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In this document, Section 1 contains some lemmas
used in subsequent proofs, Section 2 presents an ex-
tended proof of the bound on the domain disagree-
ment disρ(DS , DT ) (Theorem 3 of the main paper),
Section 3 introduces other PAC-Bayesian bounds for
disρ(DS , DT ) and RPT (Gρ), Section 4 shows equations
and implementation details about PBDA (our pro-
posed learning algorithm for PAC-Bayesian DA tasks).

1. Some tools

Lemma 1 (Markov’s inequality). Let Z be a random
variable and t ≥ 0, then,

P (|Z| ≥ t) ≤ E (|Z|) / t .

Lemma 2 (Jensen’s inequality). Let Z be an integra-
ble real-valued random variable and g(·) any function.

If g(·) is convex, then,

g(E [Z]) ≤ E [g(Z)] .

If g(·) is concave, then,

g(E [Z]) ≥ E [g(Z)] .

Lemma 3 (Maurer (2004)). Let X = (X1, . . . , Xm)
be a vector of i.i.d. random variables, 0 ≤ Xi ≤ 1,
with E Xi = µ. Denote X ′ = (X ′1, . . . , X

′
m), where X ′i

is the unique Bernoulli ({0, 1}-valued) random vari-
able with E X ′i = µ. If f : [0, 1]n → R is convex, then,

E [f(X)] ≤ E [f(X ′)] .

Lemma 4 (from Inequalities (1) and (2) of Maurer
(2004)). Let m ≥ 8, and X = (X1, . . . , Xm) be a vec-
tor of i.i.d. random variables, 0 ≤ Xi ≤ 1. Then,

√
m ≤ E exp

(
mkl

(
1

m

n∑
i=1

Xi

∥∥E [Xi]

))
≤ 2
√
m,

where, kl(a ‖ b) def
= a ln a

b + (1− a) ln 1−a
1−b . (7)

2. Detailed Proof of Theorem 3

We recall the Theorem 3 of the main paper.

Theorem 3. For any distributions DS and DT over
X, any set of hypothesis H, any prior distribution π
over H, any δ∈(0, 1], and any real number α>0, with
a probability at least 1−δ over the choice of S×T ∼
(DS×DT )m, for every ρ on H, we have,

disρ(DS , DT ) ≤
2α
[

disρ(S, T )+
2KL(ρ‖π)+ln 2

δ

m×α +1
]
−1

1− e−2α
,

where disρ(S, T ) is the empirical domain disagreement.

Proof. Firstly, we propose to upper-bound,

d(1)
def
= E

(h,h′)∼ρ2
[RDS(h, h

′)−RDT(h, h′)] ,

by its empirical counterpart,

d
(1)
S×T

def
= E

(h,h′)∼ρ2
[RS(h, h′)−RT (h, h′)] .

and some extra terms related to the Kullback-Leibler
divergence between the posterior and the prior.
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To do that, we consider an “abstract” classifier ĥ
def
=

(h, h′) ∈ H2 chosen according a distribution ρ̂, with

ρ̂(ĥ)=ρ(h)ρ(h′). Notice that with π̂(ĥ) = π(h)π(h′),
we obtain that KL(ρ̂‖π̂)=2KL(ρ‖π),

KL(ρ̂‖π̂) = E
(h,h′)∼ρ2

ln
ρ(h)ρ(h′)

π(h)π(h′)

= E
h∼ρ

ln
ρ(h)

π(h)
+ E
h′∼ρ

ln
ρ(h′)

π(h′)

= 2 E
h∼ρ

ln
ρ(h)

π(h)
= 2KL(ρ‖π) . (8)

Let us define the “abstract” loss of ĥ on a pair of ex-
amples (xs,xt) ∼ DS×T = DS ×DT by,

Ld(1)(ĥ,xs,xt)
def
=

1+L0-1(h(xs),h′(xs))−L0-1(h(xt),h′(xt))

2
.

Therefore, the “abstract” risk of ĥ on the joint distri-
bution is defined as,

R
(1)
DS×T

(ĥ) = E
xs∼DS

E
xt∼DT

Ld(1)(ĥ,xs,xt) ,

and the error of the related Gibbs classifier associated
with this loss is,

R
(1)
DS×T

(Gρ̂) = E
ĥ∼ρ̂

R
(1)
DS×T

(ĥ) .

The empirical counterparts of these two quantities are,

R
(1)
S×T (ĥ) = E

(xs,xt)∼S×T
Ld(1)(ĥ,xs,xt)

and,

R
(1)
S×T (Gρ̂) = E

ĥ∼ρ̂
R

(1)
S×T (ĥ) .

It is easy to show that,

d(1) = 2R
(1)
DS×T

(Gρ̂)− 1, (9)

d
(1)
S×T = 2R

(1)
S×T (Gρ̂)− 1. (10)

As Ld(1) lies in [0, 1], we can bound the true R
(1)
DS×T

(Gρ̂)
following the proof process of Th. 2 of the main paper
(with c=2α). To do so, we define the convex function,

F(p)
def
= − ln[1− (1− e−2α)p] , (11)

and consider the non-negative random variable,

E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR(1)
S×T (ĥ)

)
.

We apply Markov’s inequality (Lemma 1 of this Supp.
Material). For every δ ∈ (0, 1], with a probability at

least 1−δ over the choice of S×T ∼ (DS×T )m, we have,

E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR(1)
S×T (ĥ)

)

≤ 1

δ
E

S×T∼(DS×T )m
E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR(1)
S×T (ĥ)

)
.

By taking the logarithm on each side of the previous
inequality, and transforming the expectation over π̂
into an expectation over ρ̂, we obtain that,

ln

[
E
ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
m
(
F(R

(1)
DS×T

(ĥ))−2αR(1)
S×T (ĥ)

)]

≤ ln

[
1

δ
E

S×T∼(DS×T )m
E
ĥ∼π̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR(1)
S×T (ĥ)

)]
= ln

[
1

δ
E
ĥ∼π̂

e
mF(R

(1)
DS×T

(ĥ))
E

S×T∼(DS×T )m
e−2mαR

(1)
S×T (ĥ)

]
.

(12)

For a classifier ĥ, let us define a random variable
Xĥ that follows a binomial distribution of m trials

with a probability of success R
(1)
DS×T

(ĥ) denoted by

B
(
m,R

(1)
DS×T

(ĥ)
)
. Lemma 3 gives,

E
S×T∼(DS×T )m

e−2mαR
(1)
S×T (ĥ)

≤ E
Xĥ∼B(m,R

(1)
DS×T

(ĥ))

e−2αXĥ

=

m∑
k=0

Pr
Xĥ∼B(m,R

(1)
DS×T

(ĥ))

(
Xĥ = k

)
e−2αk

=

m∑
k=0

(
m
k

)(
R

(1)
S×T (ĥ)

)k(
1−R(1)

S×T (ĥ)
)m−k

e−2αk

=

m∑
k=0

(
m
k

)(
R

(1)
S×T (ĥ)e−2α

)k (
1−R(1)

S×T (ĥ)
)m−k

=
[
R

(1)
S×T (ĥ)e−2α +

(
1−R(1)

S×T (ĥ)
)]m

.

The last line result, together with the choice of F
(Eq. (11)), leads to,

E
ĥ∼π̂

e
mF(R

(1)
DS×T

(ĥ))
E

S×T∼(DS×T )m
e−2mαR

(1)
S×T (ĥ)

≤ E
ĥ∼π̂

e
mF(R

(1)
DS×T

(ĥ))
[
R

(1)
S×T (ĥ)e−2α +

(
1−R(1)

S×T (ĥ)
)]m

= E
ĥ∼π̂

1 = 1 .

We can now upper bound Eq. (12) simply by,

ln

[
E
ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
m
(
F(R

(1)
DS×T

(ĥ))−2αR(1)
S×T (ĥ)

)]
≤ ln

1

δ
.
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Let us insert the term KL(ρ‖π) in the left-hand side
of the last inequality and find a lower bound by us-
ing Jensen’s inequality (Lemma 2) twice, first on the
concave logarithm function and then on the convex
function F ,

ln

[
E
ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
m
(
F(R

(1)
DS×T

(ĥ))−2αR(1)
S×T (ĥ)

)]

= ln

[
E
ĥ∼ρ̂

e
m
(
F(R

(1)
DS×T

(ĥ))−2αR(1)
S×T (ĥ)

)]
− 2KL(ρ‖π)

≥ E
ĥ∼ρ̂

m
(
F(R

(1)
DS×T

(ĥ))− 2αR
(1)
S×T (ĥ)

)
− 2KL(ρ‖π)

≥ mF( E
ĥ∼ρ̂

R
(1)
DS×T

(ĥ))− 2mα E
ĥ∼ρ̂

R
(1)
S×T (ĥ)−2KL(ρ‖π)

= mF(R
(1)
DS×T

(Gρ̂))− 2mαR
(1)
S×T (Gρ̂)− 2KL(ρ‖π) .

We then have,

mF( E
ĥ∼ρ̂

R
(1)
DS×T

(ĥ))− 2mα E
ĥ∼ρ̂

R
(1)
S×T (ĥ)−2KL(ρ‖π) ≤ ln

1

δ
.

This, in turn, implies that,

F(R
(1)
DS×T

(Gρ̂)) ≤ 2αR
(1)
S×T (Gρ̂) +

2KL(ρ‖π) + ln 1
δ

m
.

Now, by isolating R
(1)
DS×T

(Gρ̂), we obtain,

R
(1)
DS×T

(Gρ̂)≤
1

1−e−2α

[
1−e

−
(
2αR

(1)
S×T (Gρ̂)+

2KL(ρ‖π)+ln 1
δ

m

)]
,

and from the inequality 1− e−x ≤ x,

R
(1)
DS×T

(Gρ̂)≤
1

1−e−2α

[
2αR

(1)
S×T (Gρ̂)+

2KL(ρ‖π) + ln 1
δ

m

]
.

It then follows from Equations (9) and (10) that, with
probability at least 1− δ

2 over the choice of S × T ∼
(DS ×DT )m, we have,

d(1) + 1

2
≤ 2α

1−e−2α

[
d
(1)
S×T + 1

2
+

2KL(ρ‖π)+ln 1
δ

m× 2α

]
,

We now bound d(2)
def
= E
(h,h′)∼ρ2

[RDT (h, h′)−RDS (h, h′)]

using exactly the same argument as for d(1) except that
we instead consider the following “abstract” loss of ĥ
on a pair of examples (xs,xt) ∼ DS×T = DS ×DT :

Ld(1)(ĥ,xs,xt)
def
=

1+L
0-1

(h(xt),h′(xt)−L
0-1

(h(xs),h′(xs)))

2
.

We then obtain that, with probability at least 1− δ
2

over the choice of S × T ∼ (DS ×DT )m,

d(2) + 1

2
≤ 2α

1−e−2α

[
d
(2)
S×T + 1

2
+

2KL(ρ‖π)+ln 1
δ

m× 2α

]
.

To finish the proof, note that by definition, we have
that d(1) = −d(2), hence

|d(1)| = |d(2)| = disρ(DS , DT ),

and,

|d(1)S×T | = |d
(2)
S×T | = disρ(S, T ).

Then, the maximum of the bound on d(1) and the
bound on d(2) gives a bound on disρ(DS , DT ).

Finally, by the union bound, we have that, with prob-
ability 1−δ over the choice of S × T ∼ (DS ×DT )m,
we have,

|d(1)|+ 1

2
≤ α

1−e−2α

[
|d(1)S×T |+ 1 +

2KL(ρ‖π)+ln 2
δ

m× α

]
,

or, which is equivalent,

disρ(DS , DT ) ≤
2α
[

disρ(S, T )+
2KL(ρ‖π)+ln 2

δ

m×α +1
]
−1

1− e−2α
,

and we are done.

3. Other PAC-Bayesian Bounds

3.1. PAC-Bayesian Bounds with the kl term

Let us recall the PAC-Bayesian bound proposed by
Seeger (2002), in which the trade-off between the com-
plexity and the risk is handled by the kl function de-
fined by Equation (7) in this supplementary materials.

Theorem 6 (Seeger (2002)). For any domain PS over
X × Y , any set of hypothesis H, and any prior distri-
bution π over H, any δ ∈ (0, 1], with a probability at
least 1 − δ over the choice of S ∼ (PS)m, for every ρ
over H, we have,

kl
(
RS(Gρ)

∥∥∥RPS (Gρ)
)
≤ 1

m

[
KL(ρ ‖π) + ln

2
√
m

δ

]
.

Here is a “Seeger’s type” PAC-Bayesian bound for our
domain disagreement disρ.

Theorem 7. For any distributions DS and DT over
X, any set of hypothesis H, and any prior distribution
π over H, any δ∈(0, 1], with a probability at least 1−δ
over the choice of S×T ∼(DS×DT )m, for every ρ on
H, we have,

kl
(
disρ(S,T )+1

2

∥∥∥disρ(DS ,DT )+1
2

)
≤ 1
m

[
2KL(ρ‖π)+ln 2

√
m
δ

]
.
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Proof. Similarly as in the proof of Theorem 3, we will
first bound,

d(1)
def
= E

(h,h′)∼ρ2
[RDS(h, h

′)−RDT(h, h′)] ,

by its empirical counterpart,

d
(1)
S×T

def
= E

(h,h′)∼ρ2
[RS(h, h′)−RT (h, h′)] ,

and some extra terms related to the Kullback-Leibler
divergence between the posterior and the prior. How-
ever, a notable difference with the proof of Theorem 3
is that the obtained bound will be simultaneously valid
as an upper and a lower bound. Because of this, there
will no need here to redo the all the proof to bound

d(2)
def
= E

(h,h′)∼ρ2
[RDT(h, h

′)−RDS(h, h′)] ,

and also, the present proof will not require the use of
the union bound argument.

Again, we consider “abstract” classifiers ĥ ∈ H2 whose
loss on a pair of examples (xs,xt) ∼ DS×T is defined
by,

Ld(1)(ĥ,xs,xt)
def
=

1+L
0-1

(h(xs),h′(xs))−L
0-1

(h(xt),h′(xt))

2
.

Note that, again, Ld(1) lies in [0, 1], and that R
(1)
S×T (ĥ)

and R
(1)
DS×T

(ĥ) are as defined in the proof of Theorem 3.

Now, let us consider the non-negative random variable,

E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)
.

We apply Markov’s inequality (Lemma 1). For every
δ ∈ (0, 1], with a probability at least 1 − δ over the
choice of S×T ∼ (DS×T )m, we have,

E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)

≤ 1

δ
E

S×T∼(DS×T )m
E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)
.

By taking the logarithm on each side of the previous
inequality, and transforming the expectation over π̂
into an expectation over ρ̂, we then obtain that,

ln

[
E
ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)]

(13)

≤ ln

[
1

δ
E

S×T∼(DS×T )m
E
ĥ∼π̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)]

≤ ln
2
√
m

δ
.

The last inequality comes from the Maurer’s lemma
(Lemma 4).

Let us now re-write a part of the equation as KL(ρ‖π)
and let us then find a lower bound by using twice
the Jensen’s inequality (Lemma 2), first on the con-
cave logarithm function, and then on the convex func-
tion kl,

ln

[
E
ĥ∼ρ̂

π̂(ĥ)

ρ̂(ĥ)
e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)]

= ln

[
E
ĥ∼ρ̂

e
mkl

(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)]
− 2KL(ρ‖π)

≥ E
ĥ∼ρ̂

m kl
(
R

(1)
S×T (ĥ)

∥∥R(1)
DS×T

(ĥ)
)
− 2KL(ρ‖π)

≥ m kl

(
E
ĥ∼ρ̂

R
(1)
S×T (ĥ)

∥∥ E
ĥ∼ρ̂

R
(1)
DS×T

(ĥ)

)
− 2KL(ρ‖π)

≥ m kl
(
R

(1)
S×T (Gρ̂)

∥∥R(1)
DS×T

(Gρ̂)
)
− 2KL(ρ‖π) .

This implies that,

kl
(
R

(1)
S×T(Gρ̂)

∥∥R(1)
DS×T

(Gρ̂)
)
≤ 1

m

[
2KL(ρ ‖π)+ln

2
√
m

δ

]
.

Since, as in the proof of Theorem 3 for d(1), we have:

d(1) = 2R
(1)
DS×T

(Gρ̂)−1 and d
(1)
S×T = 2R

(1)
S×T (Gρ̂)−1, the

previous line directly implies a bound on d(1) from its

empirical counterpart d
(1)
S×T . Hence, with probability

at least 1−δ over the choice of S × T ∼ (DS ×DT )m,
we have,

kl

(
d
(1)

S×T+1

2

∥∥∥d(1)+1
2

)
≤ 1

m

[
2KL(ρ ‖π)+ln

2
√
m

δ

]
. (14)

We claim that we also have,

kl

(
|d(1)
S×T|+1

2

∥∥∥ |d(1)|+1
2

)
≤ 1

m

[
2KL(ρ ‖π)+ln

2
√
m

δ

]
,

(15)
which, since

|d(1)| = disρ(DS , DT ) and |d(1)S×T | = disρ(S, T ) ,

implies the result. Hence to finish the proof, let us
prove the claim of Equation (15). There are four cases
to consider.

Case 1: d
(1)
S×T ≥ 0 and d(1) ≥ 0. There is nothing

to prove since in that case, Equations (14) and (15)
coincide.

Case 2: d
(1)
S×T ≤ 0 and d(1) ≤ 0. This case reduces

to Case 1 because of the following property of kl(·‖·):

kl
(
a+1
2

∥∥∥ b+1
2

)
= kl

(
−a+1

2

∥∥∥−b+1
2

)
. (16)



Supplementary Material to A PAC-Bayesian Approach for Domain Adaptation

Case 3: d
(1)
S×T ≤ 0 and d(1) ≥ 0. From straightfor-

ward calculations, one can show that,

kl

(
|d(1)
S×T |+1

2

∥∥∥ |d(1)|+1
2

)
− kl

(
d
(1)

S×T+1

2

∥∥∥ d(1)+1
2

)

= kl

(
−d(1)
S×T+1

2

∥∥∥ d(1)+1
2

)
− kl

(
d
(1)

S×T+1

2

∥∥∥ d(1)+1
2

)

=

(
−d(1)
S×T+1

2
−

d
(1)

S×T+1

2

)
ln

(
1

d(1)+1
2

)

+

((
1−
−d(1)
S×T+1

2

)
−
(

1−
d
(1)

S×T+1

2

))
ln

(
1

1− d(1)+1
2

)

=
(
−d(1)S×T

)
ln

(
1

d(1)+1
2

)
+
(
d
(1)
S×T

)
ln

(
1

1− d(1)+1
2

)

=
(
−d(1)S×T

)
ln

(
1

d(1)+1
2

)
+
(
d
(1)
S×T

)
ln

(
1

−d(1)+1
2

)

= d
(1)
S×T ln

(
d(1)+1

−d(1)+1

)
≤ 0 . (17)

The last inequality follows from the fact that we have

d
(1)
S×T ≤ 0 and d(1) ≥ 0.

Hence, from Equations (17) and (14), we have,

kl

(
|d(1)
S×T |+1

2

∥∥∥ |d(1)|+1
2

)
≤ kl

(
d
(1)

S×T+1

2

∥∥∥d(1)+1
2

)
≤ 1

m

[
2KL(ρ ‖π)+ln

2
√
m

δ

]
,

as wanted.

Case 4: d
(1)
S×T ≥ 0 and d(1) ≤ 0. Again because of

Equation (16), this case reduces to Case 3, and we are
done.

From the preceding “Seeger’s type” results, one can
then obtain the following PAC-Bayesian DA-bound.

Theorem 8. For any domains PS and PT (respec-
tively with marginals DS and DT ) over X×Y , any set
of hypothesis H, and any prior distribution π over H,
any δ∈(0, 1], with a probability at least 1− δ over the
choice of S×T∼(PS×DT )m, we have,

RPT (Gρ)−RPT (Gρ∗T ) ≤ supRρ + supDρ + λρ ,

where λρ
def
= RDT (Gρ, Gρ∗T ) +RDS (Gρ, Gρ∗T ) and,

Rρ
def
=
{
r :kl

(
RS(Gρ)

∥∥r) ≤ 1
m

[
KL(ρ‖π) + ln 4

√
m
δ

]}
,

Dρ
def
=
{
d :kl

(disρ(S,T )+1
2

∥∥d+1
2

)
≤ 1
m

[
2KL(ρ‖π)+ln 4

√
m
δ

]}
.

Proof. The result is obtained by inserting Ths. 6 and 7
(with δ := δ

2 ) in Th. 4 of the main paper.

3.2. PAC-Bayesian Bounds when m 6=m′

In the main paper, for the sake of simplicity, we restrict
to the case where m (the size of the source set S)
and m′ (the size of the target set T ) are equal. All
the results generalize to the m 6= m′ case. In this
subsection, we will show how it can be done from a
“McAllester’s type” of bound (Similar results can be
achieved for “Catoni’s type” or “Seeger’s type”).

First we recall the PAC-Bayesian bound proposed by
McAllester (2003), which is stated without a term al-
lowing to control the trade-off between the complexity
and the risk.

Theorem 9 (McAllester (2003)). For any domain PS
over X × Y , any set of hypothesis H, and any prior
distribution π over H, any δ ∈ (0, 1], with a probability
at least 1− δ over the choice of S ∼ (PS)m, for every
ρ over H, we have,

∣∣∣RPS (Gρ)−RS(Gρ)
∣∣∣ ≤

√
1

2m

[
KL(ρ ‖π) + ln

2
√
m

δ

]
.

Now we can prove the following consistency bound for
disρ(DS ,DT ), when m 6= m′.

Theorem 10. For any marginal distributions DS and
DT over X, any set of hypothesis H, any prior dis-
tribution π over H, any δ ∈ (0, 1], with a probabil-
ity at least 1 − δ over the choice of S ∼ (DS)m and
T ∼ (DT )m

′
, for every ρ over H, we have,

∣∣∣ disρ(DS ,DT )−disρ(S, T )
∣∣∣≤
√

1

2m

[
2KL(ρ‖π)+ln

4
√
m

δ

]

+

√√√√ 1

2m′

[
2KL(ρ‖π)+ln

4
√
m′

δ

]
.

Proof. Let us consider the non-negative random vari-
able,

E
(h,h′)∼π2

e2m(RDS (h,h
′)−RS(h,h′))2 .

We apply Markov’s inequality (Lemma 1). For every
δ ∈ (0, 1], with a probability at least 1 − δ over the
choice of S ∼ (DS)m, we have,

E
(h,h′)∼π2

e2m(RDS (h,h
′)−RS(h,h′))2

≤ 1

δ
E

S∼(DS)m
E

(h,h′)∼π2
e2m(RDS (h,h

′)−RS(h,h′))2 .
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By taking the logarithm on each side of the previous
inequality and transforming the expectation over π2

into an expectation over ρ2, we obtain that for every
δ ∈ (0, 1], with a probability at least 1 − δ over the
choice of S ∼ (DS)m, and for every posterior distribu-
tion ρ, we have,

ln

[
E

(h,h′)∼ρ2
π(h)π(h′)

ρ(h)ρ(h′)
e2m(RDS (h,h

′)−RS(h,h′))2
]

≤ ln

[
1

δ
E

S∼(DS)m
E

(h,h′)∼π2
e2m(RDS (h,h

′)−RS(h,h′))2
]
.

Since ln(·) is a concave function, we can apply the
Jensen’s inequality (Lemma 2). Then, for every δ ∈
(0, 1], with a probability at least 1− δ over the choice
of S ∼ (DS)m, and for every posterior distribution ρ,
we have,

E
(h,h′)∼ρ2

ln

[
π(h)π(h′)

ρ(h)ρ(h′)
e2m(RDS (h,h

′)−RS(h,h′))2
]

≤ ln

[
1

δ
E

S∼(DS)m
E

(h,h′)∼π2
e(2m(RDS (h,h

′)−RS(h,h′))2
]
.

By the Equation (8),

E
(h,h′)∼ρ2

ln

[
π(h)π(h′)

ρ(h)ρ(h′)

]
= −2KL(ρ‖π).

For every δ ∈ (0, 1], with a probability at least 1 − δ
over the choice of S ∼ (DS)m, and for every posterior
distribution ρ, we have,

− 2KL(ρ‖π) + E
(h,h′)∼ρ2

m 2(RDS (h, h′)−RS(h, h′))2

≤ ln

[
1

δ
E

S∼(DS)m
E

(h,h′)∼π2
e2m(RDS (h,h

′)−RS(h,h′))2
]
.

Since 2(a − b)2 is a convex function, we again apply
Jensen inequality,(

E
(h,h′)∼ρ2

(RDS (h, h′)−RS(h, h′))

)2

≤ E
(h,h′)∼ρ2

(RDS (h, h′)−RS(h, h′))2.

Thus, for every δ ∈ (0, 1], with a probability at least
1 − δ over the choice of S ∼ (DS)m, and for every
posterior distribution ρ, we have,

2m

(
E

(h,h′)∼ρ2
RDS (h, h′)− E

h,h′∼ρ2
RS(h, h′)

)2

≤ 2KL(ρ‖π)

+ ln

[
1

δ
E

S∼(DS)m
E

(h,h′)∼π2
e2m(RDS (h,h

′)−RS(h,h′))2
]
.

Let us now bound,

ln

[
1

δ
E

S∼(DS)m
E

(h,h′)∼π2
e2m(RDS (h,h

′)−RS(h,h′))2
]
.

To do so, we have,

E
S∼(DS)m

E
(h,h′)∼π2

e2m(RDS (h,h
′)−RS(h,h′))2

= E
(h,h′)∼π2

E
S∼(DS)m

e2m(RDS (h,h
′)−RS(h,h′))2 (18)

≤ E
(h,h′)∼π2

E
S∼(DS)m

ekl(RS(h,h
′)‖RDS (h,h

′)) (19)

≤ 2
√
m. (20)

Line (18) comes from the independence between DS

and π2. The Pinsker’s inequality,

2(q − p)2 ≤ kl(q‖p) for any p, q ∈ [0, 1],

gives Line (19). The last Line (20) comes from the
Maurer’s lemma (Lemma 4).

Thus for every δ ∈ (0, 1], with a probability at least
1 − δ over the choice of S ∼ (DS)m, and for every
posterior distribution ρ, we obtain,

2m

(
E

(h,h′)∼ρ2
RDS (h, h′)− E

(h,h′)∼ρ2
RS(h, h′)

)2

≤ 2KL(ρ‖π) + ln
2
√
m

δ

⇔
(

E
(h,h′)∼ρ2

RDS (h, h′)− E
(h,h′)∼ρ2

RS(h, h′)

)2

≤ 1

2m

[
2KL(ρ‖π) + ln

2
√
m

δ

]
⇔

∣∣∣∣ E
(h,h′)∼ρ2

RDS (h, h′)− E
(h,h′)∼ρ2

RS(h, h′)

∣∣∣∣
≤

√
1

2m

[
2KL(ρ‖π) + ln

2
√
m

δ

]
. (21)

Following the same proof process for bounding∣∣∣∣ E
(h,h′)∼ρ2

RDT (h, h′)− E
(h,h′)∼ρ2

RT (h, h′)

∣∣∣∣, we obtain

the following result.

For every δ ∈ (0, 1], with a probability at least 1 − δ
over the choice of T ∼ (DT )m

′
, and for every posterior

distribution ρ,∣∣∣∣ E
(h,h′)∼ρ2

RDT (h, h′)− E
(h,h′)∼ρ2

RT (h, h′)

∣∣∣∣
≤

√√√√ 1

2m′

[
KL(ρ‖π) + ln

2
√
m′

δ

]
. (22)

Finally, let us substitute δ by δ
2 in Inequalities (21)

and (22). This, together with the union bound that
assure that both results hold simultaneously, gives the
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result because,∣∣∣∣ E
(h,h′)∼ρ2

[RDT (h, h′)−RDS (h, h′)]

∣∣∣∣ = disρ(DS , DT ),∣∣∣∣ E
(h,h′)∼ρ2

[RT (h, h′)−RS(h, h′)]

∣∣∣∣ = disρ(S, T ),

and because if |a1 − b1| ≤ c1 and |a2 − b2| ≤ c2, then
|(a1 − a2)− (b1 − b2)| ≤ c′1 + c′2.

Then we can obtain the following PAC-Bayesian DA-
bound.

Theorem 11. For any domains PS and PT (respec-
tively with marginals DS and DT ) over X × Y , and
for any set H of hypothesis, for any prior distribution
π over H, any δ ∈ (0, 1], with a probability at least
1 − δ over the choice of S1 ∼ (DS)m, S2 ∼ (DS)m

′
,

and T ∼ (DT )m
′
, for every ρ over H, we have,

RPT (Gρ)−RPT (Gρ∗T ) ≤ RS(Gρ)+disρ(S, T ) + λρ

+

√
1

2m

[
KL(ρ‖π)+ln

4
√
m

δ

]

+

√
1

2m

[
2KL(ρ‖π)+ln

8
√
m

δ

]

+

√√√√ 1

2m′

[
2KL(ρ‖π)+ln

8
√
m′

δ

]
.

where λρ
def
= RDT (Gρ, Gρ∗T ) +RDS (Gρ, Gρ∗T ) .

Proof. The result is obtained by inserting Ths. 9 and
10 (with δ := δ

2 ) in Th. 4 of the main paper.

4. PBDA Algorithm Details

4.1. Objective function and gradient

Given a source sample S={(xsi , ysi )}mi=1, a target sam-
ple T = {(xti)}mi=1, and fixed parameters A > 0 and
C > 0, the learning algorithm PBDA consists in find-
ing the weight vector w minimizing,

‖w‖2

2
+C

m∑
i=1

Φcvx

(
ysi

w · xsi
‖xsi‖

)

+A

∣∣∣∣∣
m∑
i=1

Φdis

(
w · xsi
‖xsi‖

)
−Φdis

(
w · xti
‖xti‖

)∣∣∣∣∣ , (23)

where, Erf being the Gauss error function,

Φ(a)
def
= 1

2

[
1−Erf

(
a√
2

)]
,

Φcvx(a)
def
= max

[
Φ(a), 1

2−
a√
2π

]
,

Φdis(a)
def
= 2× Φ(a)× Φ(−a) .
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Figure 1. Behaviour of functions Φ(·), Φcvx(·) and Φdis(·).

Figure 1 illustrates these three functions.

The gradient of the Equation (23) is given by,

w+C

m∑
i=1

Φ′cvx

(
ysiw·x

s
i

‖xsi‖

)
ysi x

s
i

‖xsi‖

+ s×A

[
m∑
i=1

Φ′dis

(
w·xti
‖xti‖

)
xti
‖xti‖
− Φ′dis

(
w·xsi
‖xsi‖

)
xsi
‖xsi‖

]
,

where Φ′cvx(a) and Φ′dis(a) are respectively the deriva-
tives of functions Φcvx and Φdis evaluated at point a,

and s = sgn

[
m∑
i=1

Φdis

(
w·xsi
‖xsi‖

)
−Φdis

(
w·xti
‖xti‖

)]
.

4.2. Using a kernel function

The kernel trick allows us to work with dual weight
vector ααα ∈ R2m that is a linear classifier in an aug-
mented space. Given a kernel k : Rd×Rd → R, we
have,

hw(x) =

m∑
i=1

αik(xsi ,x) +

m∑
i=1

αi+mk(xti,x) .

Let us denote K the kernel matrix of size 2m × 2m
such as,

Ki,j = k(xi,xj)

where,

x# =

{
xs# if # ≤ m
xt#−m otherwise.

In that case, the objective function of Equation (23)
is rewritten in term of the vector ααα = (α1, α2, . . . α2m)
as,

1

2

2m∑
i=1

2m∑
j=1

αiαjKi,j + C

m∑
i=1

Φcvx

(
ysi

∑2m
j=1 αjKi,j√

Ki,i

)

+A

∣∣∣∣∣
m∑
i=1

Φdis

(∑2m
j=1 αjKi,j√

Ki,i

)
−Φdis

(∑2m
j=1 αjKi+m,j√
Ki+m,i+m

)∣∣∣∣∣ .
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The gradient of the latter equation is given by the
vector ααα′ = (α′1, α

′
2, . . . α

′
2m), with α′# equals to,

2m∑
j=1

αiKi,# + C

m∑
i=1

Φcvx

(
ysi

∑2m
j=1 αjKi,j√

Ki,i

)
ysi Ki,#√
Ki,i

+ s×A

[
m∑
i=1

Φdis

(∑2m
j=1 αjKi,j√

Ki,i

)
Ki,#√
Ki,i

−Φdis

(∑2m
j=1 αjKi+m,j√
Ki+m,i+m

)
Ki+m,#√
Ki+m,i+m

]
,

where,

s = sgn

[
m∑
i=1

Φdis

(∑2m
j=1 αjKi,j√

Ki,i

)
−Φdis

(∑2m
j=1 αjKi+m,j√
Ki+m,i+m

)]
.

4.3. Implementation details

For our experiments, we minimize the objective
function using a Broyden-Fletcher-Goldfarb-Shanno
method (BFGS) implemented in the scipy python li-
brary1. We made our code available at the following
URL:

http://graal.ift.ulaval.ca/pbda/

When selecting hyperparameters by reverse cross-
validation, we search on a 20 × 20 parameter grid for
a A between 0.01 and 106 and a parameter C between
1.0 and 108, both on a logarithm scale.
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