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In this supplementary material, we make use of the following notation. x; denotes the i*" entry of the (column)

vector X (z), y; the 7™ entry of the (column) vector Y (y), V[i; j] denotes the entry in position (i, j) of the matrix
V. Also, V[;j] denotes the j” column of the matrix V. Finally, ¢; ; denotes the delta function which gives 1 if
1=74, and 0 otherwise.

7. Example of a distribution where the minimizer of the quadratic risk has a
substantial higher error rate than the optimal classifier

We cousider a simple one-dimensional binary classification problem where X = R and Y = {—1,+1}. We thus
consider classifiers identified by a single scalar weight w such that the output h,(z) on an input x is given by
hay(x) = sgn(wz).

Consider a distribution D concentrated on four points {(x1,v1), (z2,¥2), (€3,y3), (z4,y4)}. Let p; denote the
weight induced by D on z;. Hence Z?Zl p; = 1. The 0/1 risk is then given by Z?Zl pil (hy(x;) # y;) and the

quadratic risk is given by 2?21 pi(y; — wx;)?.

Let w, denote the value of w minimizing the quadratic risk. Since the derivative (with respect to w) of the
quadratic risk must vanish at w,., we find that it is given by the solution of w, Zf‘:l pix? — 2?21 piyix; =0, or
equivalently by

2?21 PilYixi

2?21 pix? .

Now let 21 = € with p; = (1 —€)/2 and y; = +1. Let 22 = —e with po = (1 —€)/2 and yo = —1. Let 23 = 1/e
with p3 = €¢/2 and y3 = —1. Let ¢4 = —1/e with py = ¢/2 and y, = +1.

Wy =

Hence, with this distribution, the 0/1 risk of a classifier with a positive weight w is equal to € and the 0/1 risk
of a classifier with a negative weight w is equal to 1 — €. The difference tends to the maximum value of 1 when
€ goes to zero.

However, with this distribution This gives

—1+e(l—¢
(1—ee +(1/e)

W, =

Hence w, is negative for all € between 0 and 1. Hence the 0/1 risk of h,,. is (1 — €) but there exists classifiers
(those with positive w) having a 0/1 risk of e.
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8. Proof of Equation (5)

v, VW) - VX(@)* = [Y(y) - WX (@)|* + o*Ny| X (2)]]%,. ()

Proof. First, note that

IY(y) -VX(@)* = [[Y@I® - 2Y»)VX(2)) + [VX(2)]>
Let us now compute the expectation according to the posterior Qw ., of these three terms.

e E YW = IY()]?.
vasy,  IYWIF = YWl

e For V~gw,v 2(Y(y)|[VX(x)):

vl WY WIVX@) = 20 B <Y(y)|lzzlasz[;l}>

Nx

> Y () VI;1)

=1

|
o
&=

Nx Ny

2 ngwyo Z Z qu[q; l]xl

=1 g=1

Nx Ny

= 23 g vy, Vil

=1 g=1

Nx Ny

= 2>y Wig ]

=1 q=1

= 2(Y(y)[WX(z)) (15)

e For v g [VX(z)||?, first note that since Qw , is an isotropic Gaussian with mean W and variance o2,

w
we have

E  V[gVigk] = Wigl|W]g; k] if I # k,
VQw,o
and
E  VigVigl] = Wigl + o°.

VQw,o
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Thus, we have

E VX(z)|?
Vet VX ()]

From all that precedes, we then obtain:

E [Y(y)

—VX(@)|?* =
VB (z)]]

and we are done.

Vo~

Yl -
1Y ()

E (VX
VQw, o

VNQW ; <Z IZV

Nx Nx

ngw ) Z Z iz

=1 k=1

(2)[V X (2)) (16)

Nx
me;k]>
k=1

VIik])

Nx Nx

ngw i szmk ZV ¢ 1]

=1 k=1

Nx Nx

>3 and,

=1 k=1

¢ 1Vlg; k] (17)

Nx

Z Z wlwkzw ;1]

=1 k=1
S

k#1
k] + 0?)

v

=1 k=1

>+ Zxqua

Nx
WX (2)|]* + 0® Ny Y af
k=1

WX (2)[* + o Ny[|X ()]

E (Yl

B - AYE)IVX@) + [VX@)?)

2Y(y) WX (2)) + [WX(@)[* + o Ny|| X ()|

- WX(@)|* + o Ny|X ()|,
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9. Proof of Equation (6)

Proof. Let us now prove Equation (6), which is given by

E o 2V@-VX@I? _

N
oV~ Y v owx )
e
V., @IP

1+402[[X ()12 | (20)
1+402|X

We will prove Equation (20) for the case of an arbitrary vector X for which each of its component is non zero.
To see that the result will also hold for the case where X has some zero-valued components, note that the result
will hold by replacing X with X + €, where € is a vector whose entries are all equal to € for an € smaller than
the smallest non zero component of X. The result then comes out from the continuity with respect to X of the
right-hand side of Equation (20) and by taking the limit when € goes to zero.

Now, let
;R 2Ym)-VX@)
VQw,o
_ / IVt v )V
(a\/27r) Y

Performing the change of variables U=V — W gives

I = /% 3 2y () - (U W)X (@)
((7\/27‘(’) Y

Now, let A be the vector of ‘Hy defined as
A = Yy - WX(), (21)

and let us denote by A;, the [th component of the vector A. Then

—2[Y(y) — (U+W)X(2)|> = —2|4|> + -2[UX(2)|* + 44| UX(x)).
This implies that
oA dU — 1 (1YL 44 UX ()| ~8(A|UX (2))
I = 24l / S— H(1 ). (22)
(0’\/271’)

9.1. An analysis of the argument of the exponential function of the integral I

Let

, ;
o (”U” +4||Ux<x>||2—8<A|UX(x)>>' .

o2
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In the following, A; denotes the {"" component of the vector A. Then,
Nx Ny U[2l ! Nx Nax
Q = D> 5t + A Ul — 83 (4| Upa
i=11=1 i=1 i=1
Nx Ny U2l Nx Ny Nx Ny
= D> s 4D Y Ui Uy — 83 AU il
i=1[0=1 1,j=11=1 i=11=1
Nx Ny U2l Nx Ny Nx Ny
= D> s A Y Ui Ugay —8 3 3 8 AU
i=11=1 i,j=11=1 i,7=11=1
Nx Ny Nx Ny
= Z Z ( b + 4IEZ:E]) U[l;i]U[l;j] -8 Z Zdi,jAlU[l;i]xi .
1,j=11=1 1,j=11=1
Let us now define the matrix IN of dimension Ny x Ny as
i
N[i;j] = OQJ + 4£Ui£L'j.
Now, let
o Up
Zyg o L forall I=1,.,Ny and i=1,.., Ny.
x
Recall that, w.l.o.g., x; is different from 0 and that ¢ >0.
This new change of variables gives
Ny Nx
Q = > | X NugwizZuaZu,) - 8ZAW Zyi;)
=1 1,7=1 1=1

(25)

(26)

The following claim will transform @ in such a way that it will contain a single term including the integration

variable Z. This will be achieved by using the Fermat’s difference of square argument: (A2 —

CLAIM 1: For anyl=1,..,Ny, let

def 4U2Al
Bl == ﬁ.
14+ 402|| X (z)]]
Then,

Ny

16]|AJ[*0®(| X (2)||?
Z ZN[”]xzx] i) — B2y — Bi) | — 1+ 402] X (z)|]2
=1 \1%,j=1

Proof of the claim. From the definition of B;, we have that

By (xf + 4x?a2\|X(x)||2) = 4Ala:fz72.
; 2 _ Vx 2 def S~Nx 2
Then, since 7 = > 7% 6; joiz; and [ X (2)[|* = Y275 25, we have
Nx
ZN[i;j]xiijl = 4Al$?

Jj=1

2) = (A-B)(A+B).
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Note also that

160 A7|| X () |*

Pt 5 L bl S | 2 2112 o2 212
1+ 402 X (2)]2 BEIX (2)]* (1 + 407 X (2)]7)

B (|IX (@)I* + 40?1 X ()[|)

- (St s Yot
1,0=1
N)( NX
= Bl2 Z(S”xlxj + 2402%2:1@
ij=1 i,j=1
Nx
= ) Npgo'ziz; B
ij=1
Hence,
Ny Nx
16]| A[]*0®|| X (2) ]|
Ny.nxixi(Zy.q — B)(Zp..1 — By)) —
;Z;I( 1% (Zpz) — Bi) (Zps) — Bi)) 42X ()]
Ny N~ 2 2 2
16Aj0*|| X ()|
= Y (Npgjwir(Za — B)(Zpy) — Br)) - 1T 407X (2)|F
=1 \4,j=1
Ny Ny Nx
= > (Npgwiri(Zp — B)(Zyy) — Bi)) — Y Ny B
=1 \i,j=1 =1
Ny Nx
= ZZ xix]Z[l 1]Z[l J — N[i;j]xisz[l;i]Bl — N[i;j}xia:jBlZ[l;j]
l=14,5=1
+ Ny B — Ny ziz; BY)
Ny Nx
= D> > (Nug@iz;BiZpaZpy) — Nz Zig Br — Nigjjwic; Zi) B)
I=1i,j=1
Ny Nx
= > (Nujwi;BiZygZuy — 2Npzic;Zy By)
I=1i,j=1
Ny Nx Nx [ Nx
= Z N[l 9] xJZ[l 5l Z[l gl — 22 ZN [i55]TiL 5 l1]Bl
=1 \i,j=1 i=1 \j=1
Ny Nx
= Z ZN[z ]]l‘ xJZ[l z]Z[l J] — 224A1Z 1 1]332
=1 \1%,j5=1 i=1
= Q.

The penultimate equality comes from Equation (27). Thus, Claim 1 is proved.
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9.2. Let us transform our integral I into a Gaussian integral

Definition 7.

e Let the operator x: {1,..,Ny}x{l,..,Nx} — {1,.., NyNx} be defined as

Ixi % (1—-1) Ny +i.

Note that for any le {1,.., NyNx} there existe a unique 2-tuple (1,i) € {1,..,Ny}x{1,.., Ny} such that
l=1%1.

o Let Z be the vector of dimension NyNy defined as

de

g 2 Z.;

forany 1e{l,..,Ny}, and any i € {1,..,Nx}.

e Let ji be the vector of dimension NyNyx defined as

def
i = DBy

forany 1e€{l,..,Ny}, and any i € {1,..,Nx}.

o Let M be the matrixz of dimension (NyNy) X (NyNy) defined as

def

5,
Misi;mej) =  OmNpziz; (_5l,m<o_g + 458#;‘)%%‘) , (28)

for any l,m € {l,.., Ny}, and any i,j € {1,..,Nx}.

Note that in what follows, the reader should interpret [ as [ ¢ and m as m * j.

From the definitions above, we have

Ny [ Nax 2 2 2
16]|A[]*o*[| X (@) |

Q = E E Ny jziz;(Zy.g — Bi)(Zy.y — Bi) | —
~\ = [i55] it g (A 1;4) (4:4] 1+ 402| X (2)|?

Ny [Ny Nx
16]| Al *0]| X ()|
= 2| 2 2 @GNz (Zuy — B)(Zpy) = B)) | = 1+ 402 X (2)|?

m=1 \i=1 i,j=1

Ny Nx Ny Nx

16]|A[*0 || X ()|
= ZZ Z Z (5lva[i;j]mimJ‘(Z[l;i] - Bl)(z[l;j] - Bl)) T 1y 402(| X ()2

I=1i=1 m=1j=1

NyNX NyNX

16]|A]*0?]| X ()]
- g mZ::l ((zf‘“f) M) (%‘“Yh))‘ 1+ 402X (@)

Substituing this expression for @ into the integral I given by Equation (22) gives

I e,QMHQ/ dU 67%(”‘;—2“2+4HUX<I>|\278<A|UX<I>>)
(ov/2m) ¥
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Nx N
2114112 [ 1™ / dZN _ o SR () M) (i) )
=1 (0’\/27‘1’) Y

81 AN1202 | X (2)||2

ce 14402 X ()2 (30)
Nx 1252 2 od
T [AIZe= I X (=) [ JR.
= 2N I | T /%67%((%@TM(%#)) (31)
i (O’ 27r)
L Nx F12021 X ()12
L | I D e
P det(M)
' / dz 1 3 (E=)T M) (i) (32)
(ov/2m) " /det(M~T)
- NX A 202 x 2
e 2141 T ¥ TR L (33)
pet det(M)

Line (30) is a consequence of the fact that Uyp,;) = x;Zp,; (see Equation (25)) and of the fact that z; = Zj;.
Line (33) comes from the fact that the integral of the preceeding line is an integral of a Gaussian density and is
therefore equal to 1. Lines (32) and (33) force M to be positive definite, so we have to prove that fact. This is
one of the statements of the following claim.

CLAIM 2: Matriz M is positive definite and

b 2\ N 1\ 2 2\ Ny
dov) = Jlar (L) @+ aotixr)

o2

Before proving Claim 2, let us show that it implies the result.

Nx

- “202 2
[ o= e 2P [ | JhnaR 1
e} det(M)
. Nx E12021 X (2112
211417 H EARE esqfi!rx)ug{)&)\\)fg 1
. N. Nx N N
= VIES @™ ()™ (14 402X (@) [2)™

- 84202 X (x))2
6*2\|AH2€ 11402 ([ X (2)]2 1

(Z)MN (1 + 402X () 2)™

- 81 A)202 | X (=)]|2 NxNy
— e—QHAHQe 11402 X (2)]|2 g

(L+ 402 X (2)]2)™

—2| A2 oNxNy
= el+40?X(2)|?

(1 + 40| X (2)[2)™

—2||Y (4) ~WX ()[|2 oNxNy
= e 1t+4c?[|X(2)|?

(1+ 402 X ()2

To finish the proof, let us now prove Claim 2.



On the Regression Approach to Structured Output Regression

Proof of the claim. Let X be the diagonal matrix whose entries are the x;s and note that the matrix
(Npi;j)7i7j)i; 5 can be expressed as follows:

(N[Z-;j]xia:j)i i = XNX. (34)

Now, from the definition of M, and basic determinant’s properties, we have

det(M) = det ((5l,m N[i;j]l'i.’ﬂj)l*i ; m*j) (35)
= (et ((N[,;;j]gci:fj)i;J-))Ny (36)
= (et (XNX))Ny (37)

Ny

Nx Nx
- (Hx) ij det (N) (38)

( <ﬁ xf) det(N))

Line (35) comes straightforwardly from the definition (see Equation (28)). Line (36) comes from the fact that
M is a matrix whose entries are all 0, except for Ny identical blocks of size Ny x Ny that are positioned in
the diagonal of M, each one of those blocks being the matrix (N;;j2iz;);;;. Line (38) follows from a basic

determinant’s property, and from the fact that det(X) = (vagl Jii).

Note also that the block structure of the matrix M implies that it has exactly the same eigenvalues as Matrix
(Npijimizj)s; 5 (but with a multiplicity augmented by a factor of Ny).

Also, it follows from Equation (34) that, for each eigenvalue X of (N[;,;#52;)s, 5, there exists i such that x% is an

eigenvalue of N. Indeed, because of Equation (34), we have that

det ((Njijzia;)is; — AXX) =0« det (N = AT) =0.

This, in turn, implies that if N is positive definite, so is M.

Hence, to prove Claim 2, we only have to show that N is positive definite and
Nx
1 2 2
det(N) = o (1+4a | X ()] ) )

Let us consider matrix O, defined as Oy;,;; = 4x;x;. Then, it is easy to see that A = 0 is an eigenvalue of O
of multiplicity Ny — 1 because the rank of that matrix is 1. Note that line L; of that matrix is always equal to

Z+Ly. Moreover we can easily see that (z1,...,2,,)7 is an eigenvector of O with eigenvalue 40| X (z)]|2.
Now, note that
1
N=0+—5-1I.
o

Thus, there is a one-to-one correspondence between the eigenvalues of O and those of N: ) is an eigenvalue of
the former if and only if A + % is an eigenvalue of the latter. Thus N is positive definite, and

(Z) (& vaxenr)

() o sixwr .

det(N)
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10. Proof of ;% R(A,S) from Theorem (6)

Proof. From equation (9) we have

mom

W = Zzy(yi)A[i;j]XT(mj) = MyAMTX (39)

i=1 j=1

Where My is a Ny x m matrix with Y (y;) in it’s i-th column. Similarly My is a Ny X m matrix with X (z;) in
it’s j-th column.

1 m
R(A,S) = EZHY(%) - WX (z;)]?
=1
1
= —[My - WMy|?
1
= —IMy - My AM|, M|
1
= —||My — MyAKy|]?
— My yAK«|
1
= —|My(I—AKy)| (40)
m
) 1 0 & 2
[i34] [i37] k=1
2 m a
= > My(I—- AKy)]yy 945 My (I — AKx)]j.
k=1 v
_2 m a
= > My(I—- AKx)]y By MyAKx] .
k=1 &
~ m Z [My(I_AKX)][k%l] 8T[]] Z My A Ky
k=1 v k=1

I
3|
NE

[My (I — AKX)][k;l] My[k;i]KX[j;l]
1

>
Il

(My)]

[i:K] My (I - AKX)}W] K
1

>
Il

I
3k
"Mg

[M;My(l ~AKy)|

. KX[
[351]

gl
l

= [Ky(I- AKy)K]]

1

I
[ 3
NE

[4;4]

SEENE

[Ky(AKx —DKx]j; ) (41)
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11. Details on how equation (14) becomes 7; ;(0;A7 + mf) = 6;\;(u]v;)

. . 2
Because {uiv}}(i7j)ez constitutes an orthonormal basis of R™ we have

and the following equalities (recall that Ky = >/ | dpugu] and Ky = > )" Noo])
KyKX = Z (5kukuz Z )\l’l)l'UlT
k=1 =1

m
= E 5]6/\1(11,;’[}1)’&]@1};
k,l=1

m

m m
2 2
AK; = E E 'y;@7lukvlTE A

=1

m m

2
= E E%,Mlukv[
k—

m m
KyAKg{ = Z 5k/uk/u£, Z Z’Yk,lA?ukvlT
k'=1 k=11=1

= D) b  ug]

k=11=1
Equation (14) then becomes
2
EKy(AKX -DKx+28A = 0

2 2
ZKyAKZ — K K 2A = 0
—KyAK% myx+ﬁ

2.2 [vk,z(m? — () + 267 | we] = 0
k=11=1 m m

Since uyv] are linearly independent vectors of RmQ, the previous equation is satisfied when

2 2
Z a0k A — =N(ufv) + 2B = 0
m m

2 2
a0k AL+ 280 = —Ni(ufv)
m m

Vit (6xA? +mpB) = SN (ufvr)



