Supplementary Material to A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers

Pascal Germain

Département d'informatique et de génie logiciel, Université Laval, Québec, Canada

Amaury Habrard

Laboratoire Hubert Curien UMR CNRS 5516, Université Jean Monnet, 42000 St-Etienne, France

François Laviolette

Département d'informatique et de génie logiciel, Université Laval, Québec, Canada

Emilie Morvant

Aix-Marseille Univ., LIF-QARMA, CNRS, UMR 7279, 13013, Marseille, France

In this document, Section 1 contains some lemmas used in subsequent proofs, Section 2 presents an extended proof of the bound on the domain disagreement $\operatorname{dis}_{\rho}(D_S, D_T)$ (Theorem 3 of the main paper), Section 3 introduces other PAC-Bayesian bounds for $\operatorname{dis}_{\rho}(D_S, D_T)$ and $R_{P_T}(G_{\rho})$, Section 4 shows equations and implementation details about PBDA (our proposed learning algorithm for PAC-Bayesian DA tasks).

1. Some tools

Lemma 1 (Markov's inequality). Let Z be a random variable and $t \ge 0$, then,

$$P(|Z| \ge t) \le \mathbf{E} (|Z|) / t.$$

Lemma 2 (Jensen's inequality). Let Z be an integrable real-valued random variable and $g(\cdot)$ any function.

If $g(\cdot)$ is convex, then,

$$g(\mathbf{E} [Z]) \leq \mathbf{E} [g(Z)].$$

If $g(\cdot)$ is concave, then,

$$g(\mathbf{E}[Z]) \geq \mathbf{E}[g(Z)].$$

Lemma 3 (Maurer (2004)). Let $X = (X_1, \ldots, X_m)$ be a vector of i.i.d. random variables, $0 \leq X_i \leq 1$, with $\mathbf{E} X_i = \mu$. Denote $X' = (X'_1, \ldots, X'_m)$, where X'_i is the unique Bernoulli ({0, 1}-valued) random variable with $\mathbf{E} X'_i = \mu$. If $f : [0, 1]^n \to \mathbb{R}$ is convex, then,

$$\mathbf{E}\left[f(X)\right] \leq \mathbf{E}\left[f(X')\right]$$

Lemma 4 (from Inequalities (1) and (2) of Maurer (2004)). Let $m \ge 8$, and $X = (X_1, \ldots, X_m)$ be a vector of *i.i.d.* random variables, $0 \le X_i \le 1$. Then,

$$\sqrt{m} \le \mathbf{E} \exp\left(m\mathrm{kl}\left(\frac{1}{m}\sum_{i=1}^{n}X_{i} \| \mathbf{E} [X_{i}]\right)\right) \le 2\sqrt{m},$$

where, $kl(a \parallel b) \stackrel{\text{def}}{=} a \ln \frac{a}{b} + (1-a) \ln \frac{1-a}{1-b}$. (7)

2. Detailed Proof of Theorem 3

We recall the Theorem 3 of the main paper.

Theorem 3. For any distributions D_S and D_T over X, any set of hypothesis \mathcal{H} , any prior distribution π over \mathcal{H} , any $\delta \in (0, 1]$, and any real number $\alpha > 0$, with a probability at least $1-\delta$ over the choice of $S \times T \sim (D_S \times D_T)^m$, for every ρ on \mathcal{H} , we have,

$$\operatorname{dis}_{\rho}(D_S, D_T) \leq \frac{2\alpha \Big[\operatorname{dis}_{\rho}(S, T) + \frac{2\operatorname{KL}(\rho || \pi) + \ln \frac{2}{\delta}}{m \times \alpha} + 1\Big] - 1}{1 - e^{-2\alpha}},$$

where $\operatorname{dis}_{\rho}(S,T)$ is the empirical domain disagreement.

Proof. Firstly, we propose to upper-bound,

$$d^{(1)} \stackrel{\text{def}}{=} \underbrace{\mathbf{E}}_{(h,h') \sim \rho^2} \left[R_{D_S}(h,h') - R_{D_T}(h,h') \right],$$

by its empirical counterpart,

$$d_{S\times T}^{(1)} \stackrel{\text{def}}{=} \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} \left[R_S(h,h') - R_T(h,h') \right].$$

and some extra terms related to the Kullback-Leibler divergence between the posterior and the prior.

PASCAL.GERMAIN@IFT.ULAVAL.CA

AMAURY.HABRARD@UNIV-ST-ETIENNE.FR

FRANCOIS.LAVIOLETTE@IFT.ULAVAL.CA

EMILIE.MORVANT@LIF.UNIV-MRS.FR

To do that, we consider an "abstract" classifier $\hat{h} \stackrel{\text{def}}{=} (h, h') \in \mathcal{H}^2$ chosen according a distribution $\hat{\rho}$, with $\hat{\rho}(\hat{h}) = \rho(h)\rho(h')$. Notice that with $\hat{\pi}(\hat{h}) = \pi(h)\pi(h')$, we obtain that $\text{KL}(\hat{\rho} \| \hat{\pi}) = 2\text{KL}(\rho \| \pi)$,

$$\begin{aligned} \operatorname{KL}(\hat{\rho} \| \hat{\pi}) &= \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} \ln \frac{\rho(h)\rho(h')}{\pi(h)\pi(h')} \\ &= \underbrace{\mathbf{E}}_{h\sim\rho} \ln \frac{\rho(h)}{\pi(h)} + \underbrace{\mathbf{E}}_{h'\sim\rho} \ln \frac{\rho(h')}{\pi(h')} \\ &= 2\underbrace{\mathbf{E}}_{h\sim\rho} \ln \frac{\rho(h)}{\pi(h)} = 2\operatorname{KL}(\rho \| \pi) \,. \end{aligned}$$
(8)

Let us define the "abstract" loss of \hat{h} on a pair of examples $(\mathbf{x}^s, \mathbf{x}^t) \sim D_{S \times T} = D_S \times D_T$ by,

$$\mathcal{L}_{d^{(1)}}(\hat{h}, \mathbf{x}^s, \mathbf{x}^t) \stackrel{\text{def}}{=} \frac{1 + \mathcal{L}_{0-1}(h(\mathbf{x}^s), h'(\mathbf{x}^s)) - \mathcal{L}_{0-1}(h(\mathbf{x}^t), h'(\mathbf{x}^t))}{2}.$$

Therefore, the "abstract" risk of \hat{h} on the joint distribution is defined as,

$$R_{D_{S\times T}}^{(1)}(\hat{h}) = \underset{\mathbf{x}^{s} \sim D_{S}}{\mathbf{E}} \underset{\mathbf{x}^{t} \sim D_{T}}{\mathbf{E}} \mathcal{L}_{d^{(1)}}(\hat{h}, \mathbf{x}^{s}, \mathbf{x}^{t}),$$

and the error of the related Gibbs classifier associated with this loss is,

$$R_{D_{S\times T}}^{(1)}(G_{\hat{\rho}}) = \mathop{\mathbf{E}}_{\hat{h}\sim\hat{\rho}} R_{D_{S\times T}}^{(1)}(\hat{h}) \,.$$

The empirical counterparts of these two quantities are,

$$R^{(1)}_{S \times T}(\hat{h}) = \mathbf{E}_{(\mathbf{x}^s, \mathbf{x}^t) \sim S \times T} \mathcal{L}_{d^{(1)}}(\hat{h}, \mathbf{x}^s, \mathbf{x}^t)$$

and,

$$R^{(1)}_{S \times T}(G_{\hat{\rho}}) \quad = \quad \mathop{\mathbf{E}}_{\hat{h} \sim \hat{\rho}} \, R^{(1)}_{S \times T}(\hat{h}) \, .$$

It is easy to show that,

$$d^{(1)} = 2R^{(1)}_{D_{S\times T}}(G_{\hat{\rho}}) - 1, \qquad (9)$$

$$d_{S\times T}^{(1)} = 2R_{S\times T}^{(1)}(G_{\hat{\rho}}) - 1.$$
 (10)

As $\mathcal{L}_{d^{(1)}}$ lies in [0, 1], we can bound the true $R_{D_{S\times T}}^{(1)}(G_{\hat{\rho}})$ following the proof process of Th. 2 of the main paper (with $c=2\alpha$). To do so, we define the convex function,

$$\mathcal{F}(p) \stackrel{\text{def}}{=} -\ln[1 - (1 - e^{-2\alpha})p], \qquad (11)$$

and consider the non-negative random variable,

$$\mathop{\mathbf{E}}_{\hat{h}\sim\hat{\pi}}e^{m\left(\mathcal{F}(R_{D_{S\times T}}^{(1)}(\hat{h}))-2\alpha R_{S\times T}^{(1)}(\hat{h})\right)}.$$

We apply Markov's inequality (Lemma 1 of this Supp. Material). For every $\delta \in (0, 1]$, with a probability at

least $1-\delta$ over the choice of $S \times T \sim (D_{S \times T})^m$, we have,

$$\mathbf{E}_{\hat{h}\sim\hat{\pi}} e^{m\left(\mathcal{F}(R_{D_{S\times T}}^{(1)}(\hat{h}))-2\alpha R_{S\times T}^{(1)}(\hat{h})\right)} \\
\leq \frac{1}{\delta} \mathbf{E}_{S\times T\sim (D_{S\times T})^{m}} \mathbf{E}_{\hat{h}\sim\hat{\pi}} e^{m\left(\mathcal{F}(R_{D_{S\times T}}^{(1)}(\hat{h}))-2\alpha R_{S\times T}^{(1)}(\hat{h})\right)}.$$

By taking the logarithm on each side of the previous inequality, and transforming the expectation over $\hat{\pi}$ into an expectation over $\hat{\rho}$, we obtain that,

$$\ln \left[\mathbf{E}_{\hat{h} \sim \hat{\rho}} \frac{\hat{\pi}(\hat{h})}{\hat{\rho}(\hat{h})} e^{m \left(\mathcal{F}(R_{D_{S \times T}}^{(1)}(\hat{h})) - 2\alpha R_{S \times T}^{(1)}(\hat{h}) \right)} \right] \\
\leq \ln \left[\frac{1}{\delta} \mathbf{E}_{S \times T \sim (D_{S \times T})^m} \mathbf{E}_{\hat{h} \sim \hat{\pi}} e^{m \left(\mathcal{F}(R_{D_{S \times T}}^{(1)}(\hat{h})) - 2\alpha R_{S \times T}^{(1)}(\hat{h}) \right)} \right] \\
= \ln \left[\frac{1}{\delta} \mathbf{E}_{\hat{h} \sim \hat{\pi}} e^{m \mathcal{F}(R_{D_{S \times T}}^{(1)}(\hat{h}))} \mathbf{E}_{S \times T \sim (D_{S \times T})^m} e^{-2m\alpha R_{S \times T}^{(1)}(\hat{h})} \right]. \tag{12}$$

For a classifier \hat{h} , let us define a random variable $X_{\hat{h}}$ that follows a binomial distribution of m trials with a probability of success $R_{D_{S\times T}}^{(1)}(\hat{h})$ denoted by $B(m, R_{D_{S\times T}}^{(1)}(\hat{h}))$. Lemma 3 gives,

$$\begin{split} \mathbf{E}_{S \times T \sim (D_{S \times T})^{m}} & e^{-2m\alpha R_{S \times T}^{(1)}(\hat{h})} \\ & \leq \mathbf{E}_{X_{\hat{h}} \sim B(m, R_{D_{S \times T}}^{(1)}(\hat{h}))} e^{-2\alpha X_{\hat{h}}} \\ & = \sum_{k=0}^{m} \Pr_{X_{\hat{h}} \sim B(m, R_{D_{S \times T}}^{(1)}(\hat{h}))} \Big(X_{\hat{h}} = k \Big) e^{-2\alpha k} \\ & = \sum_{k=0}^{m} {m \choose k} \Big(R_{S \times T}^{(1)}(\hat{h}) \Big)^{k} \Big(1 - R_{S \times T}^{(1)}(\hat{h}) \Big)^{m-k} e^{-2\alpha k} \\ & = \sum_{k=0}^{m} {m \choose k} \Big(R_{S \times T}^{(1)}(\hat{h}) e^{-2\alpha} \Big)^{k} \Big(1 - R_{S \times T}^{(1)}(\hat{h}) \Big)^{m-k} \\ & = \Big[R_{S \times T}^{(1)}(\hat{h}) e^{-2\alpha} + \Big(1 - R_{S \times T}^{(1)}(\hat{h}) \Big) \Big]^{m} \, . \end{split}$$

The last line result, together with the choice of \mathcal{F} (Eq. (11)), leads to,

$$\begin{split} & \underbrace{\mathbf{E}}_{\hat{h} \sim \hat{\pi}} e^{m\mathcal{F}(R_{D_{S \times T}}^{(1)}(\hat{h}))} \underbrace{\mathbf{E}}_{S \times T \sim (D_{S \times T})^{m}} e^{-2m\alpha R_{S \times T}^{(1)}(\hat{h})} \\ & \leq \underbrace{\mathbf{E}}_{\hat{h} \sim \hat{\pi}} e^{m\mathcal{F}(R_{D_{S \times T}}^{(1)}(\hat{h}))} \left[R_{S \times T}^{(1)}(\hat{h}) e^{-2\alpha} + \left(1 - R_{S \times T}^{(1)}(\hat{h}) \right) \right]^{m} \\ & = \underbrace{\mathbf{E}}_{\hat{h} \sim \hat{\pi}} 1 = 1 \,. \end{split}$$

We can now upper bound Eq. (12) simply by,

$$\ln \left[\underbrace{\mathbf{E}}_{\hat{h} \sim \hat{\rho}} \frac{\hat{\pi}(\hat{h})}{\hat{\rho}(\hat{h})} e^{m \left(\mathcal{F}(R_{D_{S \times T}}^{(1)}(\hat{h})) - 2\alpha R_{S \times T}^{(1)}(\hat{h}) \right)} \right] \leq \ln \frac{1}{\delta}.$$

Let us insert the term $\text{KL}(\rho \| \pi)$ in the left-hand side of the last inequality and find a lower bound by using Jensen's inequality (Lemma 2) twice, first on the concave logarithm function and then on the convex function \mathcal{F} ,

$$\ln \left[\mathbf{E}_{\hat{h}\sim\hat{\rho}} \frac{\hat{\pi}(\hat{h})}{\hat{\rho}(\hat{h})} e^{m \left(\mathcal{F}(R_{D_{S\times T}}^{(1)}(\hat{h})) - 2\alpha R_{S\times T}^{(1)}(\hat{h}) \right)} \right]$$

$$= \ln \left[\mathbf{E}_{\hat{h}\sim\hat{\rho}} e^{m \left(\mathcal{F}(R_{D_{S\times T}}^{(1)}(\hat{h})) - 2\alpha R_{S\times T}^{(1)}(\hat{h}) \right)} \right] - 2\mathrm{KL}(\rho \| \pi)$$

$$\geq \mathbf{E}_{\hat{h}\sim\hat{\rho}} m \left(\mathcal{F}(R_{D_{S\times T}}^{(1)}(\hat{h})) - 2\alpha R_{S\times T}^{(1)}(\hat{h}) \right) - 2\mathrm{KL}(\rho \| \pi)$$

$$\geq m \mathcal{F}(\mathbf{E}_{\hat{h}\sim\hat{\rho}} R_{D_{S\times T}}^{(1)}(\hat{h})) - 2m\alpha \mathbf{E}_{\hat{h}\sim\hat{\rho}} R_{S\times T}^{(1)}(\hat{h}) - 2\mathrm{KL}(\rho \| \pi)$$

$$= m \mathcal{F}(R_{D_{S\times T}}^{(1)}(G_{\hat{\rho}})) - 2m\alpha R_{S\times T}^{(1)}(G_{\hat{\rho}}) - 2\mathrm{KL}(\rho \| \pi).$$

We then have,

$$m\mathcal{F}(\mathop{\mathbf{E}}_{\hat{h}\sim\hat{\rho}}R^{(1)}_{D_{S\times T}}(\hat{h})) - 2m\alpha \mathop{\mathbf{E}}_{\hat{h}\sim\hat{\rho}}R^{(1)}_{S\times T}(\hat{h}) - 2\mathrm{KL}(\rho\|\pi) \leq \ln\frac{1}{\delta}$$

This, in turn, implies that,

$$\mathcal{F}(R_{D_{S\times T}}^{(1)}(G_{\hat{\rho}})) \le 2\alpha R_{S\times T}^{(1)}(G_{\hat{\rho}}) + \frac{2\mathrm{KL}(\rho \| \pi) + \ln \frac{1}{\delta}}{m}$$

Now, by isolating $R_{D_{S\times T}}^{(1)}(G_{\hat{\rho}})$, we obtain,

$$R_{D_{S\times T}}^{(1)}(G_{\hat{\rho}}) \leq \frac{1}{1 - e^{-2\alpha}} \left[1 - e^{-\left(2\alpha R_{S\times T}^{(1)}(G_{\hat{\rho}}) + \frac{2\mathrm{KL}(\rho \| \pi) + \ln \frac{1}{\delta}}{m}\right)} \right],$$

and from the inequality $1 - e^{-x} \leq x$,

$$R_{D_{\!S\!\times\!T}}^{(1)}(G_{\hat{\rho}}) \!\leq\! \! \frac{1}{1\!-\!e^{-2\alpha}} \! \left[\! 2\alpha R_{S\!\times\!T}^{(1)}(G_{\hat{\rho}}) \!+\! \frac{2\mathrm{KL}(\rho\|\pi) \!+\! \ln\frac{1}{\delta}}{m} \right]$$

It then follows from Equations (9) and (10) that, with probability at least $1 - \frac{\delta}{2}$ over the choice of $S \times T \sim (D_S \times D_T)^m$, we have,

$$\frac{d^{(1)} + 1}{2} \le \frac{2\alpha}{1 - e^{-2\alpha}} \bigg[\frac{d^{(1)}_{S \times T} + 1}{2} + \frac{2\mathrm{KL}(\rho \| \pi) + \ln \frac{1}{\delta}}{m \times 2\alpha} \bigg],$$

We now bound $d^{(2)} \stackrel{\text{def}}{=} \underset{(h,h')\sim\rho^2}{\mathbf{E}} [R_{D_T}(h,h') - R_{D_S}(h,h')]$ using exactly the same argument as for $d^{(1)}$ except that we instead consider the following "abstract" loss of \hat{h}

on a pair of examples $(\mathbf{x}^s, \mathbf{x}^t) \sim D_{S \times T} = D_S \times D_T$:

$$\mathcal{L}_{d^{(1)}}(\hat{h}, \mathbf{x}^s, \mathbf{x}^t) \stackrel{\text{def}}{=} \frac{1 + \mathcal{L}_{0-1}(h(\mathbf{x}^t), h'(\mathbf{x}^t) - \mathcal{L}_{0-1}(h(\mathbf{x}^s), h'(\mathbf{x}^s)))}{2}$$

We then obtain that, with probability at least $1 - \frac{\delta}{2}$ over the choice of $S \times T \sim (D_S \times D_T)^m$,

$$\frac{d^{(2)} + 1}{2} \le \frac{2\alpha}{1 - e^{-2\alpha}} \bigg[\frac{d^{(2)}_{S \times T} + 1}{2} + \frac{2\mathrm{KL}(\rho \| \pi) + \ln \frac{1}{\delta}}{m \times 2\alpha} \bigg].$$

To finish the proof, note that by definition, we have that $d^{(1)} = -d^{(2)}$, hence

$$|d^{(1)}| = |d^{(2)}| = \operatorname{dis}_{\rho}(D_S, D_T)$$

and,

$$|d_{S \times T}^{(1)}| = |d_{S \times T}^{(2)}| = \operatorname{dis}_{\rho}(S, T)$$

Then, the maximum of the bound on $d^{(1)}$ and the bound on $d^{(2)}$ gives a bound on $\operatorname{dis}_{\rho}(D_S, D_T)$.

Finally, by the union bound, we have that, with probability $1-\delta$ over the choice of $S \times T \sim (D_S \times D_T)^m$, we have,

$$\frac{|d^{(1)}|+1}{2} \leq \frac{\alpha}{1-e^{-2\alpha}} \bigg[|d^{(1)}_{S\times T}| + 1 + \frac{2\mathrm{KL}(\rho\|\pi) + \ln\frac{2}{\delta}}{m\times\alpha} \bigg],$$

or, which is equivalent,

$$\operatorname{dis}_{\rho}(D_S, D_T) \leq \frac{2\alpha \left[\operatorname{dis}_{\rho}(S, T) + \frac{2\operatorname{KL}(\rho \| \pi) + \ln \frac{2}{\delta}}{m \times \alpha} + 1\right] - 1}{1 - e^{-2\alpha}},$$

and we are done.

3. Other PAC-Bayesian Bounds

3.1. PAC-Bayesian Bounds with the kl term

Let us recall the PAC-Bayesian bound proposed by Seeger (2002), in which the trade-off between the complexity and the risk is handled by the kl function defined by Equation (7) in this supplementary materials.

Theorem 6 (Seeger (2002)). For any domain P_S over $X \times Y$, any set of hypothesis \mathcal{H} , and any prior distribution π over \mathcal{H} , any $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \sim (P_S)^m$, for every ρ over \mathcal{H} , we have,

$$\operatorname{kl}\left(R_{S}(G_{\rho}) \, \Big\| \, R_{P_{S}}(G_{\rho})\right) \, \leq \, \frac{1}{m} \left[\operatorname{KL}(\rho \, \| \, \pi) + \ln \frac{2\sqrt{m}}{\delta}\right].$$

Here is a "Seeger's type" PAC-Bayesian bound for our domain disagreement dis_{ρ} .

Theorem 7. For any distributions D_S and D_T over X, any set of hypothesis \mathcal{H} , and any prior distribution π over \mathcal{H} , any $\delta \in (0, 1]$, with a probability at least $1-\delta$ over the choice of $S \times T \sim (D_S \times D_T)^m$, for every ρ on \mathcal{H} , we have,

$$\operatorname{kl}\left(\frac{\operatorname{dis}_{\rho}(S,T)+1}{2} \left\| \frac{\operatorname{dis}_{\rho}(D_{S},D_{T})+1}{2} \right) \leq \frac{1}{m} \left[2\operatorname{KL}(\rho \| \pi) + \ln \frac{2\sqrt{m}}{\delta} \right]$$

Proof. Similarly as in the proof of Theorem 3, we will first bound,

$$d^{(1)} \stackrel{\text{def}}{=} \underbrace{\mathbf{E}}_{(h,h') \sim \rho^2} \left[R_{D_S}(h,h') - R_{D_T}(h,h') \right]$$

by its empirical counterpart,

$$d_{S\times T}^{(1)} \stackrel{\text{def}}{=} \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} \left[R_S(h,h') - R_T(h,h') \right],$$

and some extra terms related to the Kullback-Leibler divergence between the posterior and the prior. However, a notable difference with the proof of Theorem 3 is that the obtained bound will be simultaneously valid as an upper and a lower bound. Because of this, there will no need here to redo the all the proof to bound

$$d^{(2)} \stackrel{\text{def}}{=} \underbrace{\mathbf{E}}_{(h,h') \sim \rho^2} \left[R_{D_T}(h,h') - R_{D_S}(h,h') \right] \,,$$

and also, the present proof will not require the use of the union bound argument.

Again, we consider "abstract" classifiers $\hat{h} \in \mathcal{H}^2$ whose loss on a pair of examples $(\mathbf{x}^s, \mathbf{x}^t) \sim D_{S \times T}$ is defined by,

$$\mathcal{L}_{d^{(1)}}(\hat{h}, \mathbf{x}^s, \mathbf{x}^t) \stackrel{\text{def}}{=} \frac{1 + \mathcal{L}_{_{0:1}}(h(\mathbf{x}^s), h'(\mathbf{x}^s)) - \mathcal{L}_{_{0:1}}(h(\mathbf{x}^t), h'(\mathbf{x}^t))}{2}$$

Note that, again, $\mathcal{L}_{d^{(1)}}$ lies in [0, 1], and that $R_{S\times T}^{(1)}(\hat{h})$ and $R_{D_{S\times T}}^{(1)}(\hat{h})$ are as defined in the proof of Theorem 3. Now, let us consider the non-negative random variable,

$$\mathop{\mathbf{E}}_{\hat{h}\sim\hat{\pi}} e^{m \operatorname{kl}\left(R^{(1)}_{S\times T}(\hat{h}) \left\|R^{(1)}_{DS\times T}(\hat{h})\right)}$$

We apply Markov's inequality (Lemma 1). For every $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \times T \sim (D_{S \times T})^m$, we have,

$$\begin{split} & \mathbf{E} \quad e^{m \operatorname{kl} \left(R_{S \times T}^{(1)}(\hat{h}) \left\| R_{D_{S \times T}}^{(1)}(\hat{h}) \right)} \\ & \leq \quad \frac{1}{\delta} \sum_{S \times T \sim (D_{S \times T})^m} \mathbf{E} \quad e^{m \operatorname{kl} \left(R_{S \times T}^{(1)}(\hat{h}) \right\| R_{D_{S \times T}}^{(1)}(\hat{h})} . \end{split}$$

By taking the logarithm on each side of the previous inequality, and transforming the expectation over $\hat{\pi}$ into an expectation over $\hat{\rho}$, we then obtain that,

$$\ln \left[\frac{\mathbf{E}}{\hat{h} \sim \hat{\rho}} \frac{\hat{\pi}(\hat{h})}{\hat{\rho}(\hat{h})} e^{m \operatorname{kl} \left(R_{S \times T}^{(1)}(\hat{h}) \| R_{D_{S \times T}}^{(1)}(\hat{h}) \right)} \right] \qquad (13)$$

$$\leq \ln \left[\frac{1}{\delta} \frac{\mathbf{E}}{S \times T \sim (D_{S \times T})^m} \frac{\mathbf{E}}{\hat{h} \sim \hat{\pi}} e^{m \operatorname{kl} \left(R_{S \times T}^{(1)}(\hat{h}) \| R_{D_{S \times T}}^{(1)}(\hat{h}) \right)} \right]$$

$$\leq \ln \frac{2\sqrt{m}}{\delta}.$$

The last inequality comes from the Maurer's lemma (Lemma 4).

Let us now re-write a part of the equation as $\text{KL}(\rho \| \pi)$ and let us then find a lower bound by using twice the Jensen's inequality (Lemma 2), first on the concave logarithm function, and then on the convex function kl,

$$\begin{split} &\ln\left[\mathbf{E}_{\hat{h}\sim\hat{\rho}} \; \frac{\hat{\pi}(\hat{h})}{\hat{\rho}(\hat{h})} \; e^{m\mathrm{kl}\left(R_{S\times T}^{(1)}(\hat{h})\right\|R_{D_{S\times T}}^{(1)}(\hat{h})}\right)\right] \\ &= \ln\left[\mathbf{E}_{\hat{h}\sim\hat{\rho}} \; e^{m\mathrm{kl}\left(R_{S\times T}^{(1)}(\hat{h})\right\|R_{D_{S\times T}}^{(1)}(\hat{h})\right)}\right] - 2\mathrm{KL}(\rho\|\pi) \\ &\geq \; \mathbf{E}_{\hat{h}\sim\hat{\rho}} \; m\,\mathrm{kl}\left(R_{S\times T}^{(1)}(\hat{h})\right\|R_{D_{S\times T}}^{(1)}(\hat{h})\right) - 2\mathrm{KL}(\rho\|\pi) \\ &\geq \; m\,\mathrm{kl}\left(\mathbf{E}_{\hat{h}\sim\hat{\rho}} \; R_{S\times T}^{(1)}(\hat{h})\right\|\mathbf{E}_{\hat{h}\sim\hat{\rho}} \; R_{D_{S\times T}}^{(1)}(\hat{h})\right) - 2\mathrm{KL}(\rho\|\pi) \\ &\geq \; m\,\mathrm{kl}\left(R_{S\times T}^{(1)}(G_{\hat{\rho}})\right\|R_{D_{S\times T}}^{(1)}(G_{\hat{\rho}})\right) - 2\mathrm{KL}(\rho\|\pi) \,. \end{split}$$

This implies that,

$$\operatorname{kl}\left(R^{(1)}_{S\times T}(G_{\hat{\rho}}) \left\| R^{(1)}_{D_{S\times T}}(G_{\hat{\rho}}) \right) \leq \frac{1}{m} \left[2\operatorname{KL}(\rho \| \pi) + \ln \frac{2\sqrt{m}}{\delta} \right].$$

Since, as in the proof of Theorem 3 for $d^{(1)}$, we have: $d^{(1)} = 2R^{(1)}_{D_{S\times T}}(G_{\hat{\rho}}) - 1$ and $d^{(1)}_{S\times T} = 2R^{(1)}_{S\times T}(G_{\hat{\rho}}) - 1$, the previous line directly implies a bound on $d^{(1)}$ from its empirical counterpart $d^{(1)}_{S\times T}$. Hence, with probability at least $1-\delta$ over the choice of $S \times T \sim (D_S \times D_T)^m$, we have,

$$\operatorname{kl}\left(\frac{d_{S\times T}^{(1)}+1}{2} \left\| \frac{d^{(1)}+1}{2} \right) \le \frac{1}{m} \left[2\operatorname{KL}(\rho \| \pi) + \ln \frac{2\sqrt{m}}{\delta} \right].$$
(14)

We claim that we also have,

$$\mathrm{kl}\!\left(\!\frac{|d_{S\times T}^{(1)}|+1}{2}\right\|\frac{|d^{(1)}|+1}{2}\!\right) \le \frac{1}{m} \left[2\mathrm{KL}(\rho \,\|\, \pi) \!+\! \ln\!\frac{2\sqrt{m}}{\delta}\right]\!\!, \tag{15}$$

which, since

$$|d^{(1)}| = \operatorname{dis}_{\rho}(D_S, D_T) \text{ and } |d^{(1)}_{S \times T}| = \operatorname{dis}_{\rho}(S, T),$$

implies the result. Hence to finish the proof, let us prove the claim of Equation (15). There are four cases to consider.

Case 1: $d_{S\times T}^{(1)} \ge 0$ and $d^{(1)} \ge 0$. There is nothing to prove since in that case, Equations (14) and (15) coincide.

Case 2: $d_{S\times T}^{(1)} \leq 0$ and $d^{(1)} \leq 0$. This case reduces to Case 1 because of the following property of kl($\cdot \| \cdot)$:

$$\operatorname{kl}\left(\frac{a+1}{2}\left\|\frac{b+1}{2}\right) = \operatorname{kl}\left(\frac{-a+1}{2}\left\|\frac{-b+1}{2}\right).$$
(16)

Case 3: $d_{S\times T}^{(1)} \leq 0$ and $d^{(1)} \geq 0$. From straightforward calculations, one can show that,

$$\begin{aligned} & \operatorname{kl}\left(\frac{|d_{S\times T}^{(1)}|+1}{2} \left\| \frac{|d^{(1)}|+1}{2} \right) - \operatorname{kl}\left(\frac{d_{S\times T}^{(1)}+1}{2} \right\| \frac{d^{(1)}+1}{2} \right) \\ &= \operatorname{kl}\left(\frac{-d_{S\times T}^{(1)}+1}{2} \left\| \frac{d^{(1)}+1}{2} \right) - \operatorname{kl}\left(\frac{d_{S\times T}^{(1)}+1}{2} \right\| \frac{d^{(1)}+1}{2} \right) \\ &= \left(\frac{-d_{S\times T}^{(1)}+1}{2} - \frac{d_{S\times T}^{(1)}+1}{2} \right) \operatorname{ln}\left(\frac{1}{\frac{d^{(1)}+1}{2}} \right) \\ &+ \left(\left(1 - \frac{-d_{S\times T}^{(1)}+1}{2}\right) - \left(1 - \frac{d_{S\times T}^{(1)}+1}{2} \right)\right) \operatorname{ln}\left(\frac{1}{1 - \frac{d^{(1)}+1}{2}} \right) \\ &= \left(-d_{S\times T}^{(1)}\right) \operatorname{ln}\left(\frac{1}{\frac{d^{(1)}+1}{2}} \right) + \left(d_{S\times T}^{(1)}\right) \operatorname{ln}\left(\frac{1}{1 - \frac{d^{(1)}+1}{2}} \right) \\ &= \left(-d_{S\times T}^{(1)}\right) \operatorname{ln}\left(\frac{1}{\frac{d^{(1)}+1}{2}} \right) + \left(d_{S\times T}^{(1)}\right) \operatorname{ln}\left(\frac{1}{\frac{-d^{(1)}+1}{2}} \right) \\ &= d_{S\times T}^{(1)} \operatorname{ln}\left(\frac{d^{(1)}+1}{-d^{(1)}+1} \right) \\ &\leq 0. \end{aligned}$$

The last inequality follows from the fact that we have $d_{S\times T}^{(1)} \leq 0$ and $d^{(1)} \geq 0$.

Hence, from Equations (17) and (14), we have,

$$\begin{split} \mathrm{kl} & \left(\frac{|d_{S\times T}^{(1)}|+1}{2} \right\| \frac{|d^{(1)}|+1}{2} \right) &\leq \mathrm{kl} \left(\frac{d_{S\times T}^{(1)}+1}{2} \right\| \frac{d^{(1)}+1}{2} \right) \\ &\leq \frac{1}{m} \bigg[2\mathrm{KL}(\rho \,\|\, \pi) + \mathrm{ln} \frac{2\sqrt{m}}{\delta} \bigg] \,, \end{split}$$

as wanted.

Case 4: $d_{S\times T}^{(1)} \ge 0$ and $d^{(1)} \le 0$. Again because of Equation (16), this case reduces to Case 3, and we are done.

From the preceding "Seeger's type" results, one can then obtain the following PAC-Bayesian DA-bound.

Theorem 8. For any domains P_S and P_T (respectively with marginals D_S and D_T) over $X \times Y$, any set of hypothesis \mathcal{H} , and any prior distribution π over \mathcal{H} , any $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \times T \sim (P_S \times D_T)^m$, we have,

$$R_{P_T}(G_{\rho}) - R_{P_T}(G_{\rho_T^*}) \leq \sup \mathcal{R}_{\rho} + \sup \mathcal{D}_{\rho} + \lambda_{\rho},$$

where
$$\lambda_{\rho} \stackrel{\text{def}}{=} R_{D_T}(G_{\rho}, G_{\rho_T^*}) + R_{D_S}(G_{\rho}, G_{\rho_T^*})$$
 and,
 $\mathcal{R}_{\rho} \stackrel{\text{def}}{=} \left\{ r : \text{kl} \left(R_S(G_{\rho}) \| r \right) \leq \frac{1}{m} \left[\text{KL}(\rho \| \pi) + \ln \frac{4\sqrt{m}}{\delta} \right] \right\},$
 $\mathcal{D}_{\rho} \stackrel{\text{def}}{=} \left\{ d : \text{kl} \left(\frac{\text{dis}_{\rho}(S,T) + 1}{2} \| \frac{d+1}{2} \right) \leq \frac{1}{m} \left[2 \text{KL}(\rho \| \pi) + \ln \frac{4\sqrt{m}}{\delta} \right] \right\}.$

Proof. The result is obtained by inserting Ths. 6 and 7 (with $\delta := \frac{\delta}{2}$) in Th. 4 of the main paper.

3.2. PAC-Bayesian Bounds when $m \neq m'$

In the main paper, for the sake of simplicity, we restrict to the case where m (the size of the source set S) and m' (the size of the target set T) are equal. All the results generalize to the $m \neq m'$ case. In this subsection, we will show how it can be done from a "McAllester's type" of bound (Similar results can be achieved for "Catoni's type" or "Seeger's type").

First we recall the PAC-Bayesian bound proposed by McAllester (2003), which is stated without a term allowing to control the trade-off between the complexity and the risk.

Theorem 9 (McAllester (2003)). For any domain P_S over $X \times Y$, any set of hypothesis \mathcal{H} , and any prior distribution π over \mathcal{H} , any $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \sim (P_S)^m$, for every ρ over \mathcal{H} , we have,

$$\left| R_{P_S}(G_{\rho}) - R_S(G_{\rho}) \right| \leq \sqrt{\frac{1}{2m}} \left[\operatorname{KL}(\rho \parallel \pi) + \ln \frac{2\sqrt{m}}{\delta} \right].$$

Now we can prove the following consistency bound for $\operatorname{dis}_{\rho}(D_S, D_T)$, when $m \neq m'$.

Theorem 10. For any marginal distributions D_S and D_T over X, any set of hypothesis \mathcal{H} , any prior distribution π over \mathcal{H} , any $\delta \in (0,1]$, with a probability at least $1 - \delta$ over the choice of $S \sim (D_S)^m$ and $T \sim (D_T)^{m'}$, for every ρ over \mathcal{H} , we have,

$$\begin{split} \left|\operatorname{dis}_{\rho}(D_{S}, D_{T}) - \operatorname{dis}_{\rho}(S, T)\right| &\leq \sqrt{\frac{1}{2m}} \left[2\operatorname{KL}(\rho \| \pi) + \ln \frac{4\sqrt{m}}{\delta} \right] \\ &+ \sqrt{\frac{1}{2m'} \left[2\operatorname{KL}(\rho \| \pi) + \ln \frac{4\sqrt{m'}}{\delta} \right]} \end{split}$$

Proof. Let us consider the non-negative random variable,

$$\mathop{\mathbf{E}}_{(h,h')\sim\pi^2} e^{2m(R_{D_S}(h,h')-R_S(h,h'))^2}.$$

We apply Markov's inequality (Lemma 1). For every $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \sim (D_S)^m$, we have,

$$\frac{\mathbf{E}}{(h,h')\sim\pi^{2}}e^{2m(R_{D_{S}}(h,h')-R_{S}(h,h'))^{2}} \\
\leq \frac{1}{\delta} \sum_{S\sim(D_{S})^{m}} \mathbf{E}_{(h,h')\sim\pi^{2}}e^{2m(R_{D_{S}}(h,h')-R_{S}(h,h'))^{2}}.$$

By taking the logarithm on each side of the previous inequality and transforming the expectation over π^2 into an expectation over ρ^2 , we obtain that for every $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \sim (D_S)^m$, and for every posterior distribution ρ , we have,

$$\ln \left[\underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} \frac{\pi(h)\pi(h')}{\rho(h)\rho(h')} e^{2m(R_{D_S}(h,h')-R_S(h,h'))^2} \right]$$

$$\leq \ln \left[\frac{1}{\delta} \underbrace{\mathbf{E}}_{S\sim(D_S)^m} \underbrace{\mathbf{E}}_{(h,h')\sim\pi^2} e^{2m(R_{D_S}(h,h')-R_S(h,h'))^2} \right].$$

Since $\ln(\cdot)$ is a concave function, we can apply the Jensen's inequality (Lemma 2). Then, for every $\delta \in (0,1]$, with a probability at least $1-\delta$ over the choice of $S \sim (D_S)^m$, and for every posterior distribution ρ , we have,

$$\underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} \ln \left[\frac{\pi(h)\pi(h')}{\rho(h)\rho(h')} e^{2m(R_{D_S}(h,h')-R_S(h,h'))^2} \right] \\ \leq \ln \left[\frac{1}{\delta} \underbrace{\mathbf{E}}_{S\sim(D_S)^m} \underbrace{\mathbf{E}}_{(h,h')\sim\pi^2} e^{(2m(R_{D_S}(h,h')-R_S(h,h'))^2)} \right].$$

By the Equation (8),

$$\mathbf{E}_{(h,h')\sim\rho^2} \ln\left[\frac{\pi(h)\pi(h')}{\rho(h)\rho(h')}\right] = -2\mathrm{KL}(\rho\|\pi).$$

For every $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \sim (D_S)^m$, and for every posterior distribution ρ , we have,

$$- 2 \mathrm{KL}(\rho \| \pi) + \mathop{\mathbf{E}}_{(h,h') \sim \rho^2} m 2 (R_{D_S}(h,h') - R_S(h,h'))^2$$

$$\leq \ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim (D_S)^m} \mathop{\mathbf{E}}_{(h,h') \sim \pi^2} e^{2m (R_{D_S}(h,h') - R_S(h,h'))^2} \right].$$

Since $2(a-b)^2$ is a convex function, we again apply Jensen inequality,

$$\left(\underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} (R_{D_S}(h,h') - R_S(h,h')) \right)^2 \\ \leq \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} (R_{D_S}(h,h') - R_S(h,h'))^2.$$

Thus, for every $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \sim (D_S)^m$, and for every posterior distribution ρ , we have,

$$2m\left(\underbrace{\mathbf{E}}_{(h,h')\sim\rho^2}R_{D_S}(h,h')-\underbrace{\mathbf{E}}_{h,h'\sim\rho^2}R_S(h,h')\right)^2 \leq 2\mathrm{KL}(\rho||\pi)$$
$$+\ln\left[\frac{1}{\delta}\underbrace{\mathbf{E}}_{S\sim(D_S)^m}\underbrace{\mathbf{E}}_{(h,h')\sim\pi^2}e^{2m(R_{D_S}(h,h')-R_S(h,h'))^2}\right].$$

Let us now bound,

$$\ln\left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S\sim(D_S)^m} \mathop{\mathbf{E}}_{(h,h')\sim\pi^2} e^{2m(R_{D_S}(h,h')-R_S(h,h'))^2}\right].$$

To do so, we have,

$$\leq \underbrace{\mathbf{E}}_{(h,h')\sim\pi^2} \underbrace{\mathbf{E}}_{S\sim(D_S)^m} e^{\mathrm{kl}(R_S(h,h')\|R_{D_S}(h,h'))} \tag{19}$$

$$\leq 2\sqrt{m}.\tag{20}$$

Line (18) comes from the independence between D_S and π^2 . The Pinsker's inequality,

$$2(q-p)^2 \le kl(q||p)$$
 for any $p, q \in [0, 1]$,

gives Line (19). The last Line (20) comes from the Maurer's lemma (Lemma 4).

Thus for every $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $S \sim (D_S)^m$, and for every posterior distribution ρ , we obtain,

$$2m \left(\underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} R_{D_S}(h,h') - \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} R_S(h,h') \right)^2$$

$$\leq 2\mathrm{KL}(\rho \| \pi) + \ln \frac{2\sqrt{m}}{\delta}$$

$$\Leftrightarrow \left(\underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} R_{D_S}(h,h') - \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} R_S(h,h') \right)^2$$

$$\leq \frac{1}{2m} \left[2\mathrm{KL}(\rho \| \pi) + \ln \frac{2\sqrt{m}}{\delta} \right]$$

$$\Leftrightarrow \left| \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} R_{D_S}(h,h') - \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} R_S(h,h') \right|$$

$$\leq \sqrt{\frac{1}{2m}} \left[2\mathrm{KL}(\rho \| \pi) + \ln \frac{2\sqrt{m}}{\delta} \right]. \quad (21)$$

Following the same proof process for bounding $\left| \begin{array}{c} \mathbf{E} \\ (h,h') \sim \rho^2 \end{array} R_{D_T}(h,h') - \begin{array}{c} \mathbf{E} \\ (h,h') \sim \rho^2 \end{array} R_T(h,h') \right|$, we obtain the following result.

For every $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the choice of $T \sim (D_T)^{m'}$, and for every posterior distribution ρ ,

$$\left| \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} R_{D_T}(h,h') - \underbrace{\mathbf{E}}_{(h,h')\sim\rho^2} R_T(h,h') \right| \\ \leq \sqrt{\frac{1}{2m'} \left[\mathrm{KL}(\rho \| \pi) + \ln \frac{2\sqrt{m'}}{\delta} \right]}. \quad (22)$$

Finally, let us substitute δ by $\frac{\delta}{2}$ in Inequalities (21) and (22). This, together with the union bound that assure that both results hold simultaneously, gives the

result because,

.

$$\begin{vmatrix} \mathbf{E} \\ (h,h') \sim \rho^2 \end{bmatrix} \begin{bmatrix} R_{D_T}(h,h') - R_{D_S}(h,h') \end{bmatrix} = \operatorname{dis}_{\rho}(D_S, D_T) \\ \begin{vmatrix} \mathbf{E} \\ (h,h') \sim \rho^2 \end{bmatrix} \begin{bmatrix} R_T(h,h') - R_S(h,h') \end{bmatrix} = \operatorname{dis}_{\rho}(S,T),$$

and because if $|a_1 - b_1| \le c_1$ and $|a_2 - b_2| \le c_2$, then $|(a_1 - a_2) - (b_1 - b_2)| \le c'_1 + c'_2$.

Then we can obtain the following PAC-Bayesian DAbound.

Theorem 11. For any domains P_S and P_T (respectively with marginals D_S and D_T) over $X \times Y$, and for any set \mathcal{H} of hypothesis, for any prior distribution π over \mathcal{H} , any $\delta \in (0,1]$, with a probability at least $1 - \delta$ over the choice of $S_1 \sim (D_S)^m$, $S_2 \sim (D_S)^{m'}$, and $T \sim (D_T)^{m'}$, for every ρ over \mathcal{H} , we have,

$$R_{P_T}(G_{\rho}) - R_{P_T}(G_{\rho_T^*}) \leq R_S(G_{\rho}) + \operatorname{dis}_{\rho}(S,T) + \lambda_{\rho} + \sqrt{\frac{1}{2m} \left[\operatorname{KL}(\rho \| \pi) + \ln \frac{4\sqrt{m}}{\delta} \right]} + \sqrt{\frac{1}{2m} \left[2\operatorname{KL}(\rho \| \pi) + \ln \frac{8\sqrt{m}}{\delta} \right]} + \sqrt{\frac{1}{2m'} \left[2\operatorname{KL}(\rho \| \pi) + \ln \frac{8\sqrt{m'}}{\delta} \right]}.$$

where $\lambda_{\rho} \stackrel{\text{def}}{=} R_{D_T}(G_{\rho}, G_{\rho_T^*}) + R_{D_S}(G_{\rho}, G_{\rho_T^*})$.

Proof. The result is obtained by inserting Ths. 9 and 10 (with $\delta := \frac{\delta}{2}$) in Th. 4 of the main paper.

4. PBDA Algorithm Details

4.1. Objective function and gradient

Given a source sample $S = \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^m$, a target sample $T = \{(\mathbf{x}_i^t)\}_{i=1}^m$, and fixed parameters A > 0 and C > 0, the learning algorithm PBDA consists in finding the weight vector \mathbf{w} minimizing,

$$\frac{\|\mathbf{w}\|^{2}}{2} + C \sum_{i=1}^{m} \Phi_{\text{cvx}} \left(y_{i}^{s} \frac{\mathbf{w} \cdot \mathbf{x}_{i}^{s}}{\|\mathbf{x}_{i}^{s}\|} \right) + A \left| \sum_{i=1}^{m} \Phi_{\text{dis}} \left(\frac{\mathbf{w} \cdot \mathbf{x}_{i}^{s}}{\|\mathbf{x}_{i}^{s}\|} \right) - \Phi_{\text{dis}} \left(\frac{\mathbf{w} \cdot \mathbf{x}_{i}^{t}}{\|\mathbf{x}_{i}^{t}\|} \right) \right|, \quad (23)$$

where, Erf being the Gauss error function,

$$\begin{split} \Phi(a) &\stackrel{\text{def}}{=} \quad \frac{1}{2} \Big[1 - \mathbf{Erf} \Big(\frac{a}{\sqrt{2}} \Big) \Big], \\ \Phi_{\text{cvx}}(a) &\stackrel{\text{def}}{=} \quad \max \Big[\Phi(a), \ \frac{1}{2} - \frac{a}{\sqrt{2\pi}} \Big], \\ \Phi_{\text{dis}}(a) &\stackrel{\text{def}}{=} \quad 2 \times \Phi(a) \times \Phi(-a) \,. \end{split}$$

Figure 1. Behaviour of functions $\Phi(\cdot)$, $\Phi_{cvx}(\cdot)$ and $\Phi_{dis}(\cdot)$.

Figure 1 illustrates these three functions.

The gradient of the Equation (23) is given by,

$$\begin{aligned} \mathbf{w} + C \sum_{i=1}^{m} \Phi_{\text{cvx}}^{\prime} \left(\frac{y_i^s \mathbf{w} \cdot \mathbf{x}_i^s}{\|\mathbf{x}_i^s\|} \right) \frac{y_i^s \mathbf{x}_i^s}{\|\mathbf{x}_i^s\|} \\ + s \times A \left[\sum_{i=1}^{m} \Phi_{\text{dis}}^{\prime} \left(\frac{\mathbf{w} \cdot \mathbf{x}_i^t}{\|\mathbf{x}_i^t\|} \right) \frac{\mathbf{x}_i^t}{\|\mathbf{x}_i^t\|} - \Phi_{\text{dis}}^{\prime} \left(\frac{\mathbf{w} \cdot \mathbf{x}_i^s}{\|\mathbf{x}_i^s\|} \right) \frac{\mathbf{x}_i^s}{\|\mathbf{x}_i^s\|} \right], \end{aligned}$$

where $\Phi'_{\text{cvx}}(a)$ and $\Phi'_{\text{dis}}(a)$ are respectively the derivatives of functions Φ_{cvx} and Φ_{dis} evaluated at point a,

and
$$s = \operatorname{sgn}\left[\sum_{i=1}^{m} \Phi_{\operatorname{dis}}\left(\frac{\mathbf{w} \cdot \mathbf{x}_{i}^{s}}{\|\mathbf{x}_{i}^{s}\|}\right) - \Phi_{\operatorname{dis}}\left(\frac{\mathbf{w} \cdot \mathbf{x}_{i}^{t}}{\|\mathbf{x}_{i}^{t}\|}\right)\right].$$

4.2. Using a kernel function

The kernel trick allows us to work with dual weight vector $\boldsymbol{\alpha} \in \mathbb{R}^{2m}$ that is a linear classifier in an augmented space. Given a kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, we have,

$$h_{\mathbf{w}}(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i k(\mathbf{x}_i^s, \mathbf{x}) + \sum_{i=1}^{m} \alpha_{i+m} k(\mathbf{x}_i^t, \mathbf{x}).$$

Let us denote K the kernel matrix of size $2m \times 2m$ such as,

$$K_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j)$$

where,

$$\mathbf{x}_{\#} = \begin{cases} \mathbf{x}_{\#}^{s} & \text{if } \# \le m \\ \mathbf{x}_{\#-m}^{t} & \text{otherwise.} \end{cases}$$

In that case, the objective function of Equation (23) is rewritten in term of the vector $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_{2m})$ as,

$$\frac{1}{2} \sum_{i=1}^{2m} \sum_{j=1}^{2m} \alpha_i \alpha_j K_{i,j} + C \sum_{i=1}^m \Phi_{\text{cvx}} \left(y_i^s \frac{\sum_{j=1}^{2m} \alpha_j K_{i,j}}{\sqrt{K_{i,i}}} \right) \\ + A \left| \sum_{i=1}^m \Phi_{\text{dis}} \left(\frac{\sum_{j=1}^{2m} \alpha_j K_{i,j}}{\sqrt{K_{i,i}}} \right) - \Phi_{\text{dis}} \left(\frac{\sum_{j=1}^{2m} \alpha_j K_{i+m,j}}{\sqrt{K_{i+m,i+m}}} \right) \right|$$

The gradient of the latter equation is given by the vector $\boldsymbol{\alpha}' = (\alpha'_1, \alpha'_2, \dots, \alpha'_{2m})$, with $\alpha'_{\#}$ equals to,

$$\begin{split} \sum_{j=1}^{2m} & \alpha_i K_{i,\#} + C \sum_{i=1}^{m} \Phi_{\text{cvx}} \left(y_i^s \frac{\sum_{j=1}^{2m} \alpha_j K_{i,j}}{\sqrt{K_{i,i}}} \right) \frac{y_i^s K_{i,\#}}{\sqrt{K_{i,i}}} \\ & + s \times A \left[\sum_{i=1}^{m} \Phi_{\text{dis}} \left(\frac{\sum_{j=1}^{2m} \alpha_j K_{i,j}}{\sqrt{K_{i,i}}} \right) \frac{K_{i,\#}}{\sqrt{K_{i,i}}} \right. \\ & - \Phi_{\text{dis}} \left(\frac{\sum_{j=1}^{2m} \alpha_j K_{i+m,j}}{\sqrt{K_{i+m,i+m}}} \right) \frac{K_{i+m,\#}}{\sqrt{K_{i+m,i+m}}} \right], \end{split}$$

where,

$$s = \operatorname{sgn}\left[\sum_{i=1}^{m} \Phi_{\operatorname{dis}}\left(\frac{\sum_{j=1}^{2m} \alpha_j K_{i,j}}{\sqrt{K_{i,i}}}\right) - \Phi_{\operatorname{dis}}\left(\frac{\sum_{j=1}^{2m} \alpha_j K_{i+m,j}}{\sqrt{K_{i+m,i+m}}}\right)\right].$$

4.3. Implementation details

For our experiments, we minimize the objective function using a *Broyden-Fletcher-Goldfarb-Shanno method* (*BFGS*) implemented in the *scipy* python library¹. We made our code available at the following URL:

http://graal.ift.ulaval.ca/pbda/

When selecting hyperparameters by reverse cross-validation, we search on a 20×20 parameter grid for a A between 0.01 and 10^6 and a parameter C between 1.0 and 10^8 , both on a logarithm scale.

References

- Maurer, A. A note on the PAC Bayesian theorem. *CoRR*, cs.LG/0411099, 2004.
- McAllester, D. PAC-Bayesian stochastic model selection. *Machine Learning*, 51:5–21, 2003.
- Seeger, M. PAC-Bayesian generalization bounds for gaussian processes. *Journal of Machine Learning Research*, 3:233–269, 2002.

¹Available at http://www.scipy.org/