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In this supplementary material, we make use of the following notation. xi denotes the ith entry of the (column)
vector X(x), yj the jth entry of the (column) vector Y (y), V[i; j] denotes the entry in position (i, j) of the matrix
V. Also, V[ ; j] denotes the jth column of the matrix V. Finally, δi,j denotes the delta function which gives 1 if
i=j, and 0 otherwise.

7. Example of a distribution where the minimizer of the quadratic risk has a
substantial higher error rate than the optimal classifier

We consider a simple one-dimensional binary classification problem where X = R and Y = {−1,+1}. We thus
consider classifiers identified by a single scalar weight w such that the output hw(x) on an input x is given by
hw(x) = sgn(wx).

Consider a distribution D concentrated on four points {(x1, y1), (x2, y2), (x3, y3), (x4, y4)}. Let pi denote the

weight induced by D on xi. Hence
∑4
i=1 pi = 1. The 0/1 risk is then given by

∑4
i=1 piI(hw(xi) 6= yi) and the

quadratic risk is given by
∑4
i=1 pi(yi − wxi)2.

Let wr denote the value of w minimizing the quadratic risk. Since the derivative (with respect to w) of the

quadratic risk must vanish at wr, we find that it is given by the solution of wr
∑4
i=1 pix

2
i −

∑4
i=1 piyixi = 0, or

equivalently by

wr =

∑4
i=1 piyixi∑4
i=1 pix

2
i

.

Now let x1 = ε with p1 = (1− ε)/2 and y1 = +1. Let x2 = −ε with p2 = (1− ε)/2 and y2 = −1. Let x3 = 1/ε
with p3 = ε/2 and y3 = −1. Let x4 = −1/ε with p4 = ε/2 and y4 = +1.

Hence, with this distribution, the 0/1 risk of a classifier with a positive weight w is equal to ε and the 0/1 risk
of a classifier with a negative weight w is equal to 1− ε. The difference tends to the maximum value of 1 when
ε goes to zero.

However, with this distribution This gives

wr =
−1 + ε(1− ε)

(1− ε)ε2 + (1/ε)
.

Hence wr is negative for all ε between 0 and 1. Hence the 0/1 risk of hwr is (1 − ε) but there exists classifiers
(those with positive w) having a 0/1 risk of ε.
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8. Proof of Equation (5)

E
V∼QW,σ

‖Y (y)−VX(x)‖2 = ‖Y (y)−WX(x)‖2 + σ2NY |X(x)‖2, . (5)

Proof. First, note that

‖Y (y)−VX(x)‖2 = ‖Y (y)‖2 − 2〈Y (y)|VX(x)〉 + ‖VX(x)‖2.

Let us now compute the expectation according to the posterior QW,σ of these three terms.

• E
V∼QW,σ

‖Y (y)‖2 = ‖Y (y)‖2 .

• For E
V∼QW,σ

2 〈Y (y)|VX(x)〉 :

E
V∼QW,σ

2〈Y (y)|VX(x)〉 = 2 E
V∼QW,σ

〈Y (y)|
NX∑
l=1

xlV[ ; l]〉

= 2 E
V∼QW,σ

NX∑
l=1

〈Y (y)|xlV[ ; l]〉

= 2 E
V∼QW,σ

NX∑
l=1

NY∑
q=1

yqV[q; l]xl

= 2

NX∑
l=1

NY∑
q=1

yqxl E
V∼QW,σ

V[q; l]

= 2

NX∑
l=1

NY∑
q=1

yqxl W[q; l]

...

= 2 〈Y (y)|WX(x)〉 (15)

• For E
V∼QW,σ

‖VX(x)‖2 , first note that since QW,σ is an isotropic Gaussian with mean W and variance σ2,

we have

E
V∼QW,σ

V[q; l]V[q; k] = W[q; l]W[q; k] if l 6= k ,

and

E
V∼QW,σ

V[q; l]V[q; l] = W[q; l] + σ2 .
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Thus, we have

E
V∼QW,σ

‖VX(x)‖2 = E
V∼QW,σ

〈VX(x)|VX(x)〉 (16)

= E
V∼QW,σ

〈
NX∑
l=1

xlV[ ; l]

∣∣∣∣∣
NX∑
k=1

xkV[ ; k]

〉

= E
V∼QW,σ

NX∑
l=1

NX∑
k=1

xlxk 〈V[ ; l] |V[ ; k] 〉

= E
V∼QW,σ

NX∑
l=1

NX∑
k=1

xlxk

NY∑
q=1

V[q; l]V[q; k]

=

NX∑
l=1

NX∑
k=1

xlxk

NY∑
q=1

E
V∼QW,σ

V[q; l]V[q; k] (17)

=

NX∑
l=1

NX∑
k = 1
k 6= l

xlxk

NY∑
q=1

W[q; l]W[q; k]

+

NX∑
k=1

xkxk

NY∑
q=1

(W[q; l]W[q; k] + σ2)

=

(
NX∑
l=1

NX∑
k=1

xlxk

NY∑
q=1

W[q; l]W[q; k]

)
+

NX∑
k=1

x2
k

NY∑
q=1

σ2

= ‖WX(x)‖2 + σ2NY

NX∑
k=1

x2
k (18)

= ‖WX(x)‖2 + σ2NY‖X(x)‖2 . (19)

From all that precedes, we then obtain:

E
V∼QW,σ

‖Y (y)−VX(x)‖2 = E
V∼QW,σ

(
‖Y (y)‖2 − 2〈Y (y)|VX(x)〉 + ‖VX(x)‖2

)
= ‖Y (y)‖2 − 2〈Y (y)|WX(x)〉 + ‖WX(x)‖2 + σ2NY‖X(x)‖2

= ‖Y (y)−WX(x)‖2 + σ2NY‖X(x)‖2 ,

and we are done.



On the Regression Approach to Structured Output Regression

9. Proof of Equation (6)

Proof. Let us now prove Equation (6), which is given by

E
V∼QW,σ

e−2‖Y (y)−VX(x)‖2 =

[
σNX√

1 + 4σ2‖X(x)‖2

]NY
e
− 2‖Y (y)−WX(x)‖2

1+4σ2‖X(x)‖2 . (20)

We will prove Equation (20) for the case of an arbitrary vector X for which each of its component is non zero.
To see that the result will also hold for the case where X has some zero-valued components, note that the result
will hold by replacing X with X + ~ε, where ~ε is a vector whose entries are all equal to ε for an ε smaller than
the smallest non zero component of X. The result then comes out from the continuity with respect to X of the
right-hand side of Equation (20) and by taking the limit when ε goes to zero.

Now, let

I
def
= E

V∼QW,σ

e−2‖Y (y)−VX(x)‖2

=

∫
dV(

σ
√

2π
)NXNY e−

1
2
‖V−W‖2

σ2 e−2‖Y (y)−VX(x)‖2 .

Performing the change of variables U = V −W gives

I =

∫
dU(

σ
√

2π
)NXNY e−

1
2
‖U‖2

σ2 e−2‖Y (y)−(U+W)X(x)‖2 .

Now, let ~A be the vector of HY defined as

~A
def
= Y (y) − WX(x) , (21)

and let us denote by Al, the lth component of the vector ~A. Then

−2‖Y (y) − (U + W)X(x)‖2 = −2‖ ~A‖2 + −2‖UX(x)‖2 + 4〈 ~A | UX(x)〉 .

This implies that

I = e−2‖ ~A‖2
∫

dU(
σ
√

2π
)NXNY e

− 1
2

(
‖U‖2

σ2
+4‖UX(x)‖2−8〈 ~A|UX(x)〉

)
. (22)

9.1. An analysis of the argument of the exponential function of the integral I

Let

Q
def
=

(
‖U‖2

σ2
+ 4‖UX(x)‖2 − 8〈 ~A | UX(x)〉

)
. (23)
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In the following, Al denotes the lth component of the vector ~A. Then,

Q =

NX∑
i=1

NY∑
l=1

U2
[l;i]

σ2
+ 4‖

NX∑
i=1

U[ ;i]xi‖2 − 8

NX∑
i=1

〈 ~A | U[ ;i]〉xi

=

NX∑
i=1

NY∑
l=1

U2
[l;i]

σ2
+ 4

NX∑
i,j=1

NY∑
l=1

U[l;i]xiU[l;j]xj − 8

NX∑
i=1

NY∑
l=1

AlU[l; i]xi

=

NX∑
i=1

NY∑
l=1

U2
[l;i]

σ2
+ 4

NX∑
i,j=1

NY∑
l=1

U[l;i]xiU[l;j]xj − 8

NX∑
i,j=1

NY∑
l=1

δi,jAlU[l;i]xi

=

NX∑
i,j=1

NY∑
l=1

(
δi,j
σ2

+ 4xixj

)
U[l;i]U[l;j] − 8

NX∑
i,j=1

NY∑
l=1

δi,jAlU[l;i]xi .

Let us now define the matrix N of dimension NX×NY as

N[i;j] =
δi,j
σ2

+ 4xixj . (24)

Now, let

Z[l;i]
def
=

U[l;i]

xi
for all l= 1, .., NY and i= 1, .., NX . (25)

Recall that, w.l.o.g., xi is different from 0 and that σ>0 .

This new change of variables gives

Q =

NY∑
l=1

 NX∑
i,j=1

N[i;j]xixjZ[l;i]Z[l;j] − 8

NX∑
i=1

Alx
2
iZ[l;i]

 . (26)

The following claim will transform Q in such a way that it will contain a single term including the integration
variable Z. This will be achieved by using the Fermat’s difference of square argument: (A2−B2) = (A−B)(A+B).

CLAIM 1 : For any l = 1, .., NY , let

Bl
def
=

4σ2Al
1 + 4σ2‖X(x)‖2

.

Then,

Q =

NY∑
l=1

 NX∑
i,j=1

N[i;j]xixj(Z[l;i] −Bl)(Z[l;j] −Bl)

 − 16‖A‖2σ2‖X(x)‖2

1 + 4σ2‖X(x)‖2
.

Proof of the claim. From the definition of Bl, we have that

Bl
(
x2
i + 4x2

iσ
2‖X(x)‖2

)
= 4Alx

2
iσ

2 .

Then, since x2
i =

∑NX
j=1δi,jxixj and ‖X(x)‖2 def

=
∑NX
j=1x

2
j , we have

NX∑
j=1

N[i;j]xixjBl = 4Alx
2
i (27)
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Note also that

16σ4A2
l ‖X(x)‖2

1 + 4σ2‖X(x)‖2
= B2

l ‖X(x)‖2
(
1 + 4σ2‖X(x)‖2

)
= B2

l

(
‖X(x)‖2 + 4σ2‖X(x)‖4

)
= B2

l

NX∑
i=1

x2
i +

NX∑
i,j=1

4σ2x2
ix

2
j



= B2
l

 NX∑
i,j=1

δi,jxixj +

NX∑
i,j=1

4σ2x2
ix

2
j



=

NX∑
i,j=1

N[i;j]σ
2xixjB

2
l .

Hence,

NY∑
l=1

NX∑
i,j=1

(
N[i;j]xixj(Z[l;i] −Bl)(Z[l;j] −Bl)

)
− 16‖A‖2σ2‖X(x)‖2

1 + 4σ2‖X(x)‖2

=

NY∑
l=1

 NX∑
i,j=1

(
N[i;j]xixj(Z[l;i] −Bl)(Z[l;j] −Bl)

)
− 16A2

l σ
2‖X(x)‖2

1 + 4σ2‖X(x)‖2



=

NY∑
l=1

 NX∑
i,j=1

(
N[i;j]xixj(Z[l;i] −Bl)(Z[l;j] −Bl)

)
−

NX∑
i,j=1

N[i;j]xixjB
2
l



=

NY∑
l=1

NX∑
i,j=1

(
N[i;j]xixjZ[l;i]Z[l;j] − N[i;j]xixjZ[l;i]Bl − N[i;j]xixjBlZ[l;j]

+ N[i;j]xixjB
2
l − N[i;j]xixjB

2
l

)
=

NY∑
l=1

NX∑
i,j=1

(
N[i;j]xixjBlZ[l;i]Z[l;j] − N[i;j]xixjZ[l;i]Bl − N[i;j]xixjZ[l;j]Bl

)

=

NY∑
l=1

NX∑
i,j=1

(
N[i;j]xixjBlZ[l;i]Z[l;j] − 2N[i;j]xixjZ[l;i]Bl

)

=

NY∑
l=1

 NX∑
i,j=1

N[i;j]xixjZ[l;i]Z[l;j] − 2

NX∑
i=1

NX∑
j=1

N[i;j]xixjZ[l;i]Bl



=

NY∑
l=1

 NX∑
i,j=1

N[i;j]xixjZ[l;i]Z[l;j] − 2

NX∑
i=1

4AlZ[l;i]x
2
i


= Q .

The penultimate equality comes from Equation (27). Thus, Claim 1 is proved.
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9.2. Let us transform our integral I into a Gaussian integral

Definition 7.

• Let the operator ? : {1, .., NY}×{1, .., NX } −→ {1, .., NYNX } be defined as

l ? i
def
= (l − 1) ·NX + i .

Note that for any l̃ ∈ {1, .., NYNX } there existe a unique 2-tuple (l, i) ∈ {1, .., NY}×{1, .., NX } such that
l̃ = l ? i .

• Let ~z be the vector of dimension NYNX defined as

zl?i
def
= Z[l;i]

for any l ∈ {1, .., NY} , and any i ∈ {1, .., NX } .

• Let ~µ be the vector of dimension NYNX defined as

µl?i
def
= Bl

for any l ∈ {1, .., NY} , and any i ∈ {1, .., NX } .

• Let M be the matrix of dimension (NYNX )× (NYNX ) defined as

M[l?i ;m?j]
def
= δl,mN[i;j]xixj

(
= δl,m

(δi,j
σ2

+ 4xixj

)
xixj

)
, (28)

for any l,m ∈ {1, .., NY} , and any i, j ∈ {1, .., NX } .

Note that in what follows, the reader should interpret l̃ as l ? i and m̃ as m ? j.

From the definitions above, we have

Q =

NY∑
l=1

 NX∑
i,j=1

N[i;j]xixj(Z[l;i] −Bl)(Z[l;j] −Bl)

− 16‖A‖2σ2‖X(x)‖2

1 + 4σ2‖X(x)‖2

=

NY∑
m=1

NY∑
l=1

NX∑
i,j=1

(
δl,mN[i;j]xixj(Z[l;i] −Bl)(Z[l;j] −Bl)

)− 16‖A‖2σ2‖X(x)‖2

1 + 4σ2‖X(x)‖2

=

NY∑
l=1

NX∑
i=1

NY∑
m=1

NX∑
j=1

(
δl,mN[i;j]xixj(Z[l;i] −Bl)(Z[l;j] −Bl)

)
− 16‖A‖2σ2‖X(x)‖2

1 + 4σ2‖X(x)‖2

=

NYNX∑
l̃=1

NYNX∑
m̃=1

(
(zl̃ − µl̃) M[l̃;m̃] (zm̃ − µm̃)

)
− 16‖A‖2σ2‖X(x)‖2

1 + 4σ2‖X(x)‖2
.

Substituing this expression for Q into the integral I given by Equation (22) gives

I = e−2‖ ~A‖2
∫

dU(
σ
√

2π
)NXNY e

− 1
2

(
‖U‖2

σ2
+4‖UX(x)‖2−8〈 ~A|UX(x)〉

)
(29)
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= e−2‖ ~A‖2
NX∏
i=1

|xi|NY
(∫

d~z(
σ
√

2π
)NXNY e

− 1
2

∑NYNX
l̃=1

∑NYNX
m̃=1

(
(zl̃−µl̃) M[l̃;m̃] (zm̃−µm̃)

))
· e

8‖ ~A‖2σ2‖X(x)‖2

1+4σ2‖X(x)‖2 (30)

= e−2‖ ~A‖2
NX∏
i=1

|xi|NY e
8‖ ~A‖2σ2‖X(x)‖2

1+4σ2‖X(x)‖2

∫
d~z(

σ
√

2π
)NXNY e− 1

2 ((~z−~µ)ᵀ M (~z−~µ)) (31)

= e−2‖ ~A‖2
NX∏
i=1

|xi|NY e
8‖ ~A‖2σ2‖X(x)‖2

1+4σ2‖X(x)‖2
1√

det(M)

·
∫

d~z(
σ
√

2π
)NXNY 1√

det(M−1)
e−

1
2 ((~z−~µ)ᵀ (M−1)−1 (~z−~µ)) (32)

= e−2‖ ~A‖2
NX∏
i=1

|xi|NY e
8‖ ~A‖2σ2‖X(x)‖2

1+4σ2‖X(x)‖2
1√

det(M)
· 1 . (33)

Line (30) is a consequence of the fact that U[l;i] = xiZ[l;i] (see Equation (25)) and of the fact that ~zl̃ = Z[l;i].
Line (33) comes from the fact that the integral of the preceeding line is an integral of a Gaussian density and is
therefore equal to 1. Lines (32) and (33) force M to be positive definite, so we have to prove that fact. This is
one of the statements of the following claim.

CLAIM 2 : Matrix M is positive definite and

det(M) =

NX∏
i=1

(x2
i )
NY

(
1

σ2

)NXNY (
1 + 4σ2‖X(x)‖2

)NY
Before proving Claim 2, let us show that it implies the result.

I = e−2‖ ~A‖2
NX∏
i=1

|xi|NY e
8‖ ~A‖2σ2‖X(x)‖2

1+4σ2‖X(x)‖2
1√

det(M)

= e−2‖ ~A‖2
NX∏
i=1

|xi|NY e
8‖ ~A‖2σ2‖X(x)‖2

1+4σ2‖X(x)‖2
1√∏NX

i=1(x2
i )
NY

(
1
σ2

)NXNY
(1 + 4σ2‖X(x)‖2)

NY

= e−2‖ ~A‖2 e
8‖ ~A‖2σ2‖X(x)‖2

1+4σ2‖X(x)‖2
1√(

1
σ2

)NXNY
(1 + 4σ2‖X(x)‖2)

NY

= e−2‖ ~A‖2 e
8‖ ~A‖2σ2‖X(x)‖2

1+4σ2‖X(x)‖2
σNXNY√

(1 + 4σ2‖X(x)‖2)
NY

= e
−2‖ ~A‖2

1+4σ2‖X(x)‖2
σNXNY√

(1 + 4σ2‖X(x)‖2)
NY

= e
−2‖Y (y)−WX(x)‖2

1+4σ2‖X(x)‖2
σNXNY√

(1 + 4σ2‖X(x)‖2)
NY

.

To finish the proof, let us now prove Claim 2.
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Proof of the claim. Let X be the diagonal matrix whose entries are the xis and note that the matrix
(N[i;j]xixj)i ; j can be expressed as follows:

(N[i;j]xixj)i ; j = XNX . (34)

Now, from the definition of M, and basic determinant’s properties, we have

det(M) = det
(

(δl,m N[i;j]xixj)l?i ;m?j

)
(35)

=
(

det
(
(N[i;j]xixj)i ; j

))NY
(36)

=
(

det
(
XNX

))NY
(37)

=

(NX∏
i=1

xi

)NX∏
j=1

xj

 det
(
N
)NY

(38)

=

((
NX∏
i=1

x2
i

)
det(N)

)NY
Line (35) comes straightforwardly from the definition (see Equation (28)). Line (36) comes from the fact that
M is a matrix whose entries are all 0, except for NY identical blocks of size NX × NX that are positioned in
the diagonal of M , each one of those blocks being the matrix (N[i;j]xixj)i ; j . Line (38) follows from a basic

determinant’s property, and from the fact that det(X) =
(∏NX

i=1 xi

)
.

Note also that the block structure of the matrix M implies that it has exactly the same eigenvalues as Matrix
(N[i;j]xixj)i ; j (but with a multiplicity augmented by a factor of NY).

Also, it follows from Equation (34) that, for each eigenvalue λ of (N[i;j]xixj)i ; j , there exists i such that λ
x2
i

is an

eigenvalue of N. Indeed, because of Equation (34), we have that

det
(

(N[i;j]xixj)i ; j − λXX
)

= 0 ⇔ det
(
N − λ I

)
= 0 .

This, in turn, implies that if N is positive definite, so is M.

Hence, to prove Claim 2, we only have to show that N is positive definite and

det(N) =

(
1

σ2

)NX (
1 + 4σ2‖X(x)‖2

)
.

Let us consider matrix O, defined as O[i;j] = 4xixj . Then, it is easy to see that λ = 0 is an eigenvalue of O
of multiplicity NX − 1 because the rank of that matrix is 1. Note that line Li of that matrix is always equal to
xi
x1
L1. Moreover we can easily see that (x1, . . . , xm)ᵀ is an eigenvector of O with eigenvalue 4‖X(x)‖2.

Now, note that

N = O +
1

σ2
· I .

Thus, there is a one-to-one correspondence between the eigenvalues of O and those of N: λ is an eigenvalue of
the former if and only if λ+ 1

σ2 is an eigenvalue of the latter. Thus N is positive definite, and

det(N) =

(
1

σ2

)NX−1 (
1

σ2
+ 4‖X(x)‖2

)
=

(
1

σ2

)NX (
1 + 4σ2‖X(x)‖2

)
.
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10. Proof of ∂
∂A
R(A, S) from Theorem (6)

Proof. From equation (9) we have

W =

m∑
i=1

m∑
j=1

Y (yi)A[i;j]X
†(xj) = MYAM†

X (39)

Where MY is a NY ×m matrix with Y (yi) in it’s i-th column. Similarly MX is a NX ×m matrix with X(xj) in
it’s j-th column.

R(A, S) =
1

m

m∑
i=1

‖Y (yi)−WX(xi)‖2

=
1

m
‖MY −WMX ‖2

=
1

m
‖MY −MYAM†

XMX ‖2

=
1

m
‖MY −MYAKX ‖2

=
1

m
‖MY(I−AKX )‖2 (40)

∂

∂A[i;j]
R(A, S) =

1

m

∂

∂A[i;j]

m∑
k,l=1

[MY(I−AKX )]
2
[k;l]

=
2

m

m∑
k,l=1

[MY(I−AKX )][k;l]

∂

∂A[i;j]
[MY(I−AKX )][k;l]

=
−2

m

m∑
k,l=1

[MY(I−AKX )][k;l]

∂

∂A[i;j]
[MYAKX ][k;l]

=
−2

m

m∑
k,l=1

[MY(I−AKX )][k;l]

∂

∂A[i;j]

 m∑
k′,l′=1

MY[k;k′]A[k′;l′]KX[l′;l]


=
−2

m

m∑
k,l=1

[MY(I−AKX )][k;l] MY[k;i]
KX[j;l]

=
−2

m

m∑
k,l=1

(MY)†[i;k] [MY(I−AKX )][k;l] KX[j;l]

=
−2

m

m∑
l=1

[
M†
YMY(I−AKX )

]
[i;l]

KX[j;l]

=
−2

m
[KY(I−AKX )Kᵀ

X ][i;j]

=
2

m
[KY(AKX − I)KX ][i;j] (41)
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11. Details on how equation (14) becomes γi,j(δiλ
2
j +mβ) = δiλj(u

ᵀ
i vj)

Because {uivᵀj }(i,j)∈I constitutes an orthonormal basis of Rm2

we have

A =

m∑
i=1

m∑
j=1

γi,juiv
ᵀ
j (42)

and the following equalities (recall that KY =
∑m
k=1 δkuku

ᵀ
k and KX =

∑m
l=1 λlvlv

ᵀ
l )

KYKX =

m∑
k=1

δkuku
ᵀ
k

m∑
l=1

λlvlv
ᵀ
l

=

m∑
k,l=1

δkλl(u
ᵀ
kvl)ukv

ᵀ
l

K2
X =

m∑
l=1

λlvlv
ᵀ
l

m∑
l′=1

λl′vl′v
ᵀ
l′

=

m∑
l=1

λ2
l vlv

ᵀ
l

AK2
X =

m∑
k=1

m∑
l=1

γk,lukv
ᵀ
l

m∑
l=1

λ2
l vlv

ᵀ
l

=

m∑
k=1

m∑
l=1

γk,lλ
2
l ukv

ᵀ
l

KYAK2
X =

m∑
k′=1

δk′uk′u
ᵀ
k′

m∑
k=1

m∑
l=1

γk,lλ
2
l ukv

ᵀ
l

=

m∑
k=1

m∑
l=1

γk,lδkλ
2
l ukv

ᵀ
l

Equation (14) then becomes

2

m
KY(AKX − I)KX + 2βA = 0

2

m
KYAK2

X −
2

m
KYKX + 2βA = 0

m∑
k=1

m∑
l=1

[
2

m
γk,lδkλ

2
l −

2

m
λl(u

ᵀ
kvl) + 2βγk,l

]
ukv

ᵀ
l = 0

Since ukv
ᵀ
l are linearly independent vectors of Rm2

, the previous equation is satisfied when

2

m
γk,lδkλ

2
l −

2

m
λl(u

ᵀ
kvl) + 2βγk,l = 0

2

m
γk,lδkλ

2
l + 2βγk,l =

2

m
λl(u

ᵀ
kvl)

γk,l(δkλ
2
l +mβ) = δkλl(u

ᵀ
kvl)


