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In this document, Section 1 contains some lemmas
used in subsequent proofs, Section 2 presents an ex-
tended proof of the bound on the domain disagree-
ment dis,(Dg, Dr) (Theorem 3 of the main paper),
Section 3 introduces other PAC-Bayesian bounds for
dis,(Dg, D7) and Rp, (G,), Section 4 shows equations
and implementation details about PBDA (our pro-
posed learning algorithm for PAC-Bayesian DA tasks).

1. Some tools

Lemma 1 (Markov’s inequality). Let Z be a random
variable and t > 0, then,

Pzl zt) < E (|Z])/t.
Lemma 2 (Jensen’s inequality). Let Z be an integra-
ble real-valued random variable and g(-) any function.

If g(+) is convez, then,
9(E [Z]) < E [9(2)].

If () is concave, then,

9(E [Z]) = E [g9(2)].

Lemma 3 (Maurer (2004)). Let X = (X1,...,Xm)
be a vector of i.i.d. random wvariables, 0 < X; < 1,
with E X; = p. Denote X' = (X{,..., X)), where X

) m

is the unique Bernoulli ({0,1}-valued) random vari-
able with E X = p. If f:[0,1]" — R is convez, then,

E [f(X)] < E[f(X)].

Lemma 4 (from Inequalities (1) and (2) of Maurer
(2004)). Letm > 8, and X = (X1,...,X;n) be a vec-
tor of i.i.d. random variables, 0 < X; < 1. Then,

VI <E exp <mk1 (;ZX IE [XJ)) <aym,
=1

Kl(al[b) = aln%+ (1 —a)lnize. (7)

where, 1

2. Detailed Proof of Theorem 3

We recall the Theorem 3 of the main paper.

Theorem 3. For any distributions Dg and Dt over
X, any set of hypothesis H, any prior distribution w
over H, any d € (0,1], and any real number o >0, with
a probability at least 1—3 over the choice of SXT ~
(Dgx Dp)™, for every p on H, we have,

20 dis, (5, T)+ ML 4 1)y
dis, (Ds, Dr) < — ,
—e [e]

where dis, (S, T) is the empirical domain disagreement.

Proof. Firstly, we propose to upper-bound,

d(l) d:e£(h h:!i))~p2 [RDs(h7 h,) _RDT(h7 h/)] ?

by its empirical counterpart,

d g h, W) =Ry (h, B,
SXT (hoh Y op? [RS(’ ) RT(} )]

and some extra terms related to the Kullback-Leibler
divergence between the posterior and the prior.
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To do that, we consider an “abstract” classifier h &of
(h,h') € H2 chosen according a distribution p, with
p(h)=p(h)p(K). Notice that with 7 (k) = m(h)m(h'),

we obtain that KL(p||#)=2KL(p||7),
ey L, Ph)p(H)
KL(olIR) = (hh)~p2 — w(h)m ()
_ p(h) p(h)
= h]Ep lnm + hllgp In =)
=2E 1nM = 2KL(p||7) . (8)

h~p W(h)

Let us define the “abstract” loss of h on a pair of ex-
amples (x*,x") ~ Dsur = Dg x D7 by,

S / s\
‘Cd(l)(h X X )def 1+‘£’01(h‘(x )’h (X ))

Lo, (B, ()

2

Therefore, the “abstract” risk of h on the joint distri-
bution is defined as,

R

Dsxr

(hy= E E Ly (h,

x5 x'),
x35~Dg xt~Dr
and the error of the related Gibbs classifier associated
with this loss is,
Rp) . (Gp) =

Dsyr

E RY) ().
~p

The empirical counterparts of these two quantities are,

oo
Riq(h) = B Laohx’x)
and,
1 1 7
Rgi(Gy) = B Ron(h).
~p
It is easy to show that,
1
V= 2Rp) (Gy) -1, (9)
dS)r = 2R§)(Gp) - 1. (10)

As L) liesin [0, 1], we can bound the true RgS)XT (Gp)
following the proof process of Th. 2 of the main paper
(with ¢=2«). To do so, we define the convex function,

def

F(p) =

and consider the non-negative random variable,

—In[l - (1 - ey, (11)

m(f(R(“

Doer (1) —20 R (R))

E e

h~7

We apply Markov’s inequality (Lemma 1 of this Supp.
Material). For every § € (0,1], with a probability at

least 1—¢ over the choice of SxT ~

(Dswr)™, we have,

E em(]—'(R(E};T(h)) 2aR{)(R))
N
<1 E E em(F(RS;XT(ﬁ))72aR(SIX)T(lAz))-

T 0 SXT~(Dswr)™ ok

By taking the logarithm on each side of the previous
inequality, and transforming the expectation over 7
into an expectation over p, we obtain that,

E —e¢
h~p p(h)

W (
<In {1 £ o(FER, ()—20RS XT(h)):|
0 SXT'~(Dsxr)™ ho~vit

E #(h) m(F(RY) . (h)— ZQR(XT(h))‘|

M
i [Lp O

672maR( ST (h)
h~ SXT'~(Dsxr)™

(12)

For a classifier ﬁ, let us define a random variable
X, that follows a binomial distribution of m trials

with a probability of success Rgs)xT (h) denoted by
B(m,RSSXT (h)) Lemma 3 gives,

E e—2maRgX)T(h)

SXTN(DSxT)m
S E e_QO‘Xﬁ

o
Xj~B(m,Rpp) (b))

1z 11z

Pr (X = k)e2t
Xj~B(m,Rp) ()

(MRS ()" (1= RE)p ()"~

ES
I
=3

(DR (e (1= RYp() "™

I
Ms

k=0
S o 0™
[y + (1 R 0)]
The last line result, together with the choice of F
(Eq. (11)), leads to,
E em]'-(Rgng(il)) E 6—2maRgl>2T(ﬁ)
it SXT'~(Dgxr)™
< EU e (R) [Rélx)T(iL)e‘Q“ + (1 - Rglx)T(iL))}
heit
=E 1=1.
bt

We can now upper bound Eq. (12) simply by,

In| E —
hep p(h)

g A0 m(znr g;Tw))zaR(;QT(ﬁ))] < mi
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Let us insert the term KL(p||7) in the left-hand side
of the last inequality and find a lower bound by us-
ing Jensen’s inequality (Lemma 2) twice, first on the
concave logarithm function and then on the convex
function F,

wl E #(h) em(]—‘(RgS)T(h))—QaRglx)T(fL))
h~p p(h)
m F(RW R
— In |:EEA e (]:(RDS T(h)) 2 RSXT( )):| 72KL(pH7T)
~p

> B om (F(RY, ()~ 20RG(0) — 2KL(p|m)
~p

> mF(E Rg;T@)) 2ma B R (h)—2KL(p||x)
P~ P~ ~p

= mf(Rgg (G})) — 2maR$)(Gj) — 2KL(p|).
We then have,

mF(E

D,
h~p 'SXT

This, in turn, implies that,

2KL(p||7) + In §

]:(RSS)XT (Gp)) < 2aR$H(Gy) + -

Now, by isolating Rgs)xT(Gﬁ)’ we obtain,

[ <2aR(slﬁT(Gﬁ)+w>]
S|l ¢
«

and from the inequality 1 — e " <z,

2KL(p[|7) + In }
- .

R

Dsxr

(Gp) <1 = :

R

Dsxr

(Gp) <7 = |:2aR(Sl><)T(Gﬁ)+

It then follows from Equations (9) and (10) that, with
probability at least 1— é over the choice of S X T ~
(Dgs x D)™, we have,

dl), +1  2KL(p||7)+1n t
2 m X 2«

d® +1 20
2 “1l—e2

We now bound d® % E
(h;h')~p?

using exactly the same argument as for d(!) except that
we instead consider the following “abstract” loss of h
on a pair of examples (x*,x') ~ Dsxr = Dg x Dr:

t I(~t) s ! (~S
Edu)(il, XS, Xt)d:ef 1+£o.1(h(x )7h (X )2 ‘Co.1(h(x )ah (X ))

We then obtain that, with probability at least 1—%
over the choice of S x T ~ (Dg x D)™,

[RDT (hv hl) _RDS (h’ h/)]

d+1 _ 20 AP +1

2KL(p||7)+1n %
2 T 1l-e 20 2 '

m X 2«

RY (b)) - 2ma B RY,.(h)—2KL(p|x) < m%.
hep

To finish the proof, note that by definition, we have
that dV = —d®, hence

[d| = |d¥)| = dis,(Ds, Dr),

and,
dis, (S, T).

|dS><T |dS><T

Then, the maximum of the bound on d*) and the
bound on d® gives a bound on dis,(Dg, Dr).

Finally, by the union bound, we have that, with prob-

ability 1—¢ over the choice of S X T' ~ (Dg x Dr)™,
we have,
1dD|+ 1 2KL(p||m)+In 2

< d 1
2 “1l-e 40’[' SXT|+ + mXx o

or, which is equivalent,

2 {disp(s, T) 4 ZKEplr)Hn § +1}

mXao

dis,(Ds, Dr) <

1—e 2 ’

and we are done. O

3. Other PAC-Bayesian Bounds
3.1. PAC-Bayesian Bounds with the kl term

Let us recall the PAC-Bayesian bound proposed by
Seeger (2002), in which the trade-off between the com-
plexity and the risk is handled by the kl function de-
fined by Equation (7) in this supplementary materials.

Theorem 6 (Seeger (2002)). For any domain Ps over
X XY, any set of hypothesis H, and any prior distri-
bution ™ over H, any 0 € (0,1], with a probability at
least 1 — § over the choice of S ~ (Pg)™, for every p
over ‘H, we have,

2m
)

K(Rs(Gy) | Rpu(G

) < ;[Kupmwln

Here is a “Seeger’s type” PAC-Bayesian bound for our
domain disagreement dis,.

Theorem 7. For any distributions Dg and Dt over
X, any set of hypothesis H, and any prior distribution
m over H, any 0 € (0, 1], with a probability at least 1—0
over the choice of SXT ~(DgxDp)™, for every p on
H, we have,

dis, (S,T7)+1
kl( o5, ‘ :

dis,(Ds,Dr)+1 1 2/m
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Proof. Similarly as in the proof of Theorem 3, we will
first bound,

dY B [RpJh,W)—Rp,(h, i
(Bl Y mop? [ Ds( ) ) DT( ) )] )
by its empirical counterpart,
d) &g h,h')—Rp(h, '
SXT Bk yop? [RS( ’ ) RT( ) )]7

and some extra terms related to the Kullback-Leibler
divergence between the posterior and the prior. How-
ever, a notable difference with the proof of Theorem 3
is that the obtained bound will be simultaneously valid
as an upper and a lower bound. Because of this, there
will no need here to redo the all the proof to bound

d? < E

4 j—
o B B0

RDS(h” h/)] )
and also, the present proof will not require the use of
the union bound argument.

Again, we consider “abstract” classifiers h € H2 whose
loss on a pair of examples (x%,x*) ~ Dgy,r is defined
by,

det1+L, L (h(x%),h' (x°))

s t) —Em(h(xt
2

Ly (h,

Note that, again, L4 lies in [0, 1], and that RSX)T(IA%)
and R(D1S)><T (h) are as defined in the proof of Theorem 3.

Now, let us consider the non-negative random variable,

mkd (RS (R) || RSY () .

E e

h~7

We apply Markov’s inequality (Lemma 1). For every
d € (0,1], with a probability at least 1 — § over the

choice of SXT ~ (Dgwr)™, we have,
B (R0 RE), B)
h~
<l g g ea(ERlRL o)

- 6S><T~(Ds><T)m A~

By taking the logarithm on each side of the previous
inequality, and transforming the expectation over
into an expectation over p, we then obtain that,

In| E T(fb) (RSB[R () (13)
h~p p(R)
< In [1 g g o0 gzmnﬂg;m»]
0 SXT'~(Dsxr)™ hit
<lIn @ .

)1 (x).

The last inequality comes from the Maurer’s lemma
(Lemma 4).

Let us now re-write a part of the equation as KL(p||)
and let us then find a lower bound by using twice
the Jensen’s inequality (Lemma 2), first on the con-
cave logarithm function, and then on the convex func-
tion ki,

g ) iR 2 )
hep p(h)
rW 1) 7
—In |:AE emkl( S><T(h)HRDSXT (h)):l _ ZKL(pHﬂ')
hep
> E mK (R(;X)T ) || RS (R) ) — 2KL(p||7)
~p

Y

mkl(E RU)(h || E RDS)XT(E)> — 2KL(p||7)

Y

mkl (RE(Gy) | RY)., (Gp)) = 2KL(p)

This implies that,

KI(RGGH) | RH.,

Dsxr

(Gy) < ;[QKL(p I w)+1n2\§ﬂ.

Since, as in the proof of Theorem 3 for d), we have:
D =2RY) (G;)—1and dy)r = 2R (G;) —1, the
previous line directly 1mphes a bound on dV) from its

Hence, with probability
(Ds x Dr)™,

empirical counterpart dSXT
at least 1—4 over the choice of S x T ~
we have,

kl( xT“Hd“;H) < 1|:2KL(p|7r)—Hn2\§T>n]. (14)
m

We claim that we also have,

(1)
g (s 4L | 141
2 2

which, since

< % {QKL(p I 7T)+1n2
(15)

[dV| = dis,(Dg, Dr) and |d$,| = dis, (S, T),

implies the result. Hence to finish the proof, let us
prove the claim of Equation (15). There are four cases
to consider.

Case 1: d(slx)T > 0 and dV > 0.  There is nothing
to prove since in that case, Equations (14) and (15)
coincide.

Case 2: dSQT < 0and dV < 0. This case reduces
to Case 1 because of the following property of k1(-||-):

() u ().
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Case 3: d(slx)T < 0and dY > 0. From straightfor-
ward calculations, one can show that,

kl(ld(slx);f\ﬂ |d(1;|+1) kl( Sert1 d<1;+1>
- () (e
2 2 2
_ (51X>T+1 dgp+1 In 1
- 2 2 d 41
2
o o)
+ (1_$)_(1 d%) In %
1 dM 41
2
_ 1) 1 (n) 1
= (_deT) In (d(1>+1 ) + (dSXT) In < O >
2 1=
_ (1) 1 ) 1
- ( deT) In (d(1>+1 ) + (deT) In < _d(l)+1 >
2 2

_ gm dM 41
- deT In (7d(1)+1)

< 0. (17)

The last inequality follows from the fact that we have
d(slx)T <0 and dV) > 0.

Hence, from Equations (17) and (14), we have,

(1) 1 d(l 1
Kl |dS><T‘+1 ‘d( )H,l Kl T+ d(1)+1
2 2 2

;[QKL(pM)HnQ‘/ﬂ :

IN

0

as wanted.

Case 4: d(slx)T >0 and dV) < 0.  Again because of
Equation (16), this case reduces to Case 3, and we are
done. O

From the preceding “Seeger’s type” results, one can
then obtain the following PAC-Bayesian DA-bound.

Theorem 8. For any domains Ps and Pr (respec-
tively with marginals Dg and Dr) over X XY, any set
of hypothesis H, and any prior distribution ™ over H,
any ¢ € (0, 1], with a probability at least 1 — 6 over the
choice of SxT~(PsxDp)™, we have,

RpT(Gp)prT(Gp*T) < supR,+supD, + A,,

where A, dot Rp.(G,,G,

G,)r) < & [KL

?) + RDS (Gﬂ)v GP

(pllm) + m2= ],

:) and,

R, { ikl (Rs

Dpdéf{d:kl(WH%) < L[2KL(pflm)+In )

Proof. The result is obtained by inserting Ths. 6 and 7
(with 6 := %) in Th. 4 of the main paper. O

3.2. PAC-Bayesian Bounds when m#m’

In the main paper, for the sake of simplicity, we restrict
to the case where m (the size of the source set S)
and m’ (the size of the target set T') are equal. All
the results generalize to the m # m’ case. In this
subsection, we will show how it can be done from a
“McAllester’s type” of bound (Similar results can be
achieved for “Catoni’s type” or “Seeger’s type”).

First we recall the PAC-Bayesian bound proposed by
McAllester (2003), which is stated without a term al-
lowing to control the trade-off between the complexity
and the risk.

Theorem 9 (McAllester (2003)). For any domain Pg
over X XY, any set of hypothesis H, and any prior
distribution m over H, any § € (0,1], with a probability
at least 1 — & over the choice of S ~ (Pg)™, for every
p over H, we have,

R (Gy)— Rs(G,)]| < \/1 [Kupnmm Wf .

2m

Now we can prove the following consistency bound for
dis,(Dg,Dr), when m # m/.

Theorem 10. For any marginal distributions Dg and
Dt over X, any set of hypothesis H, any prior dis-
tribution © over H, any 6 € (0,1], with a probabil-
ity at least 1 — 0 over the choice of S ~ (Dg)™ and
T~ (DT)ml, for every p over H, we have,

4ym
5

1
‘ dis,(Dg,Dr)—dis,(S, T)‘ < \/Qm{QKL(pM')—Hn

4vm/

+ 5

o 2KL(p||7)+1n

Proof. Let us consider the non-negative random vari-
able,
e2m(Rpg (h,h')=Rs(h,h"))?
(h,h")~m?

We apply Markov’s inequality (Lemma 1). For every
d € (0,1], with a probability at least 1 — § over the
choice of S ~ (Dg)™, we have,

E e?m(RDS(hﬁ’)fRs(h,h/))Q

E E e2m(RDS(h,h’)—Rs(h,h/))z.
Dg)™ (h,h!)~72
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By taking the logarithm on each side of the previous
inequality and transforming the expectation over 2
into an expectation over p?, we obtain that for every
d € (0,1], with a probability at least 1 — § over the
choice of S ~ (Dg)™, and for every posterior distribu-
tion p, we have,

In [ E 7T(h)ﬂ(h/)ezm(RDs(h,h’)R,S(h,h’))2]
(h.h)~p? p(h)p(R)
<In

L E  2mBog(hh)—Rs(hh)?|
6§ S~ (Dg)™ (h,h')~m2

Since In(-) is a concave function, we can apply the
Jensen’s inequality (Lemma 2). Then, for every § €
(0,1], with a probability at least 1 — ¢ over the choice
of S ~ (Dg)™, and for every posterior distribution p,
we have,

E In [W(h)ﬂ(h') e2m(RDS(h,h’)—RS(h,h/))Q:|
(h.h')~p? p(h)p(h')

1
<In [ E E
0 S~(Ds)™ (h,h')~r?

e<2m(RDS(hﬁ')—m(hﬁ))ﬂ _
By the Equation (8),

I

B[

(ha)~p2 | p(h)p(R')

For every ¢ € (0,1], with a probability at least 1 — ¢

over the choice of S ~ (Dg)™, and for every posterior
distribution p, we have,

| = -2xL(olm),

—2KL(p|m)+ E  m2(Rps(h, 1) — Rs(h, 1))

(h.h")~p?
<m|i E E  2m(Rpg(hh)=Rs(hh))? |
- 0 S~(Dg)™ (h,h/)~m?

Since 2(a — b)? is a convex function, we again apply
Jensen inequality,

2
"N /
(B (o0 ) - Rs(r. )

< E (RDs(hvh/)iRS(hﬂh/))Q'

~ (hh)~p?

Thus, for every § € (0, 1], with a probability at least
1 — ¢ over the choice of S ~ (Dg)™, and for every
posterior distribution p, we have,

E Rs(h, h’)) < 2KL(p|m)

2m ( E RDS(h,h/) -
(h,h!)~p? h W/ ~p?

+1n { E
0 S~(Dg)™ (h,h!)~m2

Let us now bound,

n|- E E  2(Bpg(hh/)=Rs(h,h)? |
0 S~(Dg)™ (h,h')~om?2

E eZm(RDS(h,h’)Rs(h,h’))r":l.

To do so, we have,

E e?m(RDS(h,h’)fRs(h,h’))Q
S~(Dg)™ (h,h')~m2

— E E e2m(RDS(h7h/)_RS(h7h/))2 (18)
(h,h")~m2 S~(Dg)™
E B MEGMIR ) (1g)
= (hh)~m2 S~(Dg)™
< 2y/m. (20)

Line (18) comes from the independence between Dg
and 72. The Pinsker’s inequality,

2(q — p)? <Kl(q|lp) for any p,q € [0,1],

gives Line (19). The last Line (20) comes from the
Maurer’s lemma (Lemma 4).

Thus for every 6 € (0,1], with a probability at least
1 — ¢ over the choice of S ~ (Dg)™, and for every
posterior distribution p, we obtain,

2
2 E  Rp.(hh)— Rs(h, b
m((h,h'>~p2 s 1) = B . Bs( )>

< 2KL(p||7) +In 2\?%

2
/
(g L5 I )>

[2KL(p||7r) +1n 2\?71

& E Rp.(h, k') — E
((h,h/)~p2 Ds( ) )

<
- 2m

& E Rp,(hh)- E

(h,h")~p (h,h")~p?

< ¢1 [QKL(pw) +1n wm] .

2m 0

Rs(h, 1)

(21)

Following the same proof process for bounding
E Rp.(hh)— E RT(h,h’)’7 we obtain

(h,h")~p? (h,h")~p?

the following result.

For every ¢ € (0,1], with a probability at least 1 — ¢
over the choice of T' ~ (D7)™ , and for every posterior
distribution p,

E  Rp.(hh)— E  Rp(hh
(rimpe TR ) = B e B )‘
2vm/

< 57 KL(p||7) + In 3 ] (22)

Finally, let us substitute § by % in Inequalities (21)
and (22). This, together with the union bound that
assure that both results hold simultaneously, gives the
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result because,

B [Rop(h /) — Rou(h, h')]\ _ dis, (Ds. Dy),
(B yp?

E  [Re(h, ') — Rs(h,h')]| = dis, (S, T),
B (Rl = Rs(h )] = disy(5.7)
and because if |a; — b1| < ¢; and |ag — ba| < c¢a, then
|(a1—a2)—(b1—b2)|§c’1—|—c’2. O

Then we can obtain the following PAC-Bayesian DA-
bound.

Theorem 11. For any domains Ps and Pr (respec-
tively with marginals Dg and Dr) over X XY, and
for any set H of hypothesis, for any prior distribution
m over H, any § € (0,1], with a probability at least
1 — & over the choice of S1 ~ (Dg)™, Sy ~ (Dg)™
and T ~ (Dr)™ , for every p over H, we have,

Rp(G,) — Rp.(Gyps) < Rs(G,)+dis,(S,T) + A,

+\/21n {KL(pHW)—Hn 4@:

1 8y/m]
+\/2m [2KL(p||7r)+ln 5

8\/m’_
5 .

_|_

2KL(p||7)+1n

2m/

where A, £ Rp.(G,, G

ps) T Rpg(Gp, Gpz) -

Pmof The result is obtained by inserting Ths. 9 and
0 (with 6 := $) in Th. 4 of the main paper. O

4. PBDA Algorithm Details

4.1. Objective function and gradient

Given a source sample S={(x{,y7)}",, a target sam-

ple T' = {(x})}™,, and fixed parameters A > 0 and

C > 0, the learning algorithm PBDA consists in find-
ing the weight vector w minimizing,

I, 5, 2
T O Pl

i w - xt
A (0] is q)is — )
Z @ (| sn) d (nxﬂ)

where, Erf being the Gauss error function,

0 (23)

o) & 1-mee(Z)],
Dy (a) € max {@(a), %f \/‘;—J,
Dyis(a) L9« ®(a) x ®(—a)

Figure 1. Behaviour of functions ®(-), ®Pcvx(-) and Pais(+).

Figure 1 illustrates these three functions.
The gradient of the Equation (23) is given by,

m

Y WX\ yix;
w+02%x( S )Hxsn

Z%S( ) = ‘I’dls(nxbu) |x%|1 :
where ®’

wex(a) and @7, (a) are respectively the deriva-
tives of functions ®.., and P®4;s evaluated at point a,

Z‘I’dw(ux u) ‘I’d15<|xf|t>]

4.2. Using a kernel function

s

+sxA

and s = sgn

The kernel trick allows us to work with dual weight
vector & € R?™ that is a linear classifier in an aug-
mented space. Given a kernel k : R*xR? — R, we
have,

= iaik(x +iai+mk(x X)
i=1 i=1

Let us denote K the kernel matrix of size 2m x 2m
such as,
Kij = k(xi,%;)

XS
X# = fE
X#_m

In that case, the objective function of Equation (23)
is rewritten in term of the vector @ = (a1, aa, . .. agy)
as,

where,
if #<m
otherwise.

2m 2m

2m Kz
Z Z Zazaj ij T C’Z(I)Cvx <yz Z]\/l% ])

1=1 j=1
2m
i1 QG K
Z‘I’dw oy, (im0 fema )|
Ki+m,i+m

2m
10‘JK

\/ K’LZ

+A
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The gradient of the latter equation is given by the
vector @' = (a7, s, ... ay,,), with o, equals to,

2m m 227" ai K s s
= ; 1, Y. Ki #
aiKi + C (Pcvx f =t ! t .

i Y 0K\ Ky
+sxA Dyis J= ’ i

; ( VK VK

2
& Zj;nl Qi Kitm,j Kipm,u
— Fdis )
\/Ki+m,7i+m \/Kier,ier
where,

m
_ P I Ky P S i Kitm,
5 = sgn dis " | = Pais | Z——" | .
i—1 .1 i+m,i+m
1=

4.3. Implementation details

For our experiments, we minimize the objective
function using a Broyden-Fletcher-Goldfarb-Shanno
method (BFGS) implemented in the scipy python li-
brary!. We made our code available at the following
URL:

http://graal.ift.ulaval.ca/pbda/

When selecting hyperparameters by reverse cross-
validation, we search on a 20 x 20 parameter grid for
a A between 0.01 and 10° and a parameter C' between
1.0 and 108, both on a logarithm scale.
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