t). To obtain an unbiased estimator, let Si,j
def
=

{(xi, yi) ∈ S : i /∈ i∪j} and let mi,j
def
= |Si,j|. Then, let3

`s,ti,j (Si,j)
def
= 1

mi,j

∑m
k=1 I((xk, yk) ∈ Si,j)`

s,t
i,j (xk, yk) be

our unbiased estimator of `s,ti,j . It is then straightfor-

ward to show that `s,ti,j (Si,j) − 4(b − a)/m ≤ `s,ti,j (S) ≤

3Here I(a) = 1 if predicate a is true and I(a) = 0
otherwise.
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`s,ti,j (Si,j) + 4(b− a)/m and, consequently, for m ≥ 8

(
`s,ti,j (S) − a

b− a
−

`s,ti,j − a

b− a

)2

≤

(
`s,ti,j (Si,j) − a

b− a
−

`s,ti,j − a

b− a

)2

+
10

m
. (12)

Now, if we use 2(q − p)2 ≤ kl(q, p)
def
= q ln(q/p) + (1−

q) ln[(1− q)/(1− p)], we obtain

Lp ≤ E
S∼Dm

∑
i∈I

∑
j∈I

∑
s∈W

∑
t∈W

psi p
t
je

20
m (m−4)+mi,jkl

(
`
s,t
i,j

(Si,j)−a
b−a ,

`
s,t
i,j
−a

b−a

)

= e
20
m (m−4)

∑
i∈I

∑
j∈I

∑
s∈W

∑
t∈W

psi p
t
j

∏
i∈i∪j

E
(xi,yi)∼D


E

Si,j∼Dmi,j
e
mi,jkl

(
`
s,t
i,j

(Si,j)−a
b−a ,

`
s,t
i,j
−a

b−a

)

Since Si,j is the arithmetic mean of mi,j iid random
variables, the lemma of Maurer (2004) tells us that
the last expectation (over Si,j) is at most 2

√
mi,j and,

consequently, Lp ≤ 2
√
m exp(20(m − 4)/m). Since

Lp is the expectation (over S) of a positive random
variable, we can use Markov’s inequality which states
that, with probability of at least 1−δ over the random
draws of S, we have

ln

∑
i∈I

∑
j∈I

∑
s∈W

∑
t∈W

psi p
t
je

2(m−4)

(
`
s,t
i,j

(S)−a
b−a −

`
s,t
i,j
−a

b−a

)2


≤ 20

m
(m− 4) + ln

(
2
√
m

δ

)
.

By turning the expectation over p2 into an expecta-
tion over q2, and by using Jensen’s inequality on the
concavity of the logarithm, the last inequality implies
that we have∑

i∈I

∑
j∈I

∑
s∈W

∑
t∈W

qsi q
t
j

(
`s,ti,j (S)− a
b− a

−
`s,ti,j − a
b− a

)2

≤ 1

2(m− 4)

(
KL(q2,p2) + 20 + ln

2
√
m

δ

)
,

for all q. The theorem then follows by using Jensen’s
inequality on the convexity of (q − p)2 and by using
KL(q2,p2) = 2KL(q,p) ≤ 2 ln 2 for quasi-uniform
posteriors.

Hence, for quasi-uniform posteriors q, the upper
bound on R(q) is very close to R(q, S) whenever

(b − a) � m. From Equation (11), we can see that
(b− a) is at most 2BY(1 + κBX )2 when |KX (x, x′)| ≤
BX ∀(x, x′) ∈ X 2 and |KY(y, y′)| ≤ BY ∀(y, y′) ∈ Y2.

4.2. The Risk Bound Minimizer

The posterior q that minimizes the upper bound of
Theorem 5 is the posterior minimizing R(q, S) under
the constraint that q is quasi-uniform. In that case,
each qsi,j ∈ [0, 1/m2]. Since Ai,j = κ · (q+

i,j − q
−
i,j), the

quasi-uniform constraint on q implies that |Ai,j | ≤ C
for all (i, j) ∈ I and for some C > 0. Instead of han-
dling these m2 constraints, it is computationally much
cheaper to replace them by the single `2 constraint∑

(i,j)∈I A
2
i,j ≤ R2 for some R > 0. Note that we have

|Ai,j | ≤ R for all (i, j) whenever this `2 constraint is
satisfied. Hence, given any R > 0, let us solve

min
A

R(A, S)
def
=

1

m

m∑
i=1

R(A, xi, yi)

s.t.

m∑
i=1

m∑
j=1

Ai,j ≤ R2 def
= m2ρ2 .

(13)

Theorem 6. Let A∗ denote the set of solutions of
problem (13). Let KX and KY denote, respectively,
the input and output kernel matrices. Let v1, . . . , vm
and λ1, . . . , λm denote, respectively, the eigenvectors
and eigenvalues of KX . Let u1, . . . , um and δ1, . . . , δm
denote, respectively, the eigenvectors and eigenvalues

of KY . Let J def
= {(i, j) ∈ I : δiλj > 0}. Then∑m

i=1

∑m
j=1 γi,juiv

ᵀ
j ∈ A∗, where γi,j is given by

if
∑

(i,j)∈J

(uᵀi vj)
2

λ2
j

≤ R2 then γi,j =

{
0 if δiλj = 0
uᵀ
i vj
λj

if δiλj > 0

otherwise γi,j =
δiλj(u

ᵀ
i vj)

δiλ2
j +mβ

,

where β > 0 is the solution of∑m
i=1

∑m
j=1

δ2i λ
2
j (u

ᵀ
i vj)

2

(δiλ2
j+mβ)2

= R2 .

Proof. Let L(A, β)
def
= R(A, S)+β

(
‖A‖2 −R2

)
. Con-

vex optimisation theory tells us that if there exists
β ≥ 0 and A : ‖A‖2 ≤ R2, that satisfies ∂L/∂A = 0
and β ·

(
‖A‖2 −R2

)
= 0, then A ∈ A∗. Here we have

∂L

∂A
=

2

m
KY(AKX − I)KX + 2βA = 0 . (14)

Since KX and KY are symmetric positive semi-definite
m×m matrices, their eigenvalues are all non-negative
and their eigenvectors constitute an orthonormal basis
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of Rm. Thus, {uivᵀj }(i,j)∈I is an orthonormal basis of

Rm2

. Consequently, w.l.o.g., any m×m matrix A can
be written as A =

∑m
i=1

∑m
j=1 γi,juiv

ᵀ
j for some values

of γi,j . Hence, we have ‖A‖2 =
∑m
i=1

∑m
j=1 γ

2
i,j and

Equation (14) becomes γi,j(δiλ
2
j + mβ) = δiλj(u

ᵀ
i vj).

When β = 0, that equation is solved for γi,j = 0
when δiλj = 0 and γi,j = (uᵀi vj)/λj when δiλj > 0
(a solution where the `2 constraint is not active4).
When β > 0, that equation is solved for γi,j =
(δiλj(u

ᵀ
i vj))/(δiλ

2
j + mβ) and, in that case, we have

‖A‖2 = R2 with a unique non-zero solution for β.

Note that the eigenvectors and eigenvalues of KX and
KY can be obtained from their singular value decom-
positions in O(m3) time. The solution for β can be
obtained with Newton’s method requiring Θ(m2) time
for each iteration. Finally, we can obtain A in O(m3)
by using A = uγγγvᵀ where u and v are matrices ob-
tained by concatenating the the column eigenvectors
of KY and KX respectively and where γγγ denotes the
matrix of γi,j values. Hence, the proposed solution
of (13) is reached in O(m3) time whenever Newton’s
method requires at most O(m) iterations.

5. Empirical Results

We have compared the solution given by Equation (8)
(Structured Output by Ridge Regression–SORR) with
the one given by Theorem 6 (Structured Output
by Sample-Compression–SOSC) on the word recog-
nition task studied by Taskar et al. (2004); Cortes
et al. (2007) and the enzyme classification task stud-
ied by Rousu et al. (2006). All hyper parameters (C,
ρ, and kernel parameters) were selected with 10-fold
cross-validation (CV) on the training sets where we
have relied on the pre-images (using Equation (1)) for
that purpose only.

The word recognition task consists of predicting the
correct word (a sequence of letters) associated to a
manuscript picture of the same word. The metrics
used for this data set is usually the 0/1-risk (the frac-
tion of errors on words) and the letter risk (the fraction
of errors on letters). Hence, following Equation (2),
we have used the Dirac kernel (KY(y, y′) = I(y = y′))
and the Hamming kernel (which is given by the length
of the largest string minus the Hamming distance be-
tween the two strings). The polynomial kernel of de-
gree d was used for the input kernel. All experiments
were done using the protocol described in Taskar et al.

4This is the smallest `2 norm solution of the uncon-
strained problem. The Moore-Penrose pseudo-inverse of
KX is also a solution of the unconstrained problem since,
in that case, it suffice for A to satisfy AK2

X = KX .

(2004); Cortes et al. (2007). According to Cortes et al.
(2007), SORR achieved better performance than struc-
tural SVM and max-margin Markov networks. Our
empirical results are shown in Table (1). The error
bars are the standard deviation of the corresponding
risk over the different CV folds given by Taskar et al.
(2004). Clearly, SORR and SOSC achieved very simi-
lar generalization performance (with overlapping error
bars) on both the 0/1-risk and the letter risk.

The enzymes hierarchical classification task consists
of predicting a path in a enzyme classification scheme
used by biologist to classify amino acid sequences of
enzymatic proteins. As in Rousu et al. (2006), the 4-
gram kernel was used in the input space. Focussing on
the hierarchical risk (the length of the incorrect sub-
path from the root to the enzyme leaf) as the most
natural metric for this data set, we have used the hi-
erarchical kernel of (Jacob et al., 2008) (given by the
length of the common sub-path between two paths)
on the output space. All experiments were done using
the protocol described in Rousu et al. (2006) and our
empirical results are shown in Table (2). We have also
included the results obtained by Rousu et al. (2006) for
H–M3–`H̃ and H–M3–`∆, which are variants of the
max-margin Markov networks. In the case of the 0/1
risk (the fraction of misclassification errors), we have
computed the 90% confidence intervals from the bino-
mial tail inversion method of Langford (2005). From
Table (2), we see that the 0/1 risk differences between
all algorithms are significant (at 0.9 confidence level),
with SORR being the best algorithm. For the hierar-
chical risk, note that from the central limit theorem,
the standard deviation of this metric is given by σ/

√
n

for a testing set of n = 1755 examples when the hierar-
chical loss variance is σ2. Since σ ≤ 3 for the hierarchy
of 4 levels, the hierarchical risk differences between all
algorithms appear to be significant, with H–M3–`∆
being the best algorithm.

6. Conclusion

We have shown that the quadratic regression loss is a
convex surrogate of the prediction loss when the pre-
diction loss is upper-bounded by the output kernel loss.
We have provided two PAC-Bayes upper bounds of
the structured prediction risk that depend on the em-
pirical quadratic risk of the deterministic predictor.
The second bound, based on the PAC-Bayes sample-
compression approach, is more general than the first
bound as it holds for feature spaces that are arbitrary
RKHS. The minimizer of the first bound, SORR, turns
out to be the predictor proposed by Cortes et al. (2007)
while the minimizer of the second bound, SOSC, is a
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Table 1. Empirical results on the word recognition task

Dirac kernel Hamming kernel
SORR SOSC SORR SOSC

0/1 risk 0.0539 ±.0087 0.0525 ±.0085 0.0871 ±.0078 0.0871 ±.0078

Letter risk 0.0294 ±.0067 0.0285 ±.0062 0.0370 ±.0047 0.0367 ±.0049

Table 2. Empirical results on the enzyme hierarchical classification task

H–M3–`∆ H–M3–`H̃ SORR SOSC
0/1 risk 0.957 [0.949, 0.965] 0.855 [0.840, 0.869] 0.640 [0.621, 0.659] 0.684 [0.666, 0.702]

Hierarchical risk 1.2 2.50 1.71 1.84
F1 Score 0.6330 0.5340 0.5813 0.5569

predictor that has never been proposed so far. Both
predictors have been compared on practical tasks. Fi-
nally, although it would be time-consuming, it would
be interesting to see if we can improve SOSC by using
the full set of m2 constraints instead of the single `2
constraint used in optimization problem (13).
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