
One-Pass AUC Optimization

Wei Gao gaow@lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Rong Jin rongjin@cse.msu.edu

Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA

Shenghuo Zhu zsh@nec-labs.com

NEC Laboratories America, CA, 95014, USA

Zhi-Hua Zhou zhouzh@lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Abstract

AUC is an important performance measure
and many algorithms have been devoted to
AUC optimization, mostly by minimizing a
surrogate convex loss on a training data set.
In this work, we focus on one-pass AUC op-
timization that requires going through the
training data only once without storing the
entire training dataset, where conventional
online learning algorithms cannot be applied
directly because AUC is measured by a sum
of losses defined over pairs of instances from
different classes. We develop a regression-
based algorithm which only needs to main-
tain the first and second-order statistics of
training data in memory, resulting a stor-
age requirement independent from the size
of training data. To efficiently handle high-
dimensional data, we develop a randomized
algorithm that approximates the covariance
matrices by low-rank matrices. We verify,
both theoretically and empirically, the effec-
tiveness of the proposed algorithm.

1. Introduction

AUC (Area Under ROC curve) (Metz, 1978;
Hanley & McNeil, 1983) is an important perfor-
mance measure that has been widely used in many
tasks (Provost et al., 1998; Cortes & Mohri, 2004;

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Liu et al., 2009; Flach et al., 2011). Many algorithms
have been developed to optimize AUC based on sur-
rogate losses (Herschtal & Raskutti, 2004; Joachims,
2006; Rudin & Schapire, 2009; Kotlowski et al., 2011;
Zhao et al., 2011).

In this work, we focus on AUC optimization that re-
quires only one pass of training examples. This is par-
ticularly important for applications involving big data
or streaming data in which a large volume of data come
in a short time period, making it infeasible to store
the entire data set in memory before an optimization
procedure is applied. Although many online learning
algorithms have been developed to find the optimal so-
lution of some performance measures by only scanning
the training data once (Cesa-Bianchi & Lugosi, 2006),
few effort addresses one-pass AUC optimization.

Unlike the classical classification and regression prob-
lems where the loss function can be calculated on
a single training example, AUC is measured by the
losses defined over pairs of instances from different
classes, making it challenging to develop algorithms for
one-pass optimization. An online AUC optimization
algorithm was proposed very recently by Zhao et al.
(2011). It is based on the idea of reservoir sampling,
and achieves a solid regret bound by only storing

√
T

instances, where T is the number of training examples.
Ideally, for one-pass approaches, it is crucial that the
storage required by the learning process should be in-
dependent from the amount of training data, because
it is often quite difficult to expect how many data will
be received in those applications.

In this work, we propose a regression-based algorithm
for one-pass AUC optimization in which a square loss

One-Pass AUC Optimization

is used to measure the ranking error between two in-
stances from different classes. The main advantage of
using the square loss lies in the fact that it only needs
to store the first and second-order statistics for the
received training examples. Consequently, the storage
requirement is reduced to O(d2), where d is the dimen-
sion of data, independent from the number of training
examples. To deal with high-dimensional data, we de-
velop a randomized algorithm that approximates the
covariance matrix of d × d by a low-rank matrix. We
show, both theoretically and empirically, the effective-
ness of our proposal algorithm by comparing to state-
of-the-art algorithms for AUC optimization.

Section 2 introduces some preliminaries. Sections 3
proposes the OPAUC (One Pass AUC) framework.
Section 4 provides theoretical analysis. Section 5
presents our experimental results. Section 6 concludes
with future work.

2. Preliminaries

We denote by X ∈ Rd an instance space and Y =
{+1,−1} the label set, and let D denote an unknown
(underlying) distribution over X ×Y. A training sam-
ple of n+ positive instances and n− negative ones

S = {(x+
1 , +1), (x+

2 , +1), . . . , (x+
n+

, +1),

(x−
1 ,−1), (x−

2 ,−1), . . . , (x−
n−

,−1)}

is drawn identically and independently according to
distribution D, where we do not fix n+ and n− before
the training sample is chosen. Let f : X → R be a
real-valued function. Then, the AUC of function f on
the sample S is defined as

∑n+

i=1

∑n−

j=1

I[f(x+
i) > f(x−

j)] + 1
2 I[f(x+

i) = f(x−
j)]

n+n−

where I[·] is the indicator function which returns 1 if
the argument is true and 0 otherwise.

Direct optimization of AUC often leads to an NP-hard
problem as it can be cast into a combinatorial opti-
mization problem. In practice, it is approximated by
a convex optimization problem that minimizes the fol-
lowing objective function

L(w) =
λ

2
|w|2 +

∑n+

i=1

∑n−

j=1

ℓ
(
w⊤(x+

i − x−
j)

)
2n+n−

(1)

where ℓ is a convex loss function and λ is the regular-
ization parameter that controls the model complexity.
Notice that each loss term ℓ(w⊤(x+

i − x−
j)) involves

two instances from different classes; therefore, it is dif-
ficult to extend online learning algorithms for one-pass

AUC optimization without storing all the training in-
stances. Zhao et al. (2011) addressed this challenge by
exploiting the reservoir sampling technique.

3. The OPAUC Approach

To address the challenge of one-pass AUC optimiza-
tion, we propose to use the square loss in Eq. (1), i.e.,

L(w) =
λ

2
|w|2 +

n+∑
i=1

n−∑
j=1

(
1 − w⊤(x+

i − x−
j)

)2

2n+n−
. (2)

The main advantage of using the square loss lies in the
fact that it is sufficient to store the first and second-
order statistics of training examples for optimization,
leading to a memory requirement of O(d2), which is
independent from the number of training examples.
Another advantage is that the square loss is consistent
with AUC, as will be shown by Theorem 1 (Section 4).
In contrast, loss functions such as hinge loss are proven
to be inconsistent with AUC (Gao & Zhou, 2012).

As aforementioned, the classical online setting can-
not be applied to one-pass AUC optimization because,
even if the optimization problem of Eq. (2) has a closed
form, it requires going through the training examples
multiple times. To address this challenge, we modify
the overall loss L(w) in Eq. (2) (with a little varia-
tion) as a sum of losses for individual training instance∑T

t=1 Lt(w), where

Lt(w) =
λ

2
|w|2+

∑t−1
i=1 I[yi ̸= yt](1 − yt(xt − xi)⊤w)2

2|{i ∈ [t − 1] : yiyt = −1}|

for i.i.d. sequence St = {(x1, y1), . . . , (xt, yt)}, and it
is an unbiased estimation to L(w). For simplicity, we
denote by X+

t and X−
t the sets of positive and negative

instances in sequence St, respectively, and we further
denote by T+

t and T−
t their respective cardinalities.

Also, we set Lt(w) = 0 for T+
t T−

t = 0.

If yt = 1, we calculate the gradient as

∇Lt(w) = λw + xtx⊤
t w − xt

+
∑

i : yi=−1

(
xi + (xix⊤

i − xix⊤
t − xtx⊤

i)w
)
/T−

t . (3)

It is easy to observe that c−t =
∑

i : yi=−1 xi/T−
t and

S−
t =

∑
i : yi=−1(xix⊤

i − c−t [c−t]⊤)/T−
t correspond to

the mean and covariance matrix of negative class, re-
spectively; thus, Eq. (3) can be further simplified as

∇Lt(w) = λw − xt + c−t
+ (xt − c−t)(xt − c−t)⊤w + S−

t w. (4)

One-Pass AUC Optimization

Algorithm 1 The OPAUC Algorithm
Input: The regularization parameter λ > 0 and step-
sizes {ηt}T

t=1.
Initialization: Set T+

0 = T−
0 = 0, c+

0 = c−0 = 0,
w0 = 0 and Γ+

0 = Γ−
0 = [0]d×u for some u > 0

1: for t = 1, 2, . . . , T do
2: Receive a training example (xt, yt)
3: if yt = +1 then
4: T+

t = T+
t−1 + 1 and T−

t = T−
t−1;

5: c+
t = c+

t−1 + 1
T+

t

(xt − c+
t−1) and c−t = c−t−1;

6: Update Γ+
t and Γ−

t = Γ−
t−1;

7: Calculate the gradient ĝt(wt−1)
8: else
9: T−

t = T−
t−1 + 1 and T+

t = T+
t−1;

10: c−t = c−t−1 + 1
T−

t

(xt − c−t−1) and c+
t = c+

t−1;

11: Update Γ−
t and Γ+

t = Γ+
t−1;

12: Calculate the gradient ĝt(wt−1)
13: end if
14: wt = wt−1 − ηtĝt(wt−1)
15: end for

In a similar manner, we calculate the following gradi-
ent for yt = −1:

∇Lt(w) = λw + xt − c+
t

+ (xt − c+
t)(xt − c+

t)⊤w + S+
t w (5)

where S+
t =

∑
i : yi=1(xix⊤

i − c+
t [c+

t]⊤)/T+
t and c+

t

=
∑

i : yi=1 xi/T+
t are the covariance matrix and mean

of positive class, respectively.

The storage cost for keeping the class means (c+
t

and c−t) and covariance matrices (S+
t−1 and S−

t−1) is
O(d2). Once we get the gradient ∇Lt(w), by theory
of stochastic gradient descent, the solution can be up-
dated by wt+1 = wt − ηt∇Lt(wt), where ηt is the
stepsize for the t-th iteration.

Algorithm 1 highlights the key steps of the proposed
algorithm. We initialize Γ−

0 = Γ+
0 = [0]d×d, where u =

d. At each iteration, we set Γ+
t = S+

t and Γ−
t = S−

t ,
and update Γ+

t (Line 6) and Γ−
t (Line 11), respectively,

by using the following equations

Γ+
t = Γ+

t−1 +
xtx

⊤
t −Γ+

t−1

T+
t

+ c+
t−1[c

+
t−1]

⊤ − c+
t [c+

t]⊤,

Γ−
t = Γ−

t−1 +
xtx

⊤
t −Γ−

t−1

T−
t

+ c−t−1[c
−
t−1]

⊤ − c−t [c−t]⊤.

Finally, the stochastic gradient ĝt(wt−1) of Lines 7 and
12 in Algorithm 1 are given by ∇Lt(wt−1) that are
calculated by Eqs. (4) and (5), respectively.

Dealing with High-Dimensional Data. One lim-
itation of the approach in Algorithm 1 is that the stor-
age cost of the two covariance matrices S+

t and S−
t is

O(d2), making it unsuitable for high-dimensional data.
We tackle this by developing a randomized algorithm
that approximates the covariance matrices by low-rank
matrices. We are motivated by the observation that
S+

t and S−
t can be written, respectively, as

S+
t = 1

T+
t

(
X+

t − c+
t 1⊤

T+
t

)
IT+

t

(
X+

t − c+
t 1T+

t

)⊤
,

S−
t = 1

T−
t

(
X−

t − c−t 1⊤
T−

t

)
IT−

t

(
X−

t − c−t 1T−
t

)⊤
,

where It is an identity matrix of size t × t and 1t is
an all-one vector of size t. To approximate S+

t and
S−

t , we approximate the identify matrix It by a ma-
trix of rank τ ≪ d. To this end, we randomly sam-
ple ri ∈ Rτ , i = 1, . . . , t from a Gaussian distribu-
tion N (0, Iτ), and approximate It by RtR

⊤
t , where

Rt = 1
τ (r1, . . . , rt)⊤ ∈ Rt×τ . We further divide Rt into

two matrices where R+
t ∈ RT+

t ×τ and R−
t ∈ RT−

t ×τ

that contain the subset of the rows in Rt correspond-
ing to all the positive and negative instances received
before the t-th iteration, respectively. Therefore, the
covariance matrices S+

t and S−
t can be approximated,

respectively, by

Ŝ+
t = 1

T+
t

Z+
t [Z+

t]⊤ − ĉ+
t−1[ĉ

+
t−1]

⊤,

Ŝ−
t = 1

T−
t

Z−
t [Z−

t]⊤ − ĉ−t−1[ĉ
−
t−1]

⊤,

where Z+
t = X+

t R+
t , ĉ+

t = c+
t 1⊤

T+
t

R+
t /T+

t , Z−
t =

X−
t R−

t and ĉ−t = c−t 1⊤
T−

t

R−
t /T−

t . Based on approx-

imate covariance matrix Ŝ±
t , the approximation algo-

rithm essentially tries to minimize
∑T

t=1 L̂t(w), where

L̂t(w) = w⊤(c−t−1 − xt) + (1 + w⊤Ŝ−
t w)/2

+ λ|w|2/2 + w⊤(xt − c−t−1)(xt − c−t−1)
⊤w/2 (6)

if yt = 1; otherwise,

L̂t(w) = w⊤(xt − c+
t−1) + (1 + w⊤Ŝ+

t w)/2

+ λ|w|2/2 + w⊤(xt − c+
t−1)(xt − c+

t−1)
⊤w/2. (7)

Further, we have the following recursive formulas:

Z+
t = Z+

t−1 + xtr⊤t I[yt = +1]/
√

m, (8)

Z−
t = Z−

t−1 + xtr⊤t I[yt = −1]/
√

m. (9)

It is important to notice that we do not need to calcu-
late and store the approximate covariance matrices Ŝ+

t

and Ŝ−
t explicitly. Instead, we only need to maintain

One-Pass AUC Optimization

matrices Z+
t and Z−

t in memory. This is because the
stochastic gradient ĝt(w) based on the approximate
covariance matrices can be computed directly from Z+

t

and Z−
t . More specifically, ĝt(w) is computed as

ĝt(w) = c−t−1 −xt + λw + (xt − c−t−1)(xt − c−t−1)
⊤w

+
(
Z−

t [Z−
t]⊤/T−

t − ĉ−t−1[ĉ
−
t−1]

⊤)
w (10)

for yt = 1; otherwise

ĝt(w) = xt − c+
t−1 + λw + (xt − c+

t−1)(xt − c+
t−1)

⊤w

+
(
Z+

t [Z+
t]⊤/T+

t − ĉ+
t−1[ĉ

+
t−1]

⊤)
w. (11)

We require a memory of O(τd) instead of O(d2) to cal-
culate ĝt(w) by using the trick A[A]⊤w = A([A]⊤w),
where A ∈ Rd×1 or Rd×τ .

To implement the approximate approach, we initialize
Γ−

0 = Γ+
0 = [0]d×τ in Algorithm 1, where u = τ . At

each iteration, we set Γ+
t = Z+

t and Γ−
t = Z−

t , and
compute the gradient ĝt(wt−1) of Lines 7 and 12 in
Algorithm 1 by Eqs. (10) and (11), respectively. Γ+

t

and Γ−
t are updated by Eqs. (8) and (9), respectively.

Remark. An alternative approach for the high-
dimensional case is through the random projec-
tion (Johnstone, 2006; Hsu et al., 2012). Let H ∈
Rd×τ be a random Gaussian matrix, where τ ≪ d. By
performing random projection using H, we compute
a low-dimensional representation for each instance xt

as x̂t = H⊤xt ∈ Rτ and will only maintain covariance
matrices of size τ×τ in memory. Despite that it is com-
putationally attractive, this approach performs signif-
icantly worse than the randomized low-rank approx-
imation algorithm, according to our empirical study.
This may owe to the fact that the random projection
approach is equivalent to approximating S±

t = IdS
±
t Id

by HH⊤S±
t HH⊤, which replaces both the left and

right identity matrices of S±
t with HH⊤. In contrast,

our proposed approach only approximates one iden-
tity matrix in S±

t , making it more reliable for tackling
high-dimensional data.

4. Main Theoretical Results

This section presents our main theoretical results. Due
to the page limit, we present the detailed proofs and
analysis in a longer version (Gao et al., 2013). We first
prove the consistency of square loss:

Theorem 1 For square loss ℓ(t) = (1 − t)2, the sur-
rogate loss Ψ(f, x, x′) = ℓ(f(x) − f(x′)) is consistent
with AUC.

Proof Sketch: Let X = {x1,x2, . . . ,xn} with
marginal probability pi > 0 and conditional proba-

bility ξi, and we denote by the expected risk

RΨ(f) =
∑

i ̸=j
pipj

(
ξi(1 − ξj)ℓ(f(xi) − f(xj))

+ ξj(1 − ξi)ℓ(f(xj) − f(xi))
)

+ C0

where ℓ(t) = (1 − t)2 and C0 is a constant w.r.t. f .
According to (Gao & Zhou, 2012), it suffices to prove
that, for every solution f s.t. RΨ(f) = inff ′ RΨ(f ′),
we have f(xi) > f(xj) if ξi > ξj .

If X = {x1,x2}, then minimizing Rϕ(f) gives the op-
timal solution f(x1)−f(x2) = sgn(ξ1−ξ2) for ξ1 ̸= ξ2,
and this shows the consistency.

If X = {x1, · · · ,xn} for n ≥ 3, and if ξi(1− ξi) = 0 for
every i ∈ [n], then minimizing Rϕ(f) gives the optimal
solution f(xi) = f(xj) + 1 for each pair of ξi = 1 and
ξj = 0; this also shows the consistency.

If X = {x1, · · · ,xn} for n ≥ 3, and if ξi0(1 − ξi0) ̸= 0
for some i0 ∈ [n], then subgradient conditions give∑
k ̸=i

pk(ξi + ξk −2ξiξk)(f(xi)−f(xk)) =
∑
k ̸=i

pk(ξi − ξk)

for i ∈ [n]. Solving the above n linear equations yields

f(xi) − f(xj) =
ξi − ξj

∆

∏
k ̸=i,j

n∑
l=1

pl(ξl + ξk − 2ξlξk)

where ∆ > 0 is a polynomial in pk and ξ[k1] + ξ[k2] −
2ξ[k1]ξ[k2] for k, k1, k2 ∈ [n]. The theorem follows.

Define w∗ = arg minw

∑
t Lt(w). The following theo-

rem shows the convergence rate for Algorithm 1 when
the full covariance matrices are provided.

Theorem 2 For ∥xt∥ ≤ 1 (t ∈ [T]), ∥w∗∥ ≤ B and
TL∗ ≥

∑T
t=1 Lt(w∗), we have∑

t
Lt(wt) −

∑
t
Lt(w∗) ≤ 2κB2 + B

√
2κTL∗,

where κ = 4 + λ and ηt = 1/(κ +
√

(κ2 + κTL∗/B2).

This theorem presents an O(1/T) convergence rate for
the OPAUC algorithm if the distribution is separable,
i.e., L∗ = 0, and an O(1/

√
T) convergence rate for

general case. Compared to the online AUC optimiza-
tion algorithm (Zhao et al., 2011), which achieves at
most O(1/

√
T) convergence rate, our proposed algo-

rithm clearly reduce the regret. The faster convergence
rate of our proposed algorithm owes to the smooth-
ness of the square loss, an important property that
has been explored by some studies of online learning
(Rakhlin et al., 2012) and generalization error bound
analysis (Srebro et al., 2010).

One-Pass AUC Optimization

Remark: The bound in Theorem 2 does not explic-
itly explore the strongly convexity of Lt(w), which can
lead to an O(1/T) convergence rate. Instead, we focus
on exploiting the smoothness of the loss function, since
we did not introduce a bounded domain for w. Due
to the regularizer λ|w|2/2, we have |w∗| ≤ 1/λ, and it
is reasonable to restrict wt by |wt| ≤ 1/λ, leading to
a regret bound of O(lnT/[λ3T]) by applying the stan-
dard stochastic gradient descent with ηt = 1/[λt]. This
bound is preferred only when λ = Ω(T−1/6), a scenario
which rarely occurs in empirical study. This problem
may also be addressable by exploiting the epoch gra-
dient method (Nocedal & Wright, 1999), a subject of
future study.

We now consider the case when covariance matrices
are approximated by low-rank matrices. Note that the
low-rank approximation is accurate only if the eigen-
values of covariance matrices follow a skewed distribu-
tion. To capture the skewed eigenvalue distribution,
we introduce the concept of effective numerical rank
(Hansen, 1987) that generalizes the rank of matrix:

Definition 1 For a positive constant µ > 0 and semi-
positive definite matrix M ∈ Rd×d of eigenvalues {νi},
the effective numerical rank w.r.t. µ is defined to be
r(M,µ) =

∑d
i=1 νi/(µ + νi).

It is evident that the effective numerical rank is upper
bounded by the true rank, i.e., r(M, µ) ≤ rank(M).
To further see how the concept of effective numerical
rank captures the skewed eigenvalue distribution, con-
sider a PSD matrix M of full rank with

∑d
i=k νi ≤ µ

for small k. It is easy to verify that r(M,µ) ≤ k, i.e.,
M can be well approximated by a matrix of rank k.

Define the effective numerical rank for a set of matrices
{Mt}T

t=1 as r
(
{Mt}T

t=1, µ
)

= max1≤t≤T r(Mt, µ). Un-
der the assumption that the effective numerical rank
for the set of covariance matrices {S±

t }T
t=1 is small (i.e.,

S±
t can be well approximated by low-rank matrices),

the following theorem gives the convergence rate for
|
∑

t L̂t(wt) −
∑

t Lt(w∗)|, where L̂t(wt) are given by
Eqs. (6) and (7).

Theorem 3 Let r = r({S±
t }T

t=1, λ) be the effective
numerical rank for the sequence of covariance matrices
{S±

t }T
t=1. For 0 < δ < 1, 0 < ϵ ≤ 1/2, ∥w∗∥ ≤ B,

∥xt∥ ≤ 1 (t ∈ [T]) and TL∗ ≥
∑T

t=1 Lt(w∗), we have
with probability at least 1 − δ,∣∣∣∑

t

(
L̂t(wt) − Lt(w∗)

)∣∣∣ ≤ 2ϵTL∗+2κB2 + B
√

2κTL∗

provided τ ≥ 32rλ(log 2dT/δ)/ϵ2, where κ = 4+λ and
ηt = 1/(κ +

√
(κ2 + κTL∗/B2).

Table 1. Benchmark datasets

datasets #inst #feat datasets #inst #feat

diabetes 768 8 w8a 49,749 300

fourclass 862 2 kddcup04 50,000 65

german 1,000 24 mnist 60,000 780

splice 3,175 60 connect-4 67,557 126

usps 9,298 256 acoustic 78,823 50

letter 15,000 16 ijcnn1 141,691 22

magic04 19,020 10 epsilon 400,000 2,000

a9a 32,561 123 covtype 581,012 54

For the separable distribution L∗ = 0, we also obtain
an O(1/T) convergence rate when the covariance ma-
trices are approximated by low-rank matrices. Com-
pared with Theorem 2, Theorem 3 introduces an ad-
ditional term 2ϵL∗ in the bound when using the ap-
proximate covariance matrices, and it is noteworthy
that the approximation does not significantly increase
the bound of Theorem 2 if 2ϵTL∗ ≤ B

√
2(4 + λ)TL∗,

i.e., ϵ ≤ B
√

2(λ + 4)/TL∗. This implies that the ap-
proximate algorithm will achieve similar performance
as the one using the full covariance matrices provided
τ = Ω(rλT (log d+log T)/(λ+4)). When λ = O(1/T),
this requirement is reduced to τ = Ω(r[log d + log T]),
a logarithmic dependence on dimension d.

5. Experiments

We evaluate the performance of OPAUC on bench-
mark datasets and high-dimensional datasets in Sec-
tions 5.1 and 5.2, respectively. Then, we study the
parameter influence in Section 5.3.

5.1. Comparison on Benchmark Data

We conduct our experiments on sixteen benchmark
datasets1,2,3 as summarized in Table 1. Some datasets
have been used in previous studies on AUC optimiza-
tion, whereas the other are large ones requiring one-
pass procedure. The features have been scaled to
[−1, 1] for all datasets. Multi-class datasets have been
transformed into binary ones by randomly partition-
ing classes into two groups, where each group contains
the same number of classes.

In addition to state-of-the-art online AUC approaches
OAMseq and OAMgra (Zhao et al., 2011), we also
compare with:
• online Uni-Exp: An online learning algorithm

which optimizes the (weighted) univariate expo-
nential loss (Kotlowski et al., 2011);

1http://www.sigkdd.org/kddcup/
2http://www.ics.uci.edu/˜mlearn/MLRepository.html
3http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/

One-Pass AUC Optimization

Table 2. Comparison of the testing AUC values (mean±std.) on benchmark datasets. •/◦ indicates that OPAUC is
significantly better/worse than the corresponding method (pairwise t-tests at 95% significance level).

datasets OPAUC OAMseq OAMgra online Uni-Exp batch Uni-Log batch SVM-OR batch LS-SVM

diabetes .8309±.0350 .8264±.0367 .8262± .0338 .8215±.0309• .8330±.0322 .8326±.0328 .8325±.0329

fourclass .8310±.0251 .8306±.0247 .8295±.0251 .8281±.0305 .8288±.0307 .8305±.0311 .8309±.0309

german .7978±.0347 .7747±.0411• .7723±.0358• .7908±.0367 .7995±.0344 .7935±.0348 .7994±.0343

splice .9232±.0099 .8594±.0194• .8864±.0166• .8931±.0213• .9208±.0107• .9239±.0089 .9245±.0092◦

usps .9620±.0040 .9310±.0159• .9348±.0122• .9538±.0045• .9637±.0041◦ .9630±.0047◦ .9634±.0045◦

letter .8114±.0065 .7549±.0344• .7603±.0346• .8113±.0074 .8121±.0061 .8144±.0064◦ .8124±.0065◦

magic04 .8383±.0077 .8238±.0146• .8259±.0169• .8354±.0099• .8378±.0073 .8426±.0074◦ .8379±0.0078

a9a .9002±.0047 .8420±.0174• .8571±.0173• .9005±.0024 .9033±.0025◦ .9009±.0036 .8982±.0028•

w8a .9633±.0035 .9304±.0074• .9418±.0070• .7693±.0986• .9421±.0062• .9495±.0082• .9495±.0092•

kddcup04 .7912±.0039 .6918±.0412• .7097±.0420• .7851±.0050• .7900±.0039• .7903±.0039• .7898±.0039•

mnist .9242±.0021 .8615±.0087• .8643±.0112• .7932±.0245• .9334±.0021◦ .9340±.0020◦ .9336±.0025◦

connect-4 .8760±.0023 .7807±.0258• .8128±.0230• .8702±.0025• .8784±.0026◦ .8749±.0025• .8739±.0026•

acoustic .8192±.0032 .7113±.0590• .7711±.0217• .8171±.0034• .8253±.0032◦ .8262±.0032◦ .8210±.0033◦

ijcnn1 .9269±.0021 .9209±.0079• .9100±.0092• .9264±.0035 .9282±.0023◦ .9337±.0024◦ .9320±.0037◦

epsilon .9550±.0007 .8816±.0042• .8659±.0176• .9488±.0012• .8647±.0150• .8643±.0053• .8644±.0050•

covtype .8244±.0014 .7361±.0317• .7403±.0289• .8236±.0017 .8246±.0010 .8248±.0013 .8222±.0014•

win/tie/loss 14/2/0 14/2/0 10/6/0 4/6/6 4/6/6 6/4/6

Figure 1. Comparison of the running time (in seconds) of
OPAUC and online learning algorithms on benchmark data
sets. Notice that the y-axis is in log-scale.

• batch Uni-Log: A batch learning algorithm
which optimizes the (weighted) univariate logis-
tic loss (Kotlowski et al., 2011);

• batch SVM-OR: A batch learning algo-
rithm which optimizes the pairwise hinge loss
(Joachims, 2006);

• batch LS-SVM: A batch learning algorithm
which optimizes the pairwise square loss.

All experiments are performed with Matlab 7 on a
node of computational cluster with 16 CPUs (Intel
Xeon Due Core 3.0GHz) running RedHat Linux En-
terprise 5 with 48GB main memory. For batch algo-
rithms, due to memory limit, 8,000 training examples
are randomly chosen if training data size exceeds 8,000,
whereas only 2,000 training examples are used for the
epsilon dataset because of its high dimension.

Table 3. High-dimensional datasets

datasets #inst #feat datasets #inst #feat

sector 9,619 55,197 news20.binary 19,996 1,355,191

sector.lvr 9,619 55,197 rcv1v2 23,149 47,236

news20 15,935 62,061 ecml2012 456,886 98,519

Five-fold cross-validation is executed on training sets
to decide the learning rate ηt ∈ 2[−12:10] for online al-
gorithms, the regularized parameter λ ∈ 2[−10:2] for
OPAUC and λ ∈ 2[−10:10] for batch algorithms. For
OAMseq and OAMgra, the buffer sizes are fixed to be
100 as recommended in (Zhao et al., 2011). For uni-
variate approaches, the class ratios are chosen as done
in (Kotlowski et al., 2011).

The performances of the compared methods are eval-
uated by five trials of 5-fold cross validation, where
the AUC values are obtained by averaging over these
25 runs, as summarized in Table 2. It is evident that
OPAUC is better than the other three online algo-
rithms OAMseq, OAMgra and online Uni-Exp, par-
ticularly for large datasets. The win/tie/loss counts
show that OPAUC is clearly superior to these online
algorithms, as it wins for most times and never loses.
It is also observable that OPAUC is highly competi-
tive to the three batch learning algorithms; this is im-
pressive because these batch algorithms require stor-
ing the whole training dataset whereas OPAUC does
not store training data. Additionally, batch LS-SVM
which optimizes the square loss is comparable to the
other batch algorithms, verifying our argument that
square loss is effective for AUC optimization. We have
also compared with SVM-perf (Joachims, 2005), on-

One-Pass AUC Optimization

Table 4. Comparison of the testing AUC values (mean±std.) on high-dimensional datasets. •/◦ indicates that OPAUCr
is significantly better/worse than the corresponding method (pairwise t-tests at 95% significance level). ‘N/A’ means that
no results were obtained after running out 106 seconds (about 11.6 days).

datasets OPAUCr OAMseq OAMgra online Uni-Exp OPAUCf OPAUCrp OPAUCpca

sector .9292±.0081 .9163±.0087• .9043±.0100• .9215±.0034• .6228±.0145• .7286±.0619• .8853±.0114•

sector.lvr .9962±.0011 .9965±.0064 .9955±.0059 .9969±.0093 .6813±.0444• .9863±.0258• .9893±.0288•

news20 .8871±.0083 .8543±.0099• .8346±.0094• .8880±.0047 .5958±.0118• .7885±.0079• .8878±.0115

news20.binary .6389±.0136 .6314±.0131• .6351±.0135• .6347±.0092• .5068±.0086• .6212±.0072• N/A

rcv1v2 .9686±.0029 .9686±.0026 .9604±.0025• .9822±.0042◦ .6875±.0101• .9353±.0053• .9752±.0020◦

ecml2012 .9828±.0008 N/A .9657±.0055• .9820±.0016• .6601±.0036• .9355±.0047• N/A

line and batch univariate square loss, and our results
show that OPAUC is is significantly better than online
and batch univariate square loss, and highly competi-
tive to SVM-perf. Due to page limit, we present these
results in a longer version (Gao et al., 2013).

We also compare the running time of OPAUC and the
online algorithms OAMseq, OAMgra and online Uni-
Exp, and the average CPU time (in seconds) are shown
in Figure 1. As expected, online Uni-Exp takes the
least time cost because it optimizes on single-instance
(univariate) loss, whereas the other algorithms work
by optimizing pairwise loss. On most datasets, the
running time of OPAUC is competitive to OAMseq

and OAMgra, except on the mnist and epsilon datasets
which have the highest dimension in Table 1.

5.2. Comparison on High-Dimensional Data

Next, we study the performance of using low-rank ma-
trices to approximate the full covariance matrices, de-
noted by OPAUCr. Six datasets4,5 with nearly or
more than 50,000 features are used, as summarized
in Table 3. The news20.binary dataset contains two
classes, different from news20 dataset. The original
news20 and sector are multi-class datesets; in our ex-
periments, we randomly group the multiple classes into
two meta-classes each containing the same number of
classes, and we also use the sector.lvr dataset which re-
gards the largest class as positive whereas the union of
other classes as negative. The original ecml2012 and
rcv1v2 are multi-label datasets; in our experiments,
we only consider the label with the largest population,
and remove the features in ecml2012 dataset that take
zero values for all instances.

Besides the online algorithms OAMseq, OAMgra and
online Uni-Exp, we also evaluate three variants of
OPAUC to study the effectiveness of approximating
full covariance matrices with low-rank matrices:

• OPAUCf: Randomly selects 1, 000-dim features
4http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
5http://www.ecmlpkdd2012.net/discovery-challenge

Figure 2. Comparison of the running time on high-
dimensional datasets. Full black columns imply that no
result was obtained after running out 106 seconds.

and then works with full covariance matrices;
• OPAUCrp: Projects into a 1, 000-dim feature

space by Random Projection, and then works with
full covariance matrices;

• OPAUCpca: Projects into a 1, 000-dim feature
space obtained by Principle Component Analysis,
and then works with full covariance matrices.

Similar to Section 5.1, five-fold cross validation is exe-
cuted on training sets to decide the learning rate ηt ∈
2[−12:10] and the regularization parameter λ ∈ 2[−10:2].
Due to memory and computational limit, the buffer
sizes are set to 50 for OAMseq and OAMgra, and the
rank τ of OPAUCr is also set to 50. The performances
of the compared methods are evaluated by five trials
of 5-fold cross validation, where the AUC values are
obtained by averaging over these 25 runs.

The comparison results are summarized in Table 4 and
the average running time is shown in Figure 2. These
results clearly show that our approximate OPAUCr
approach is superior to the other compared methods.
Compared with OAMseq and OAMgra, the running
time costs are comparable whereas the performance
of OPAUCr is better. Online Uni-Exp is more effi-
cient than OPAUCr because it optimizes univariate
loss, but the performance of OPAUCr is highly com-
petitive or better, except on rcv1v2, the only dataset

One-Pass AUC Optimization

0

0.2

0.4

0.6

0.8

1

stepsize η
t

av
er

ag
e

A
U

C
german

2−82−12 20
22 24 26

28 2102−4
2−22−62−10 0

0.2

0.4

0.6

0.8

1
kddcup04

stepsize η
t

av
er

ag
e

A
U

C

2−12 20 24 210282−102−8 2−6 2−4 2−2 22
26

Figure 3. Influence of stepsize ηt

0

0.2

0.4

0.6

0.8

1

regularization parameter λ

av
er

ag
e

A
U

C

german

2−10
2−8 2−6 2−4 2−2 20

22
0

0.2

0.4

0.6

0.8

1
kddcup04

regularization parameter λ

av
er

ag
e

A
U

C

2−10 2−8 2−6 2−4 2−2 20 22

Figure 4. Influence of regularization parameter λ

with less than 50,000 features. Compared with the
three variants, OPAUCf and OPAUCrp are more effi-
cient, but with much worse performances. OPAUCpca

achieves a better performance on rcv1v2, but it is
worse on datasets with more features; particularly,
on the two datasets with the largest number of fea-
tures, OPAUCpca cannot return results even after run-
ning out 106 seconds (almost 11.6 days). Our ap-
proximate OPAUCr approach is significantly better
than all the other methods (if they return results) on
the two datasets with the largest number of features:
news.binary with more than 1 million features, and
ecml2012 with nearby 100 thousands features. These
observations validate the effectiveness of the low-rank
approximation used by OPAUCr for handling high-
dimensional data.

5.3. Parameter Influence

We study the influence of parameters in this section.
Figure 3 shows that stepsize ηt should not be set to
values bigger than 1, whereas there is a relatively
big range between [2−12, 2−4] where OPAUC achieves
good results. Figures 4 shows that OPAUC is not sen-
sitive to the value of regularization parameter λ given
that it is not set with a big value. Figure 5 shows that
OPAUCr is not sensitive to the values of rank τ , and it
works well even when τ = 50; this verifies Theorem 3
that a relatively small τ value suffices to lead to a good
approximation performance. Figure 6 compares stud-
ies the influence of the iterations for OPAUC, OAMseq

and OAMgra, and it is observable that OPAUC con-
vergence faster than the other two algorithms, which
verifies our theoretical argument in Section 4.

Due to page limit, we only present the results of two
datasets for the study of each parameter, but the
trends are similar on other datasets, and more results

0 50 100 150 200 250 300 350 400 450 500
0.8

0.85

0.9

0.95

1

rank τ

av
er

ag
e

A
U

C

sector.lvr

0 50 100 150 200 250 300 350 400 450 500
0.8

0.85

0.9

0.95

1

rank τ

av
er

ag
e

A
U

C

rcv1v2

Figure 5. Influence of rank τ

50 200 350 500 650 800
0.6

0.7

0.8

0.9

1

number of iterations

av
er

ag
e

A
U

C

german

OPAUC
OAM

gra

OAM
seq

50 400 750 1100 1450 1800 2150 2500
0.6

0.7

0.8

0.9

1
splice

number of iterations

av
er

ag
e

A
U

C

OPAUC
OAM

gra

OAM
seq

Figure 6. Influence of iterations

can be found in our longer version (Gao et al., 2013).

6. Conclusion

In this paper, we study one-pass AUC optimization
that requires going through the training data only
once, without storing the entire dataset. Here, a big
challenge lies in the fact that AUC is measured by
a sum of losses defined over pairs of instances from
different classes. We propose the OPAUC approach,
which employs a square loss and requires the storing
of only the first and second-statistics for the received
training examples. A nice property of OPAUC is that
its storage requirement is O(d2), where d is the dimen-
sion of data, independent from the number of training
examples. To handle high-dimensional data, we de-
velop an approximate strategy by using low-rank ma-
trices. The effectiveness of our proposed approach is
verified both theoretically and empirically. In partic-
ular, the performance of OPAUC is significantly bet-
ter than state-of-the-art online AUC optimization ap-
proaches, even highly competitive to batch learning
approaches; the approximate OPAUC is significantly
better than all compared methods on large datasets
with one hundred thousands or even more than one
million features. An interesting future issue is to de-
velop one-pass AUC optimization approaches not only
with a performance comparable to batch approaches,
but also with an efficiency comparable to univariate
loss optimization approaches.

Acknowledgements: The authors want to thank the re-

viewers for helpful comments and suggestions. This re-

search was partially supported by the NSFC (61073097,

61021062), 973 Program (2010CB327903), and ONR

Award (N000141210431, N00014-09-1-0663).

One-Pass AUC Optimization

References

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning,
and games. Cambridge University Press, 2006.

Cortes, C. and Mohri, M. AUC optimization vs. error
rate minimization. In Advances in Neural Informa-
tion Processing Systems 16, pp. 313–320. MIT Press,
Cambridge, MA, 2004.

Flach, P. A., Hernández-Orallo, J., and Ramirez, C. F.
A coherent interpretation of AUC as a measure of
aggregated classification performance. In Proceed-
ings of the 28th International Conference on Ma-
chine Learning, pp. 657–664, Bellevue, WA, 2011.

Gao, W. and Zhou, Z.-H. On the consistency of AUC
optimization. CoRR/abstract, 1208.0645, 2012.

Gao, W., Jin, R., Zhu, S., and Zhou, Z.-H. One-
pass AUC optimization. CoRR/abstract, 1305.1363,
2013.

Hanley, J. A. and McNeil, B. J. A method of compar-
ing the areas under receiver operating characteristic
curves derived from the same cases. Radiology, 148
(3):839–843, 1983.

Hansen, P. C. Rank-Deficient and Discrete Ill-Posed
Problems: Numerical Aspects of Linear Inversion.
SIAM, 1987.

Herschtal, A. and Raskutti, B. Optimising area under
the ROC curve using gradient descent. In Proceed-
ings of the 21st International Conference on Ma-
chine Learning, Alberta, Canada, 2004.

Hsu, D., Kakade, S., and Zhang, T. Random design
analysis of ridge regression. In Proceedings of the
25th Annual Conference on Learning Theory, pp.
9.1–9.24, Edinburgh, Scotland, 2012.

Joachims, T. A support vector method for multivariate
performance measures. In Proceedings of the 22nd
International Conference on Machine Learning, pp.
377–384, Bonn, Germany, 2005.

Joachims, T. Training linear svms in linear time.
In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pp. 217–226, Philadelphia, PA, 2006.

Johnstone, I. High dimensional statistical inference
and random matrices. In Proceedings of the Inter-
national Congress of Mathematicians, pp. 307–333,
Madrid, Spain, 2006.

Kotlowski, W., Dembczynski, K., and Hüllermeier, E.
Bipartite ranking through minimization of univari-
ate loss. In Proceedings of the 28th International
Conference on Machine Learning, pp. 1113–1120,
Bellevue, WA, 2011.

Liu, X.-Y., Wu, J., and Zhou, Z.-H. Exploratory
undersampling for class-imbalance learning. IEEE
Trans. Systems, Man, and Cybernetics - B, 39(2):
539–550, 2009.

Metz, C. E. Basic principles of ROC analysis. Semi-
nars in Nuclear Medicine, 8(4):283–298, 1978.

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, 1999.

Provost, F. J., Fawcett, T., and Kohavi, R. The case
against accuracy estimation for comparing induc-
tion algorithms. In Proceedings of the 15th Inter-
national Conference on Machine Learning, pp. 445–
453, Madison, WI, 1998.

Rakhlin, A., Shamir, O., and Sridharan, K. Mak-
ing gradient descent optimal for strongly convex
stochastic optimization. In Proceedings of the 29th
International Conference on Machine Learning, pp.
449–456, Edinburgh, Scotland, 2012.

Rudin, C. and Schapire, R. E. Margin-based ranking
and an equivalence between AdaBoost and Rank-
Boost. Journal of Machine Learning Research, 10:
2193–2232, 2009.

Srebro, N., Sridharan, K., and Tewari, A. Smooth-
ness, low noise and fast rates. In Advances in Neural
Information Processing Systems 24, pp. 2199–2207.
MIT Press, Cambridge, MA, 2010.

Zhao, P., Hoi, S., Jin, R., and Yang, T. Online AUC
maximization. In Proceedings of the 28th Interna-
tional Conference on Machine Learning, pp. 233–
240, Bellevue, WA, 2011.

