ICML 2013-SUPPLEMENTARY MATERIAL

Sébastien Giguère, François Laviolette, Mario Marchand, Khadidja Sylla

In this supplementary material, we make use of the following notation. x_i denotes the i^{th} entry of the (column) vector X(x), y_j the j^{th} entry of the (column) vector Y(y), $\mathbf{V}[i;j]$ denotes the entry in position (i,j) of the matrix \mathbf{V} . Also, $\mathbf{V}[j;j]$ denotes the j^{th} column of the matrix \mathbf{V} . Finally, $\delta_{i,j}$ denotes the delta function which gives 1 if i=j, and 0 otherwise.

7. Example of a distribution where the minimizer of the quadratic risk has a substantial higher error rate than the optimal classifier

We consider a simple one-dimensional binary classification problem where $\mathcal{X} = \mathbb{R}$ and $\mathcal{Y} = \{-1, +1\}$. We thus consider classifiers identified by a single scalar weight w such that the output $h_w(x)$ on an input x is given by $h_w(x) = \operatorname{sgn}(wx)$.

Consider a distribution D concentrated on four points $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\}$. Let p_i denote the weight induced by D on x_i . Hence $\sum_{i=1}^4 p_i = 1$. The 0/1 risk is then given by $\sum_{i=1}^4 p_i I(h_w(x_i) \neq y_i)$ and the quadratic risk is given by $\sum_{i=1}^4 p_i (y_i - wx_i)^2$.

Let w_r denote the value of w minimizing the quadratic risk. Since the derivative (with respect to w) of the quadratic risk must vanish at w_r , we find that it is given by the solution of $w_r \sum_{i=1}^4 p_i x_i^2 - \sum_{i=1}^4 p_i y_i x_i = 0$, or equivalently by

$$w_r = \frac{\sum_{i=1}^4 p_i y_i x_i}{\sum_{i=1}^4 p_i x_i^2} \,.$$

Now let $x_1 = \epsilon$ with $p_1 = (1 - \epsilon)/2$ and $y_1 = +1$. Let $x_2 = -\epsilon$ with $p_2 = (1 - \epsilon)/2$ and $y_2 = -1$. Let $x_3 = 1/\epsilon$ with $p_3 = \epsilon/2$ and $y_3 = -1$. Let $x_4 = -1/\epsilon$ with $p_4 = \epsilon/2$ and $y_4 = +1$.

Hence, with this distribution, the 0/1 risk of a classifier with a positive weight w is equal to ϵ and the 0/1 risk of a classifier with a negative weight w is equal to $1 - \epsilon$. The difference tends to the maximum value of 1 when ϵ goes to zero.

However, with this distribution This gives

$$w_r = \frac{-1 + \epsilon(1 - \epsilon)}{(1 - \epsilon)\epsilon^2 + (1/\epsilon)}.$$

Hence w_r is negative for all ϵ between 0 and 1. Hence the 0/1 risk of h_{w_r} is $(1 - \epsilon)$ but there exists classifiers (those with positive w) having a 0/1 risk of ϵ .

8. Proof of Equation (5)

$$\underset{\mathbf{V} \sim Q_{\mathbf{W},\sigma}}{\mathbf{E}} \|Y(y) - \mathbf{V}X(x)\|^2 = \|Y(y) - \mathbf{W}X(x)\|^2 + \sigma^2 N_{\mathcal{Y}} |X(x)|^2, .$$
 (5)

Proof. First, note that

$$||Y(y) - \mathbf{V}X(x)||^2 = ||Y(y)||^2 - 2\langle Y(y)|\mathbf{V}X(x)\rangle + ||\mathbf{V}X(x)||^2.$$

Let us now compute the expectation according to the posterior $Q_{\mathbf{W},\sigma}$ of these three terms.

- $\bullet \ \, \mathop{\mathbf{E}}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \, \|Y(y)\|^2 \, = \, \, \|Y(y)\|^2 \, .$
- For $\mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}} 2 \langle Y(y) | \mathbf{V} X(x) \rangle$:

$$\frac{\mathbf{E}}{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} 2\langle Y(y) | \mathbf{V} X(x) \rangle = 2 \sum_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \langle Y(y) | \sum_{l=1}^{N_{\mathcal{X}}} x_{l} \mathbf{V}[; l] \rangle$$

$$= 2 \sum_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \sum_{l=1}^{N_{\mathcal{X}}} \langle Y(y) | x_{l} \mathbf{V}[; l] \rangle$$

$$= 2 \sum_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \sum_{l=1}^{N_{\mathcal{X}}} \sum_{q=1}^{N_{\mathcal{Y}}} y_{q} \mathbf{V}[q; l] x_{l}$$

$$= 2 \sum_{l=1}^{N_{\mathcal{X}}} \sum_{q=1}^{N_{\mathcal{Y}}} y_{q} x_{l} \sum_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \mathbf{V}[q; l]$$

$$= 2 \sum_{l=1}^{N_{\mathcal{X}}} \sum_{q=1}^{N_{\mathcal{Y}}} y_{q} x_{l} \mathbf{W}[q; l]$$

$$\vdots$$

$$= 2 \langle Y(y) | \mathbf{W} X(x) \rangle$$
(15)

• For $\mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W}, \sigma}} \|\mathbf{V}X(x)\|^2$, first note that since $Q_{\mathbf{W}, \sigma}$ is an *isotropic* Gaussian with mean \mathbf{W} and variance σ^2 , we have

$$\mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},q}} \mathbf{V}[q;l] \mathbf{V}[q;k] = \mathbf{W}[q;l] \mathbf{W}[q;k]$$
 if $l \neq k$,

and

$$\mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \mathbf{V}[q;l] \mathbf{V}[q;l] = \mathbf{W}[q;l] + \sigma^2.$$

Thus, we have

$$\mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \|\mathbf{V}X(x)\|^{2} = \mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \langle \mathbf{V}X(x)|\mathbf{V}X(x) \rangle \tag{16}$$

$$= \mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \left\langle \sum_{l=1}^{N_{x}} x_{l} \mathbf{V}[;l] \middle| \sum_{k=1}^{N_{x}} x_{k} \mathbf{V}[;k] \right\rangle$$

$$= \mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \sum_{l=1}^{N_{x}} \sum_{k=1}^{N_{x}} x_{l} x_{k} \langle \mathbf{V}[;l] | \mathbf{V}[;k] \rangle$$

$$= \mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} \sum_{l=1}^{N_{x}} \sum_{k=1}^{N_{x}} x_{l} x_{k} \sum_{q=1}^{N_{y}} \mathbf{V}[q;l] \mathbf{V}[q;k]$$

$$= \sum_{l=1}^{N_{x}} \sum_{k=1}^{N_{x}} x_{l} x_{k} \sum_{q=1}^{N_{y}} \mathbf{V}_{\mathbf{V}}[q;l] \mathbf{V}[q;k]$$

$$= \sum_{l=1}^{N_{x}} \sum_{k=1}^{N_{x}} x_{l} x_{k} \sum_{q=1}^{N_{y}} \mathbf{W}[q;l] \mathbf{W}[q;k]$$

$$+ \sum_{k=1}^{N_{x}} x_{k} x_{k} \sum_{q=1}^{N_{y}} (\mathbf{W}[q;l] \mathbf{W}[q;k] + \sigma^{2})$$

$$= \left(\sum_{l=1}^{N_{x}} \sum_{k=1}^{N_{x}} x_{l} x_{k} \sum_{q=1}^{N_{y}} \mathbf{W}[q;l] \mathbf{W}[q;k] \right) + \sum_{k=1}^{N_{x}} x_{k}^{2} \sum_{q=1}^{N_{y}} \sigma^{2}$$

$$= \|\mathbf{W}X(x)\|^{2} + \sigma^{2} N_{y} \sum_{k=1}^{N_{x}} x_{k}^{2} \tag{18}$$

$$= \|\mathbf{W}X(x)\|^{2} + \sigma^{2} N_{y} \|X(x)\|^{2}.$$

From all that precedes, we then obtain:

$$\begin{split} \underset{\mathbf{V} \sim Q_{\mathbf{W},\sigma}}{\mathbf{E}} & \|Y(y) - \mathbf{V}X(x)\|^2 & = & \underset{\mathbf{V} \sim Q_{\mathbf{W},\sigma}}{\mathbf{E}} \left(\|Y(y)\|^2 \, - \, 2\langle Y(y)|\mathbf{V}X(x)\rangle \, + \, \|\mathbf{V}X(x)\|^2 \right) \\ \\ & = & \|Y(y)\|^2 \, - \, 2\langle Y(y)|\mathbf{W}X(x)\rangle \, + \, \|\mathbf{W}X(x)\|^2 \, + \, \sigma^2 \, N_{\mathcal{Y}} \|X(x)\|^2 \\ \\ & = & \|Y(y) - \mathbf{W}X(x)\|^2 \, + \, \sigma^2 \, N_{\mathcal{Y}} \|X(x)\|^2 \, , \end{split}$$

and we are done. \Box

9. Proof of Equation (6)

Proof. Let us now prove Equation (6), which is given by

$$\mathbf{E}_{\mathbf{V} \sim Q_{\mathbf{W},\sigma}} e^{-2\|Y(y) - \mathbf{V}X(x)\|^2} = \left[\frac{\sigma^{N_{\mathcal{X}}}}{\sqrt{1 + 4\sigma^2 \|X(x)\|^2}} \right]^{N_{\mathcal{Y}}} e^{-\frac{2\|Y(y) - \mathbf{W}X(x)\|^2}{1 + 4\sigma^2 \|X(x)\|^2}}.$$
 (20)

We will prove Equation (20) for the case of an arbitrary vector X for which each of its component is non zero. To see that the result will also hold for the case where X has some zero-valued components, note that the result will hold by replacing X with $X + \vec{\epsilon}$, where $\vec{\epsilon}$ is a vector whose entries are all equal to ϵ for an ϵ smaller than the smallest non zero component of X. The result then comes out from the continuity with respect to X of the right-hand side of Equation (20) and by taking the limit when ϵ goes to zero.

Now, let

$$\begin{split} I &\stackrel{\text{def}}{=} & \underset{\mathbf{V} \sim Q_{\mathbf{W},\sigma}}{\mathbf{E}} e^{-2\|Y(y) - \mathbf{V}X(x)\|^2} \\ &= & \int \frac{d\mathbf{V}}{\left(\sigma\sqrt{2\pi}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}}} e^{-\frac{1}{2}\frac{\|\mathbf{V} - \mathbf{W}\|^2}{\sigma^2}} e^{-2\|Y(y) - \mathbf{V}X(x)\|^2} \,. \end{split}$$

Performing the change of variables U = V - W gives

$$I \ = \ \int \frac{d{\bf U}}{\left(\sigma\sqrt{2\pi}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}}} \ e^{-\frac{1}{2}\frac{\|{\bf U}\|^2}{\sigma^2}} \ e^{-2\|Y(y)-({\bf U}+{\bf W})X(x)\|^2} \, .$$

Now, let \vec{A} be the vector of $\mathcal{H}_{\mathcal{V}}$ defined as

$$\vec{A} \stackrel{\text{def}}{=} Y(y) - \mathbf{W}X(x),$$
 (21)

and let us denote by A_l , the l^{th} component of the vector \vec{A} . Then

$$-2\|Y(y) - (\mathbf{U} + \mathbf{W})X(x)\|^2 = -2\|\vec{A}\|^2 + -2\|\mathbf{U}X(x)\|^2 + 4\langle \vec{A} \mid \mathbf{U}X(x)\rangle.$$

This implies that

$$I = e^{-2\|\vec{A}\|^2} \int \frac{d\mathbf{U}}{\left(\sigma\sqrt{2\pi}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}}} e^{-\frac{1}{2}\left(\frac{\|\mathbf{U}\|^2}{\sigma^2} + 4\|\mathbf{U}X(x)\|^2 - 8\langle\vec{A}|\mathbf{U}X(x)\rangle\right)}. \tag{22}$$

9.1. An analysis of the argument of the exponential function of the integral I

Let

$$Q \stackrel{\text{def}}{=} \left(\frac{\|\mathbf{U}\|^2}{\sigma^2} + 4\|\mathbf{U}X(x)\|^2 - 8\langle \vec{A} \mid \mathbf{U}X(x)\rangle \right). \tag{23}$$

In the following, A_l denotes the l^{th} component of the vector \vec{A} . Then,

$$Q = \sum_{i=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} \frac{\mathbf{U}_{[l;i]}^{2}}{\sigma^{2}} + 4 \| \sum_{i=1}^{N_{\mathcal{X}}} \mathbf{U}_{[:i]} x_{i} \|^{2} - 8 \sum_{i=1}^{N_{\mathcal{X}}} \langle \vec{A} \mid \mathbf{U}_{[:i]} \rangle x_{i}$$

$$= \sum_{i=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} \frac{\mathbf{U}_{[l;i]}^{2}}{\sigma^{2}} + 4 \sum_{i,j=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} \mathbf{U}_{[l;i]} x_{i} \mathbf{U}_{[l;j]} x_{j} - 8 \sum_{i=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} A_{l} \mathbf{U}[l;i] x_{i}$$

$$= \sum_{i=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} \frac{\mathbf{U}_{[l;i]}^{2}}{\sigma^{2}} + 4 \sum_{i,j=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} \mathbf{U}_{[l;i]} x_{i} \mathbf{U}_{[l;j]} x_{j} - 8 \sum_{i,j=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} \delta_{i,j} A_{l} \mathbf{U}_{[l;i]} x_{i}$$

$$= \sum_{i,j=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} \left(\frac{\delta_{i,j}}{\sigma^{2}} + 4 x_{i} x_{j} \right) \mathbf{U}_{[l;i]} \mathbf{U}_{[l;j]} - 8 \sum_{i,j=1}^{N_{\mathcal{X}}} \sum_{l=1}^{N_{\mathcal{Y}}} \delta_{i,j} A_{l} \mathbf{U}_{[l;i]} x_{i}.$$

Let us now define the matrix **N** of dimension $N_{\mathcal{X}} \times N_{\mathcal{Y}}$ as

$$\mathbf{N}_{[i;j]} = \frac{\delta_{i,j}}{\sigma^2} + 4x_i x_j. \tag{24}$$

Now, let

$$\mathbf{Z}_{[l;i]} \stackrel{\text{def}}{=} \frac{\mathbf{U}_{[l;i]}}{x_i} \qquad \text{for all } l = 1, ..., N_{\mathcal{Y}} \text{ and } i = 1, ..., N_{\mathcal{X}}.$$
 (25)

Recall that, w.l.o.g., x_i is different from 0 and that $\sigma > 0$.

This new change of variables gives

$$Q = \sum_{l=1}^{N_{\mathcal{Y}}} \left(\sum_{i,j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_i x_j \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;j]} - 8 \sum_{i=1}^{N_{\mathcal{X}}} A_l x_i^2 \mathbf{Z}_{[l;i]} \right).$$
 (26)

The following claim will transform Q in such a way that it will contain a single term including the integration variable \mathbf{Z} . This will be achieved by using the Fermat's difference of square argument: $(A^2-B^2)=(A-B)(A+B)$.

CLAIM 1: For any $l = 1, ..., N_{\mathcal{Y}}$, let

$$B_l \stackrel{\text{def}}{=} \frac{4\sigma^2 A_l}{1 + 4\sigma^2 ||X(x)||^2}.$$

Then,

$$Q = \sum_{l=1}^{N_{\mathcal{Y}}} \left(\sum_{i,j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_i x_j (\mathbf{Z}_{[l;i]} - B_l) (\mathbf{Z}_{[l;j]} - B_l) \right) - \frac{16 ||A||^2 \sigma^2 ||X(x)||^2}{1 + 4\sigma^2 ||X(x)||^2}.$$

Proof of the claim. From the definition of B_l , we have that

$$B_l \left(x_i^2 + 4x_i^2 \sigma^2 ||X(x)||^2 \right) = 4A_l x_i^2 \sigma^2.$$

Then, since $x_i^2 = \sum_{j=1}^{N_x} \delta_{i,j} x_i x_j$ and $||X(x)||^2 \stackrel{\text{def}}{=} \sum_{j=1}^{N_x} x_j^2$, we have

$$\sum_{j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_i x_j B_l = 4A_l x_i^2$$

$$(27)$$

Note also that

$$\frac{16\sigma^4 A_l^2 \|X(x)\|^2}{1 + 4\sigma^2 \|X(x)\|^2} = B_l^2 \|X(x)\|^2 \left(1 + 4\sigma^2 \|X(x)\|^2\right)
= B_l^2 \left(\|X(x)\|^2 + 4\sigma^2 \|X(x)\|^4\right)
= B_l^2 \left(\sum_{i=1}^{N_{\mathcal{X}}} x_i^2 + \sum_{i,j=1}^{N_{\mathcal{X}}} 4\sigma^2 x_i^2 x_j^2\right)
= B_l^2 \left(\sum_{i,j=1}^{N_{\mathcal{X}}} \delta_{i,j} x_i x_j + \sum_{i,j=1}^{N_{\mathcal{X}}} 4\sigma^2 x_i^2 x_j^2\right)
= \sum_{i,j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} \sigma^2 x_i x_j B_l^2.$$

Hence,

$$\sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i,j=1}^{N_{\mathcal{X}}} \left(\mathbf{N}_{[i;j]} x_{i} x_{j} (\mathbf{Z}_{[l;i]} - B_{l}) (\mathbf{Z}_{[l;j]} - B_{l}) \right) - \frac{16 \|A\|^{2} \sigma^{2} \|X(x)\|^{2}}{1 + 4 \sigma^{2} \|X(x)\|^{2}} \\
= \sum_{l=1}^{N_{\mathcal{Y}}} \left(\sum_{i,j=1}^{N_{\mathcal{X}}} \left(\mathbf{N}_{[i;j]} x_{i} x_{j} (\mathbf{Z}_{[l;i]} - B_{l}) (\mathbf{Z}_{[l;j]} - B_{l}) \right) - \frac{16 A_{l}^{2} \sigma^{2} \|X(x)\|^{2}}{1 + 4 \sigma^{2} \|X(x)\|^{2}} \right) \\
= \sum_{l=1}^{N_{\mathcal{Y}}} \left(\sum_{i,j=1}^{N_{\mathcal{X}}} \left(\mathbf{N}_{[i;j]} x_{i} x_{j} (\mathbf{Z}_{[l;i]} - B_{l}) (\mathbf{Z}_{[l;j]} - B_{l}) \right) - \sum_{i,j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_{i} x_{j} B_{l}^{2} \right) \\
= \sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i,j=1}^{N_{\mathcal{X}}} \left(\mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;j]} - \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} B_{l} - \mathbf{N}_{[i;j]} x_{i} x_{j} B_{l} \mathbf{Z}_{[l;j]} B_{l} \right) \\
= \sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i,j=1}^{N_{\mathcal{X}}} \left(\mathbf{N}_{[i;j]} x_{i} x_{j} B_{l} \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;j]} - 2 \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} B_{l} \right) \\
= \sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i,j=1}^{N_{\mathcal{X}}} \left(\mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;j]} - 2 \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} B_{l} \right) \\
= \sum_{l=1}^{N_{\mathcal{Y}}} \left(\sum_{i,j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;j]} - 2 \sum_{i=1}^{N_{\mathcal{X}}} \left(\sum_{j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;j]} - 2 \sum_{i=1}^{N_{\mathcal{X}}} \left(\sum_{j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} B_{l} \right) \\
= \sum_{l=1}^{N_{\mathcal{Y}}} \left(\sum_{i,j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;j]} - 2 \sum_{i=1}^{N_{\mathcal{X}}} \left(\sum_{j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;i]} \mathbf{Z}_{[l;j]} - 2 \sum_{i=1}^{N_{\mathcal{X}}} \left(\sum_{j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_{i} x_{j} \mathbf{Z}_{[l;i]} \mathbf{Z$$

The penultimate equality comes from Equation (27). Thus, Claim 1 is proved.

9.2. Let us transform our integral I into a Gaussian integral Definition 7.

• Let the operator $\star : \{1,..,N_{\mathcal{V}}\} \times \{1,..,N_{\mathcal{X}}\} \longrightarrow \{1,..,N_{\mathcal{Y}}N_{\mathcal{X}}\}$ be defined as

$$l \star i \stackrel{def}{=} (l-1) \cdot N_{\mathcal{X}} + i$$
.

Note that for any $\tilde{l} \in \{1,..,N_{\mathcal{Y}}N_{\mathcal{X}}\}$ there existe a unique 2-tuple $(l,i) \in \{1,..,N_{\mathcal{Y}}\} \times \{1,..,N_{\mathcal{X}}\}$ such that $\tilde{l} = l \star i$.

• Let \vec{z} be the vector of dimension $N_{\mathcal{Y}}N_{\mathcal{X}}$ defined as

$$z_{l\star i} \stackrel{def}{=} \mathbf{Z}_{[l;i]}$$

for any $l \in \{1,..,N_{\mathcal{Y}}\}$, and any $i \in \{1,..,N_{\mathcal{X}}\}$.

• Let $\vec{\mu}$ be the vector of dimension $N_{\mathcal{Y}}N_{\mathcal{X}}$ defined as

$$\mu_{l\star i} \stackrel{def}{=} B_l$$

for any $l \in \{1,..,N_{\mathcal{Y}}\}$, and any $i \in \{1,..,N_{\mathcal{X}}\}$.

• Let M be the matrix of dimension $(N_{\mathcal{Y}}N_{\mathcal{X}}) \times (N_{\mathcal{Y}}N_{\mathcal{X}})$ defined as

$$\mathbf{M}_{[l\star i; m\star j]} \stackrel{def}{=} \delta_{l,m} \mathbf{N}_{[i;j]} x_i x_j \quad \left(= \delta_{l,m} \left(\frac{\delta_{i,j}}{\sigma^2} + 4x_i x_j \right) x_i x_j \right), \tag{28}$$

for any $l, m \in \{1, ..., N_{\mathcal{Y}}\}$, and any $i, j \in \{1, ..., N_{\mathcal{X}}\}$.

Note that in what follows, the reader should interpret \tilde{l} as $l \star i$ and \tilde{m} as $m \star j$.

From the definitions above, we have

$$Q = \sum_{l=1}^{N_{\mathcal{Y}}} \left(\sum_{i,j=1}^{N_{\mathcal{X}}} \mathbf{N}_{[i;j]} x_{i} x_{j} (\mathbf{Z}_{[l;i]} - B_{l}) (\mathbf{Z}_{[l;j]} - B_{l}) \right) - \frac{16 ||A||^{2} \sigma^{2} ||X(x)||^{2}}{1 + 4 \sigma^{2} ||X(x)||^{2}}$$

$$= \sum_{m=1}^{N_{\mathcal{Y}}} \left(\sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i,j=1}^{N_{\mathcal{X}}} \left(\delta_{l,m} \mathbf{N}_{[i;j]} x_{i} x_{j} (\mathbf{Z}_{[l;i]} - B_{l}) (\mathbf{Z}_{[l;j]} - B_{l}) \right) \right) - \frac{16 ||A||^{2} \sigma^{2} ||X(x)||^{2}}{1 + 4 \sigma^{2} ||X(x)||^{2}}$$

$$= \sum_{l=1}^{N_{\mathcal{Y}}} \sum_{i=1}^{N_{\mathcal{X}}} \sum_{m=1}^{N_{\mathcal{Y}}} \sum_{j=1}^{N_{\mathcal{X}}} \left(\delta_{l,m} \mathbf{N}_{[i;j]} x_{i} x_{j} (\mathbf{Z}_{[l;i]} - B_{l}) (\mathbf{Z}_{[l;j]} - B_{l}) \right) - \frac{16 ||A||^{2} \sigma^{2} ||X(x)||^{2}}{1 + 4 \sigma^{2} ||X(x)||^{2}}$$

$$= \sum_{\tilde{l}=1}^{N_{\mathcal{Y}}} \sum_{\tilde{m}=1}^{N_{\mathcal{Y}}} \left((z_{\tilde{l}} - \mu_{\tilde{l}}) \ \mathbf{M}_{\tilde{l},\tilde{l},\tilde{m}} (z_{\tilde{m}} - \mu_{\tilde{m}}) \right) - \frac{16 ||A||^{2} \sigma^{2} ||X(x)||^{2}}{1 + 4 \sigma^{2} ||X(x)||^{2}}.$$

Substituing this expression for Q into the integral I given by Equation (22) gives

$$I = e^{-2\|\vec{A}\|^2} \int \frac{d\mathbf{U}}{\left(\sigma\sqrt{2\pi}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}}} e^{-\frac{1}{2}\left(\frac{\|\mathbf{U}\|^2}{\sigma^2} + 4\|\mathbf{U}X(x)\|^2 - 8\langle\vec{A}|\mathbf{U}X(x)\rangle\right)}$$

$$(29)$$

$$= e^{-2\|\vec{A}\|^{2}} \prod_{i=1}^{N_{\mathcal{X}}} |x_{i}|^{N_{\mathcal{Y}}} \left(\int \frac{d\vec{z}}{\left(\sigma\sqrt{2\pi}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}}} e^{-\frac{1}{2}\sum_{\tilde{l}=1}^{N_{\mathcal{Y}}N_{\mathcal{X}}} \sum_{\tilde{m}=1}^{N_{\mathcal{Y}}N_{\mathcal{X}}} \left((z_{\tilde{l}} - \mu_{\tilde{l}}) \ \mathbf{M}_{[\tilde{l};\tilde{m}]} \ (z_{\tilde{m}} - \mu_{\tilde{m}}) \right) \right) \cdot e^{\frac{8\|\tilde{A}\|^{2}\sigma^{2}\|X(x)\|^{2}}{1+4\sigma^{2}\|X(x)\|^{2}}}$$
(30)

$$= e^{-2\|\vec{A}\|^2} \prod_{i=1}^{N_{\mathcal{X}}} |x_i|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^2 \sigma^2 \|X(x)\|^2}{1+4\sigma^2 \|X(x)\|^2}} \int \frac{d\vec{z}}{\left(\sigma\sqrt{2\pi}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}}} e^{-\frac{1}{2}\left((\vec{z}-\vec{\mu})^{\mathsf{T}} \mathbf{M} (\vec{z}-\vec{\mu})\right)}$$
(31)

$$= e^{-2\|\vec{A}\|^{2}} \prod_{i=1}^{N_{\mathcal{X}}} |x_{i}|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^{2}\sigma^{2}\|X(x)\|^{2}}{1+4\sigma^{2}\|X(x)\|^{2}}} \frac{1}{\sqrt{\det(\mathbf{M})}} \cdot \int \frac{d\vec{z}}{\left(\sigma\sqrt{2\pi}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}}} \frac{1}{\sqrt{\det(\mathbf{M}^{-1})}} e^{-\frac{1}{2}\left((\vec{z}-\vec{\mu})^{\mathsf{T}}(\mathbf{M}^{-1})^{-1}(\vec{z}-\vec{\mu})\right)}$$
(32)

$$= e^{-2\|\vec{A}\|^2} \prod_{i=1}^{N_{\mathcal{X}}} |x_i|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^2 \sigma^2 \|X(x)\|^2}{1+4\sigma^2 \|X(x)\|^2}} \frac{1}{\sqrt{\det(\mathbf{M})}} \cdot 1.$$
(33)

Line (30) is a consequence of the fact that $\mathbf{U}_{[l;i]} = x_i \mathbf{Z}_{[l;i]}$ (see Equation (25)) and of the fact that $\vec{z}_{\tilde{l}} = \mathbf{Z}_{[l;i]}$. Line (33) comes from the fact that the integral of the preceding line is an integral of a Gaussian density and is therefore equal to 1. Lines (32) and (33) force \mathbf{M} to be positive definite, so we have to prove that fact. This is one of the statements of the following claim.

CLAIM 2: Matrix M is positive definite and

$$\det(\mathbf{M}) = \prod_{i=1}^{N_{\mathcal{X}}} (x_i^2)^{N_{\mathcal{Y}}} \left(\frac{1}{\sigma^2}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}} \left(1 + 4\sigma^2 ||X(x)||^2\right)^{N_{\mathcal{Y}}}$$

Before proving Claim 2, let us show that it implies the result.

$$\begin{split} I &= e^{-2\|\vec{A}\|^2} \prod_{i=1}^{N_{\mathcal{X}}} |x_i|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^2 \sigma^2 \|X(x)\|^2}{1+4\sigma^2 \|X(x)\|^2}} \frac{1}{\sqrt{\det(\mathbf{M})}} \\ &= e^{-2\|\vec{A}\|^2} \prod_{i=1}^{N_{\mathcal{X}}} |x_i|^{N_{\mathcal{Y}}} e^{\frac{8\|\vec{A}\|^2 \sigma^2 \|X(x)\|^2}{1+4\sigma^2 \|X(x)\|^2}} \frac{1}{\sqrt{\prod_{i=1}^{N_{\mathcal{X}}} (x_i^2)^{N_{\mathcal{Y}}} \left(\frac{1}{\sigma^2}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}} \left(1+4\sigma^2 \|X(x)\|^2\right)^{N_{\mathcal{Y}}}}} \\ &= e^{-2\|\vec{A}\|^2} e^{\frac{8\|\vec{A}\|^2 \sigma^2 \|X(x)\|^2}{1+4\sigma^2 \|X(x)\|^2}} \frac{1}{\sqrt{\left(\frac{1}{\sigma^2}\right)^{N_{\mathcal{X}}N_{\mathcal{Y}}} \left(1+4\sigma^2 \|X(x)\|^2\right)^{N_{\mathcal{Y}}}}}} \\ &= e^{-2\|\vec{A}\|^2} e^{\frac{8\|\vec{A}\|^2 \sigma^2 \|X(x)\|^2}{1+4\sigma^2 \|X(x)\|^2}} \frac{\sigma^{N_{\mathcal{X}}N_{\mathcal{Y}}}}{\sqrt{\left(1+4\sigma^2 \|X(x)\|^2\right)^{N_{\mathcal{Y}}}}} \\ &= e^{-2\|\vec{A}\|^2} e^{\frac{8\|\vec{A}\|^2 \sigma^2 \|X(x)\|^2}{1+4\sigma^2 \|X(x)\|^2}} \frac{\sigma^{N_{\mathcal{X}}N_{\mathcal{Y}}}}{\sqrt{\left(1+4\sigma^2 \|X(x)\|^2\right)^{N_{\mathcal{Y}}}}} \\ &= e^{\frac{-2\|\vec{A}\|^2}{1+4\sigma^2 \|X(x)\|^2}} \frac{\sigma^{N_{\mathcal{X}}N_{\mathcal{Y}}}}{\sqrt{\left(1+4\sigma^2 \|X(x)\|^2\right)^{N_{\mathcal{Y}}}}} \\ &= e^{\frac{-2\|Y(y)-\mathbf{W}X(x)\|^2}{1+4\sigma^2 \|X(x)\|^2}} \frac{\sigma^{N_{\mathcal{X}}N_{\mathcal{Y}}}}{\sqrt{\left(1+4\sigma^2 \|X(x)\|^2\right)^{N_{\mathcal{Y}}}}} \, . \end{split}$$

To finish the proof, let us now prove Claim 2.

Proof of the claim. Let **X** be the diagonal matrix whose entries are the x_i s and note that the matrix $(\mathbf{N}_{[i:j]}x_ix_j)_{i:j}$ can be expressed as follows:

$$(\mathbf{N}_{[i:j]}x_ix_j)_{i:j} = \mathbf{X}\mathbf{N}\mathbf{X}. \tag{34}$$

Now, from the definition of M, and basic determinant's properties, we have

$$\det(\mathbf{M}) = \det\left((\delta_{l,m} \, \mathbf{N}_{[i;j]} x_i x_j)_{l \star i \, ; \, m \star j} \right) \tag{35}$$

$$= \left(\det \left((\mathbf{N}_{[i;j]} x_i x_j)_{i;j} \right) \right)^{N_{\mathcal{Y}}} \tag{36}$$

$$= \left(\det\left(\mathbf{X}\mathbf{N}\mathbf{X}\right)\right)^{N_{\mathcal{Y}}} \tag{37}$$

$$= \left(\left(\prod_{i=1}^{N_{\mathcal{X}}} x_i \right) \left(\prod_{j=1}^{N_{\mathcal{X}}} x_j \right) \det \left(\mathbf{N} \right) \right)^{N_{\mathcal{Y}}}$$

$$= \left(\left(\prod_{i=1}^{N_{\mathcal{X}}} x_i^2 \right) \det \left(\mathbf{N} \right) \right)^{N_{\mathcal{Y}}}$$
(38)

Line (35) comes straightforwardly from the definition (see Equation (28)). Line (36) comes from the fact that \mathbf{M} is a matrix whose entries are all 0, except for $N_{\mathcal{Y}}$ identical blocks of size $N_{\mathcal{X}} \times N_{\mathcal{X}}$ that are positioned in the diagonal of M, each one of those blocks being the matrix $(\mathbf{N}_{[i;j]}x_ix_j)_{i;j}$. Line (38) follows from a basic determinant's property, and from the fact that $\det(\mathbf{X}) = \left(\prod_{i=1}^{N_{\mathcal{X}}} x_i\right)$.

Note also that the block structure of the matrix **M** implies that it has exactly the same eigenvalues as Matrix $(\mathbf{N}_{[i:j]}x_ix_j)_{i:j}$ (but with a multiplicity augmented by a factor of $N_{\mathcal{Y}}$).

Also, it follows from Equation (34) that, for each eigenvalue λ of $(\mathbf{N}_{[i;j]}x_ix_j)_{i;j}$, there exists i such that $\frac{\lambda}{x_i^2}$ is an eigenvalue of \mathbf{N} . Indeed, because of Equation (34), we have that

$$\det\left((\mathbf{N}_{[i;j]}x_ix_j)_{i;j} - \lambda \mathbf{X}\mathbf{X}\right) = \mathbf{0} \quad \Leftrightarrow \quad \det\left(\mathbf{N} - \lambda I\right) = \mathbf{0}.$$

This, in turn, implies that if N is positive definite, so is M.

Hence, to prove Claim 2, we only have to show that N is positive definite and

$$\det(\mathbf{N}) = \left(\frac{1}{\sigma^2}\right)^{N_{\mathcal{X}}} \left(1 + 4\sigma^2 ||X(x)||^2\right).$$

Let us consider matrix \mathbf{O} , defined as $\mathbf{O}_{[i;j]} = 4x_ix_j$. Then, it is easy to see that $\lambda = 0$ is an eigenvalue of \mathbf{O} of multiplicity $N_{\mathcal{X}} - 1$ because the rank of that matrix is 1. Note that line L_i of that matrix is always equal to $\frac{x_i}{x_1}L_1$. Moreover we can easily see that $(x_1, \ldots, x_m)^{\mathsf{T}}$ is an eigenvector of \mathbf{O} with eigenvalue $4\|X(x)\|^2$.

Now, note that

$$\mathbf{N} = \mathbf{O} + \frac{1}{\sigma^2} \cdot I \,.$$

Thus, there is a one-to-one correspondence between the eigenvalues of **O** and those of **N**: λ is an eigenvalue of the former if and only if $\lambda + \frac{1}{\sigma^2}$ is an eigenvalue of the latter. Thus N is positive definite, and

$$\det(\mathbf{N}) = \left(\frac{1}{\sigma^2}\right)^{N_{\mathcal{X}}-1} \left(\frac{1}{\sigma^2} + 4\|X(x)\|^2\right)$$
$$= \left(\frac{1}{\sigma^2}\right)^{N_{\mathcal{X}}} \left(1 + 4\sigma^2\|X(x)\|^2\right).$$

10. Proof of $\frac{\partial}{\partial \mathbf{A}} R(\mathbf{A}, S)$ from Theorem (6)

Proof. From equation (9) we have

$$\mathbf{W} = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{[i;j]} X^{\dagger}(x_j) = \mathbf{M}_{\mathcal{Y}} \mathbf{A} \mathbf{M}_{\mathcal{X}}^{\dagger}$$
(39)

Where $M_{\mathcal{Y}}$ is a $N_{\mathcal{Y}} \times m$ matrix with $Y(y_i)$ in it's *i*-th column. Similarly $M_{\mathcal{X}}$ is a $N_{\mathcal{X}} \times m$ matrix with $X(x_j)$ in it's *j*-th column.

$$R(\mathbf{A}, S) = \frac{1}{m} \sum_{i=1}^{m} \|Y(y_i) - \mathbf{W}X(x_i)\|^2$$

$$= \frac{1}{m} \|\mathbf{M}_{\mathcal{Y}} - \mathbf{W}\mathbf{M}_{\mathcal{X}}\|^2$$

$$= \frac{1}{m} \|\mathbf{M}_{\mathcal{Y}} - \mathbf{M}_{\mathcal{Y}}\mathbf{A}\mathbf{M}_{\mathcal{X}}^{\dagger}\mathbf{M}_{\mathcal{X}}\|^2$$

$$= \frac{1}{m} \|\mathbf{M}_{\mathcal{Y}} - \mathbf{M}_{\mathcal{Y}}\mathbf{A}\mathbf{K}_{\mathcal{X}}\|^2$$

$$= \frac{1}{m} \|\mathbf{M}_{\mathcal{Y}}(\mathbf{I} - \mathbf{A}\mathbf{K}_{\mathcal{X}})\|^2$$

$$(40)$$

$$\frac{\partial}{\partial A_{[i,j]}} R(\mathbf{A}, S) = \frac{1}{m} \frac{\partial}{\partial A_{[i;j]}} \sum_{k,l=1}^{m} [\mathbf{M}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}})]_{[k;l]}^{2}$$

$$= \frac{2}{m} \sum_{k,l=1}^{m} [\mathbf{M}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}})]_{[k;l]} \frac{\partial}{\partial A_{[i;j]}} [\mathbf{M}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}})]_{[k;l]}$$

$$= \frac{-2}{m} \sum_{k,l=1}^{m} [\mathbf{M}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}})]_{[k;l]} \frac{\partial}{\partial A_{[i;j]}} [\mathbf{M}_{\mathcal{Y}} \mathbf{A} \mathbf{K}_{\mathcal{X}}]_{[k;l]}$$

$$= \frac{-2}{m} \sum_{k,l=1}^{m} [\mathbf{M}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}})]_{[k;l]} \mathbf{M}_{\mathcal{Y}_{[k;i]}} \mathbf{K}_{\mathcal{X}_{[j;l]}}$$

$$= \frac{-2}{m} \sum_{k,l=1}^{m} [\mathbf{M}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}})]_{[k;l]} \mathbf{M}_{\mathcal{Y}_{[k;i]}} \mathbf{K}_{\mathcal{X}_{[j;l]}}$$

$$= \frac{-2}{m} \sum_{k,l=1}^{m} [\mathbf{M}_{\mathcal{Y}} \mathbf{M}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}})]_{[k;l]} \mathbf{K}_{\mathcal{X}_{[j;l]}}$$

$$= \frac{-2}{m} \sum_{l=1}^{m} [\mathbf{M}_{\mathcal{Y}}^{\dagger} \mathbf{M}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}})]_{[i;l]} \mathbf{K}_{\mathcal{X}_{[j;l]}}$$

$$= \frac{-2}{m} [\mathbf{K}_{\mathcal{Y}} (\mathbf{I} - \mathbf{A} \mathbf{K}_{\mathcal{X}}) \mathbf{K}_{\mathcal{X}_{[l;j]}}^{T}$$

$$= \frac{2}{m} [\mathbf{K}_{\mathcal{Y}} (\mathbf{A} \mathbf{K}_{\mathcal{X}} - \mathbf{I}) \mathbf{K}_{\mathcal{X}_{[l;j]}}]$$

11. Details on how equation (14) becomes $\gamma_{i,j}(\delta_i\lambda_j^2 + m\beta) = \delta_i\lambda_j(u_i^{\mathsf{T}}v_j)$

Because $\{u_i v_j^{\mathsf{T}}\}_{(i,j)\in\mathcal{I}}$ constitutes an orthonormal basis of \mathbb{R}^{m^2} we have

$$\mathbf{A} = \sum_{i=1}^{m} \sum_{j=1}^{m} \gamma_{i,j} u_i v_j^{\mathsf{T}} \tag{42}$$

and the following equalities (recall that $\mathbf{K}_{\mathcal{Y}} = \sum_{k=1}^{m} \delta_k u_k u_k^{\mathsf{T}}$ and $\mathbf{K}_{\mathcal{X}} = \sum_{l=1}^{m} \lambda_l v_l v_l^{\mathsf{T}}$)

$$\mathbf{K}_{\mathcal{Y}}\mathbf{K}_{\mathcal{X}} = \sum_{k=1}^{m} \delta_{k} u_{k} u_{k}^{\mathsf{T}} \sum_{l=1}^{m} \lambda_{l} v_{l} v_{l}^{\mathsf{T}}$$

$$= \sum_{k,l=1}^{m} \delta_{k} \lambda_{l} (u_{k}^{\mathsf{T}} v_{l}) u_{k} v_{l}^{\mathsf{T}}$$

$$\mathbf{K}_{\mathcal{X}}^{2} = \sum_{l=1}^{m} \lambda_{l} v_{l} v_{l}^{\mathsf{T}} \sum_{l'=1}^{m} \lambda_{l'} v_{l'} v_{l'}^{\mathsf{T}}$$

$$= \sum_{l=1}^{m} \lambda_{l}^{2} v_{l} v_{l}^{\mathsf{T}}$$

$$\mathbf{A}\mathbf{K}_{\mathcal{X}}^{2} = \sum_{k=1}^{m} \sum_{l=1}^{m} \gamma_{k,l} u_{k} v_{l}^{\mathsf{T}} \sum_{l=1}^{m} \lambda_{l}^{2} v_{l} v_{l}^{\mathsf{T}}$$

$$= \sum_{k=1}^{m} \sum_{l=1}^{m} \gamma_{k,l} \lambda_{l}^{2} u_{k} v_{l}^{\mathsf{T}}$$

$$\mathbf{K}_{\mathcal{Y}} \mathbf{A}\mathbf{K}_{\mathcal{X}}^{2} = \sum_{k'=1}^{m} \delta_{k'} u_{k'} u_{k'}^{\mathsf{T}} \sum_{k=1}^{m} \sum_{l=1}^{m} \gamma_{k,l} \lambda_{l}^{2} u_{k} v_{l}^{\mathsf{T}}$$

$$= \sum_{k=1}^{m} \sum_{l=1}^{m} \gamma_{k,l} \delta_{k} \lambda_{l}^{2} u_{k} v_{l}^{\mathsf{T}}$$

Equation (14) then becomes

$$\frac{2}{m} \mathbf{K}_{\mathcal{Y}} (\mathbf{A} \mathbf{K}_{\mathcal{X}} - \mathbf{I}) \mathbf{K}_{\mathcal{X}} + 2\beta \mathbf{A} = 0$$

$$\frac{2}{m} \mathbf{K}_{\mathcal{Y}} \mathbf{A} \mathbf{K}_{\mathcal{X}}^{2} - \frac{2}{m} \mathbf{K}_{\mathcal{Y}} \mathbf{K}_{\mathcal{X}} + 2\beta \mathbf{A} = 0$$

$$\sum_{k=1}^{m} \sum_{l=1}^{m} \left[\frac{2}{m} \gamma_{k,l} \delta_{k} \lambda_{l}^{2} - \frac{2}{m} \lambda_{l} (u_{k}^{\mathsf{T}} v_{l}) + 2\beta \gamma_{k,l} \right] u_{k} v_{l}^{\mathsf{T}} = 0$$

Since $u_k v_l^{\mathsf{T}}$ are linearly independent vectors of \mathbb{R}^{m^2} , the previous equation is satisfied when

$$\begin{split} \frac{2}{m} \gamma_{k,l} \delta_k \lambda_l^2 - \frac{2}{m} \lambda_l (u_k^\mathsf{T} v_l) + 2\beta \gamma_{k,l} &= 0 \\ \frac{2}{m} \gamma_{k,l} \delta_k \lambda_l^2 + 2\beta \gamma_{k,l} &= \frac{2}{m} \lambda_l (u_k^\mathsf{T} v_l) \\ \gamma_{k,l} (\delta_k \lambda_l^2 + m\beta) &= \delta_k \lambda_l (u_k^\mathsf{T} v_l) \end{split}$$