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Abstract

Latent Gaussian models (LGMs) are widely
used in statistics and machine learning.
Bayesian inference in non-conjugate LGMs
is difficult due to intractable integrals in-
volving the Gaussian prior and non-conjugate
likelihoods. Algorithms based on variational
Gaussian (VG) approximations are widely
employed since they strike a favorable bal-
ance between accuracy, generality, speed, and
ease of use. However, the structure of the
optimization problems associated with these
approximations remains poorly understood,
and standard solvers take too long to con-
verge. We derive a novel dual variational in-
ference approach that exploits the convexity
property of the VG approximations. We ob-
tain an algorithm that solves a convex op-
timization problem, reduces the number of
variational parameters, and converges much
faster than previous methods. Using real-
world data, we demonstrate these advantages
on a variety of LGMs, including Gaussian
process classification, and latent Gaussian
Markov random fields.

Proceedings of the 30 th International Conference on Ma-
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1. Introduction

Latent Gaussian models (LGM) are ubiquitous in ma-
chine learning and statistics (e.g., Gaussian process
models, Bayesian generalized linear models, dynam-
ical systems with non-Gaussian observations, robust
PCA, and non-conjugate matrix factorization). In
many real-world applications, the likelihood is not
conjugate to the Gaussian distribution, making exact
Bayesian inference intractable. These modern applica-
tions, especially those with large latent dimensionality
and number of observations, require fast, robust, and
reliable algorithms for approximate inference.

In this context, algorithms based on variational Gaus-
sian (VG) approximations are growing in popularity
(Opper & Archambeau, 2009; Challis & Barber, 2011;
Lázaro-Gredilla & Titsias, 2011; Honkela et al., 2011),
since they strike a favorable balance between accuracy,
generality, speed, and ease of use. However, compared
to other approximations such as that of Seeger & Nick-
isch (2011), the structure of optimization problems as-
sociated with VG approximations remains poorly un-
derstood, and standard solvers for optimization take
too long to converge.

While some variants of VG inference are convex (Khan
et al., 2012b), they require O(L2) variational param-
eters to be optimized, where L is the dimensionality
of the latent Gaussian vector. This slows down the
optimization dramatically. One approach is to restrict
the covariance representations up front, whether by
naive mean field (Braun & McAuliffe, 2010; Knowles
& Minka, 2011) or restricted Cholesky assumptions
(Challis & Barber, 2011). Unfortunately, this can
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result in considerable loss in accuracy, since typical
LGMs, such as Gaussian processes, are tightly coupled.
Another approach is to reduce the number of parame-
ters to O(N), where N is the dimension of the obser-
vation vector, using an exact covariance parameteriza-
tion (Opper & Archambeau, 2009). This reparameter-
ization destroys the convexity of the original problem,
and very slow convergence is typically observed (Khan
et al., 2012b). A recent coordinate-ascent method im-
proves upon the state of the art (Khan et al., 2012b),
but is restricted to Gaussian process models only and
uses inefficient low-rank matrix updates.

We propose a dual decomposition approach that allows
us to reduce the number of parameters to O(N) while
retaining convexity. The new dual optimization prob-
lem can be solved very rapidly with standard methods
for smooth optimization. Using real-world data, we
demonstrate that our algorithm converges much faster
than the state of the art on a variety of LGMs. Unlike
the approach of Khan et al. (2012b), our algorithm is
generic and is not restricted to Gaussian processes.

2. Latent Gaussian Models

Given a vector of observations y ∈ YN , the depen-
dencies among its components can be modeled using
a latent vector z ∈ RL. Here, the set Y is the do-
main of each observation, e.g., for binary observations,
Y = {0, 1}. The latent vector z is assumed to follow
a Gaussian distribution p(z) = N (z |µ,Σ). The like-
lihood has the general form

p(y |z) =

N∏
n=1

p(yn|ηn), η = Wz , (1)

where W ∈ RN×L. Model parameters θ consist of pa-
rameters required to specify µ, Σ, W , as well as pa-
rameters of the distribution p(yn|ηn). All densities are
implicitly conditioned on θ, which we suppress from
the notation. Also note that ηn can be a vector but
we restrict ourselves to scalar ηn. Our results can be
easily extended to the vector case.

Many models used in statistics and machine learning
are instances of LGMs. Several examples are listed in
Table 1, and an extensive list can be found in Khan
(2012, Chapter 1). Bayesian generalized linear models
constitute one such example, where we assume a la-
tent Gaussian weight vector and use exponential fam-
ily likelihoods with natural parameter ηn. Similarly,
latent Gaussian Markov random fields (GMRF) model
spatial correlations by using a GMRF with a sparse
inverse covariance matrix Σ−1, along with an expo-
nential family likelihood to model non-normal obser-
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Figure 1. The graphical model for latent Gaussian models
shown in left figure, and expanded in the right figure to ex-
plicitly show the correlation in the latent vector z induced
due to a non-diagonal Σ.

vations (Rue & Held, 2005). For example, count data
with spatial dependence (e.g., incidences of a disease
in different regions of a country) can be modeled us-
ing a Poisson likelihood with rate rn = exp(ηn). The
log-Gaussian Cox process is a non-parameteric gen-
eralization of this setting (Rue et al., 2009). Other
non-parameteric examples are Gaussian process (GP)
models, where observation pairs {yn,xn} are modelled
via a latent Gaussian process z(x) with the prior spec-
ified by mean and covariance functions.

In Bayesian inference, we wish to compute expecta-
tions with respect to the posterior distribution

p(z |y) ∝
∏N

n=1
p(yn|ηn)N (z |µ,Σ). (2)

For example, prediction of a new observation y∗ can
be obtained by computing the expectation p(y∗|y) =∫
p(y∗|η)p(z |y) dz . Another important task is com-

putation of the marginal likelihood

p(y) =

∫ ∏N

n=1
p(yn|ηn)N (z |µ,Σ) dz . (3)

For example, parameters θ can be learned by max-
imizing the log of the marginal likelihood, log p(y).
This is also referred to as empirical Bayes or auto-
matic relevance determination (ARD) (Tipping, 2001;
Rasmussen & Williams, 2006).

For non-Gaussian likelihoods, both of these tasks are
intractable. Applications in practice demand good ap-
proximations that scale favorably in N and L.
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Model Data z θ N L Remarks

Bayesian Logistic {yn,xn} Regression weights µ,Σ #Obs #Features Row of W
Regression yn ← f(zTxn) wn = xn
Gaussian Process {yn,xn} Regression function s, σ #Obs #Features W = I
Classification yn ← f(zn) N = L
Gaussian Markov {yn} Latent Gaussian field kv, ku #Obs # Latent
Random Field yn ← f(zn) dims
Probabilistic PCA {yni} Latent factors W #Obs #Latent N > L

yn ← f(wT
i zn) dims factors µ = 0,Σ = I

Table 1. Examples of LGM. Each column is a quantity from our generic LGM definition. Each row shows corresponding
quantities for a model. First two models are supervised and the last two are unsupervised. For columns 2 and 3, n ranges
over 1 to N and {an} denotes the set of variables indexed by all values of n. y ← f(z) implies that y can be generated
using some function f of z. In last three columns, ‘Obs’ means observations, ‘Dims’ means dimensions, and ‘#’ represents
the number of a quantity. For GP, s and σ are hyperparameters of the covariance function. Similarly, ku and kv are
hyperparameters for the latent field. See Section 6 for details. For PPCA, the subscript i indexes the observation vector.

3. Variational Gaussian Inference

In the variational Gaussian approximation (Opper &
Archambeau, 2009), we assume the posterior to be a
Gaussian q(z) = N (z |m,V ). The posterior mean m
and covariance V form the set of variational parame-
ters, and are chosen to maximize the variational lower
bound to the log marginal likelihood shown in Eq. 5.
To get this lower bound, we first multiply and divide
by q(z) in Eq. 4, and then use Jensen’s inequality and
the concavity of log (we denote the expectation with
respect to q(z) by Eq(z)):

log p(y) = log

∫
q(z)

∏
n p(yn|ηn)p(z)

q(z)
dz (4)

≥ Eq(z)

[
log

∏
n p(yn|ηn)p(z)

q(z)

]
. (5)

The lower bound can be simplified further, and varia-
tional parameters m and V can be obtained by max-
imizing it:

max
m,V �0

−D[q(z) ‖ p(z)]−
N∑
n=1

Eq(ηn)[− log p(yn|ηn)],

(6)
where

D[q ‖ p] = Eq[log q(z)− log p(z)] (7)

q(ηn) = N (m̄n, v̄n) (8)

m̄ = Wm, v̄ = diag(WV W T ). (9)

See Eqs. 4–7 in Khan et al. (2012a) for details of this
derivation.

The first term in Eq. 6 is the relative entropy, and
is jointly concave in (m,V ). The second term
Eq(ηn)[− log p(yn|ηn)] is not always available in closed

form. We assume in this paper that, in such cases, we
can evaluate an upper bound fn to this term, i.e.,

Eq(ηn)[− log p(yn|ηn)] ≤ fn(m̄n, v̄n). (10)

This is also known as the local variational bound
(LVB). We assume that fn is differentiable and—most
importantly—convex. We discuss a few such LVBs in
Section 5; see Khan (2012) for an extensive list.

The resulting optimization problem is shown below in
Eq. 11 and is expanded in Eq. 12:

max
m,V �0

−D[q(z) ‖ p(z)]−
N∑
n=1

fn(m̄n, v̄n) (11)

:= 1
2 [log |V | − tr(V Σ−1)− (m − µ)TΣ−1(m − µ)]

−
N∑
n=1

fn(m̄n, v̄n) + cnst. (12)

The above lower bound is strictly concave (Braun &
McAuliffe, 2010; Challis & Barber, 2011; Khan, 2012).

3.1. Related Work

A straight-forward approach is to solve Eq. 11 di-
rectly in (m,V ) (Braun & McAuliffe, 2010; Chal-
lis & Barber, 2011; Marlin et al., 2011; Khan et al.,
2012a). In practice, direct methods are slow and
memory-intensive because of the very large number
L+ L(L+ 1)/2 of primal variables. Challis & Barber
(2011) show that for log-concave likelihoods p(yn|ηn),
the original problem Eq. 6 is jointly concave in m and
the Cholesky factor of V , and additional LVBs are
not required. This fact, however, does not result in
any reduction in number of parameters, and they pro-
pose to use factorizations of a restricted form, which
negatively affects the approximation accuracy.
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Opper & Archambeau (2009) and Nickisch & Ras-
mussen (2008) note that the optimal V ∗ must be of
the form

V ∗ = (Σ−1 +W T (diagλ)W )−1, (13)

which suggests reparameterizing Eq. 11 in terms of
L+N parameters (m,λ), where λ is the new variable.
However, the problem is non-concave in this alterna-
tive parameterization (Khan et al., 2012b). More-
over, as shown in (Khan et al., 2012b) and our experi-
ments here, convergence can be exceedingly slow. The
coordinate-ascent algorithm proposed in (Khan et al.,
2012b) solves the problem of convergence, but seems
limited to the case N = L and W = I. In addition, it
requires N rank-one updates of V per iteration, which
is slow on modern architectures optimized for block-
matrix computations.

A range of different deterministic inference approxi-
mations apply to latent Gaussian models. The local
variational method is convex for log-concave potentials
and can be solved at very large scales (Seeger & Nick-
isch, 2011). However, it applies to super-Gaussian1

potentials only. The bound it maximizes is provably
less tight than Eq. 6 (Seeger, 2009; Challis & Barber,
2011), and it leads to worse results than the varia-
tional Gaussian approximation in general (Nickisch &
Rasmussen, 2008; Khan, 2012). A key interpretation
of this method is that it can be seen as one way to
generate LVBs (for super-Gaussian potentials), which
can be used in our VG setup (Seeger, 2009). Expecta-
tion propagation (Minka, 2001; Seeger, 2008) is more
general and can be more accurate than most other ap-
proximations mentioned here. Based on a saddlepoint
rather than an optimization problem, the standard EP
algorithm does not always converge and can be numer-
ically unstable. Among these alternatives, the varia-
tional Gaussian approximation stands out as a com-
promise between accuracy and good algorithmic prop-
erties, which is widely used beyond latent Gaussian
model applications as well (Lázaro-Gredilla & Titsias,
2011; Honkela et al., 2011).

4. Dual Variational Inference

In this section, we show how Eq. 11 can be solved
using a convex dual formulation in only N variational
parameters. As shown in our experiments, the novel
formulation admits simple algorithms which converge
much more rapidly and have a lower per-iteration cost
than previous methods reviewed above.

We achieve this by dual decomposition: decoupling

1Neither the Poisson, nor the stochastic volatility like-
lihood are super-Gaussian (Section 5).

the two terms in Eq. 11 by equality constraints, and
then forming the Lagrangian dual. To be precise, we
first introduce two new variables hn, ρn ∈ R for each
n and introduce constraints hn = m̄n and ρn = v̄n.
The resulting (equivalent) optimization problem can
be written as

max
m,V ,h,ρ

−D[q(z) ‖ p(z)]−
∑N

n=1
fn(hn, ρn) (14)

s.t. h = Wm, ρ = diag(WV W T ).

Next, we introduce dual variables α,λ ∈ RN associ-
ated to these constraints, and form the corresponding
Lagrangian

L = −D[q(z) ‖ p(z)]−
∑N

n=1
fn(hn, ρn) (15)

+αT (h −Wm) + 1
2λ

T (ρ − diag(WV W T )).

Strong duality holds because the constraints are affine,
and so the solution to the original problem can be
found by minimizing the Lagrangian dual with respect
to (α,λ), i.e.,

min
α,λ

D(α,λ) = min
α,λ

max
m,V ,h,ρ

L. (16)

The advantage of this formulation is that we can solve
analytically for (m,V ) and (h,ρ), and the resulting
dual D(α,λ) is available in closed form. Since α and
λ are length N vector, the dual minimization involves
only O(N) parameters.

Derivations of the following statements are given in
the Appendix. The unique maximizer with respect to
(m,V ) is given by

m∗ = µ −ΣW Tα (17)

V ∗ = A−1λ := (Σ−1 +W T (diagλ)W )−1. (18)

Importantly, V ∗ has precisely the economical form
pointed out by Opper & Archambeau (2009).

Maximization over (h,ρ) is also available in closed
form. Collecting the terms involving (hn, ρn) in Eq. 15,
we get the following optimization problem,

f∗n(αn, λn) := max
hn,ρn

αnhn+λnρn/2−fn(hn, ρn), (19)

which is in fact the f∗n the Fenchel conjugate of fn
(Rockafellar, 1970), and is convex and well-defined due
to the convexity of fn. For many likelihoods (and
LVBs), f∗n is available in closed form. We give sev-
eral examples in Section 5, summarized in Table 2.

Note that the effective domain of f∗n (i.e., values of
(α, λ) for which f∗n is finite) may be restricted. We
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give details of this and show the effective domain of
f∗n(αn, λn) for several commonly used likelihoods in
Section 5. We denote the effective domain of f∗n by S.

Plugging in Eq. 17, 18, and 19 into Eq. 15 and ignor-
ing the constants, directly gives us the optimization
problem

min
α,λ∈S

1
2α

T Σ̃α − µ̃Tα − 1
2 log |Aλ |+

N∑
n=1

f∗n(αn, λn),

(20)

where µ̃ = Wµ and Σ̃ = WΣW T .

This is a strictly convex optimization problem involv-
ing 2N parameters, in contrast to Eq. 11, which in-
volves O(L2) number of parameters. Given (α∗,λ∗)
that minimizes the dual, the primal solution (m∗,V ∗)
is obtained using Eq. 17 and 18. It might appear that
minimizing the dual might be a difficult problem due
to the constraints, but as we show later f∗n, act as
barrier functions, which simplify the optimization.

5. Algorithmic Details

Here we give details on the function fn and its conju-
gate f∗n. We also provide computational details about
our algorithm for solving the dual problem Eq. 20.

5.1. Fenchel conjugates

We give an illustrative example to show the derivation
of Fenchel conjugates. For simplicity, we drop the sub-
script n. Consider the Poisson likelihood log p(y|η) =
yη − exp(η) + cnst:

f(h, ρ) = E[− log p(y|η)] = −yh+ eh+ρ/2 + cnst
(21)

This function is convex. To determine the Fenchel con-
jugate f∗(α, λ), we use Eq. 19 and first maximize over
ρ, obtaining λ = eh+ρ∗/2. This implies λ > 0, since
otherwise the conjugate takes the value +∞. Then,

f∗(α, λ) = max
h

λ(log λ− 1) + (α+ y − λ)h (22)

= λ(log λ− 1) + δ0(α− λ+ y), (23)

where δ0(·) is the convex indicator function, which
equals 0 if the argument is 0, and +∞ otherwise; the
indicator term enforces the constraint α = λ−y. Note
that λ is constrained to lie in S = {λ > 0}.

Examples of fn and f∗n for a range of other likelihood
functions are given in Table 2. Detailed derivation of
these is available in an online appendix to the paper.
In all the cases, αn = λn − yn applies, except for the
stochastic volatility where αn = 1

2 − λn.

5.2. Reduced dual

As discussed in previous section, for all likelihoods dis-
cussed in this paper, we have a restriction on α. For
example, for the first three likelihoods α = λ − y .
Plugging this in Eq. 20, we get the reduced dual

min
λ∈S

1
2 (λ − y)T Σ̃(λ − y)− µ̃T (λ − y)− 1

2 log |Aλ |

+

N∑
n=1

f∗n(λn). (24)

In other words, the equality constraints αn = λn −
yn are enforced by the domain of the conjugate
f∗n(αn, λn), which allows us to eliminate α altogether
using an affine substitution.

5.3. Algorithm Details

In this section, we show that the constrained prob-
lem of Eq. 24 can be optimized efficiently using quasi-
Newton methods. We make use of the fact that the
Fenchel conjugates act as barrier functions, thereby
allowing us to limit the line search within the feasible
set. This way, we avoid any unnecessary function eval-
uations to get an efficient implementation, treating the
problem as if it was unconstrained.

First of all, note that the gradient of Eq. 24 with re-
spect to λ is given by

Σ̃(λ − y)− µ̃ − 1
2 diag(W TA−1λ W ) + g∗λ , (25)

where g∗λ is the vector of gradients of f∗n with respect
to λn. This gradient is used to obtain a descent descent
direction d.

Given the descent direction d and an initial step size
δ0, our goal is find a new step size δ while keeping λ
feasible. We do this by restricting the linesearch to
the feasible set only, and then using Armijo or Wolfe
condition in exactly the same way as in the uncon-
strained case. We illustrate this for the constraint
λn > 0, which arise when Fenchel conjugate contains
terms such as log(λn). Other constraints can be imple-
mented in a similar way. Assume that the current λ
is in the feasible set, i.e., λn > 0 for all n. We find the
indices I where λn + δ0dn < 0. Since λn > 0, we have
dn < 0 for all n ∈ I. To keep the next λn > 0, the
largest step should be less than the minimum λn/|dn|
of all n ∈ I. Hence, we restrict the search to the set

δ = (1− ε) min

{
min
n∈I

λn
|dn|

, δ0

}
, (26)

where ε > 0 ensures strict feasibility. Other con-
straints can be dealt with in a similar way.
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Poisson Bernoulli-logit Multi-Logit Stochastic Volatility

p(y|η) exp(yη − eη)/y! eyη/(1 + eη) exp(yTη)/
∑
k exp(ηk) N (y|0, eη)

LVB Not required Yes Yes Not required

f(h, ρ) −yh+ eh+ρ/2 −yh+ log(1 + eh+ρ/2) −yTh + lse(h + 1
2ρ) 1

2h+ 1
2y

2e−h+ρ/2

f∗(λ) λ(log λ− 1) λ log λ
∑K−1
k=1 λk log λk + t log t λ log(2λ/y2)− λ

+(1− λ) log(1− λ) where t :=
∑K−1
k=1 λk

Range S λ > 0 λ ∈ (0, 1) λk > 0, t < 1 λ > 0

Table 2. This table summarizes LVBs (or exact expressions) and Fenchel conjugates for a number of likelihoods. Stochastic
volatility is from (Rue et al., 2009), the Bernoulli-logit multi-logit bound from (Blei & Lafferty, 2006). Here, lse(v) =
log(1 +

∑K−1
k=1 evk ). For first 3 columns, α is constrained to be equal to λ− y, and for the last one α = 1

2
− λ.

6. Experiments

In this section, we apply our novel dual variational
algorithm to a range of real-world Bayesian inference
problems. We compare our algorithm to the widely
used method of Opper & Archambeau (2009), which
plugs the covariance parameterization of 13 into the
primal problem Eq. 11 and optimizes it over (m,λ).
We refer to this method as ‘Opper-Arch’. We do not
present results for the naive method of solving the pri-
mal in (m,V ) directly, since this turns out to be much
slower than the alternatives.

6.1. Multi-Way GP Classification

In this section, we consider a multinomial logit K-way
Gaussian process classification (mGPC) model, follow-
ing the experimental setup outlined in Khan et al.
(2012a) and (Girolami & Rogers, 2006). See Khan
(2012, Chapter 1) for details how GP classification can
be formulated as an LGM.

For multinomial logit likelihood, the term fn is not
available in closed form, and we use the LVB proposed
by Braun & McAuliffe (2010). Details of this LVB and
its Fenchel conjugate are given in Table 2.

We apply the mGPC model to the forensic glass data
set (available from the UCI repository) which has N =
214 data examples, K = 6 categories, and features x
of length 8. We use 80% of the dataset for training and
the rest for testing. We set µ = 0 and use a squared-
exponential kernel, for which the (i, j)th entry of Σ is
defined as: Σij = −σ2 exp[− 1

2 ||xi − xj ||
2/s]. Similar

to the setup of Girolami & Rogers (2006), the prior fac-
torizes across classes and we fix the hyperparameters
σ and s to be same for all the classes. We find a good
setting of these hyperparameters using the approxi-
mate marginal likelihood on training set. We com-
pute this on a 11× 11 grid, giving us total 121 hyper-
parameter settings. We also compute the prediction
error defined as − log2 p̃(ytest|θ,ytrain,xtrain,xtest),
where (ytrain,xtrain) and (ytest,xtest) are training

and testing data, respectively. Here, p̃(ytest|·) is the
marginal predictive distribution approximated using
the Monte Carlo method (see Rasmussen & Williams
(2006, Chapter 3) for details).

The results are shown in Fig. 2(a), where we plot the
two quantities. The star shows the minimum of the
negative marginal likelihood. We see that at this set-
ting the algorithm also achieves a reasonable predic-
tion error.

Fig. 2(b) shows the traces of the objective function for
the two methods. The Opper-Arch method maximizes
the primal objective function while dual variational
inference minimizes the dual objective function. We
show markers for iterations 1, 3, 5, 7, 9, and then at
20, 30, 40, and 50. We see that the dual inference cov-
erges at least 100 times faster that the existing method
(which has not yet converged in the plot). Each gra-
dient step in Opper-Arch is also more expensive than
our method since the number of parameters is 2NK
(where K is the number of categories) in contrast to
our algorithm which require only NK parameters. In
addition, each function evaluation of Opper-Arch is
more expensive than ours. This is due to the addi-
tional trace term in the primal problem Eq. 11, which
is not present in the dual problem Eq. 16. Hence, our
proposed algorithm has advantage in terms of the rate
of convergence, cost of function evaluation, and the
number of parameters.

We observed similar trends for other hyperparameter
settings.

6.2. Latent Gaussian Markov Random Field

We consider the modeling of the oral cancer mortality
rates using a latent GMRF, described in Rue & Held
(2005). The data consists of mortality counts in 544
regions in Germany during 1986-1990. We model the
count yi in a region i using a Poisson likelihood with
the rate λi = exp(µ + ui + vi). Here, µ is the offset,
vi is an unstructured component, and ui a spatially
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Figure 2. Comparisons for multinomial logit GP classification on the glass dataset. Figure (a) shows the negative log
marginal likelihood approximations at the top and prediction errors at the bottom for many values of log(s) and log(σ).
The star shows the minimum of the negative marginal likelihood, which achieves a reasonable prediction error. Figure
(b) compares the traces of objective function with respect to time in seconds. We choose the hyperparameter setting
which minimizes the negative of train log-likelihood. We see that dual variational inference converges much faster than
the existing method.

structured component. The prior on the last two terms
is shown below in Eq. 27. We assume an independent
Gaussian prior over v with hyperparameter kv, and an
intrinsic GMRF of first-order with hyperparameter ku
(see Rue & Held (2005) for details on GMRFs). Here,
i ∼ j are all unordered pairs (i, j) such that regions i
and j are neighbors, i.e.,

p(u,v|ku, kv) ∝ exp
[
− 1

2kv
∑
i

v2i − 1
2ku

∑
i∼j

(ui − uj)2
]
.

(27)

The GMRF prior can be easily written in the form of
the LGM discussed in Section 2.

We choose 500 regions at random as training data and
keep the rest as testing data. For simplicity, we set
µ to 0. To find a good setting of other hyperparam-
eters, we compute train and test log-likelihoods for
several (ku, kv). The results are shown in Fig. 3(a).
We see that the shape of train and test log-likelihoods
are similar, justifying the maximization of the train
log-likelihood to achieve good test accuracy. The max-
imum occurs at ku = 2.637 and kv = 0.088.

Fig. 3(b) shows the traces of optimizers for this setting
of ku and kv. We show markers at iterations 1 to 6.
We see that the proposed algorithm converges just in

6 iterations, and is much faster than the Opper-Arch
method. Similar to mGPC, our method beats Opper-
Arch on the number of iterations to converge, number
of parameters, and cost of each function evaluations.

7. Conclusions

We presented a novel dual decomposition viewpoint on
the variational Gaussian inference problem for latent
Gaussian models. Our approach applies generally to
any likelihood potential for which convex local varia-
tional bounds are available (e.g., Poisson, Bernoulli-
logit, multi-way logistic, super-Gaussian) and is easy
to configure to a new setup. Applying standard opti-
mization technology to the dual formulation leads to
an algorithm which has lower per iteration cost (time
and memory) and can converge in orders of magnitude
less iterations than the previous state of the art.

Dual decomposition has been popular for MAP infer-
ence in graphical model, for example, see Sontag et al.
(2011); Jojic et al. (2010). In this paper, we applied
the decomposition to the VG inference problem. We
would like point that the coordinate-ascent approach
of Khan et al. (2012b) also has a dual interpretation.
There, each coordinate update can be interpreted as
optimization of an element of the dual variable (see
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Figure 3. Comparisons for latent GMRF model on the glass dataset. Figure (a) shows the train and test log-likelihood
approximations for many values of kv and ku. Figure (b) compares the traces of objective functions vs time. We choose
the hyperparameter setting which maximizes the test log-likelihood.

Appendix of the paper). Our dual approach improves
the approach of Khan et al. (2012b) by allowing par-
allel updates leading to an efficient implementation,
while maintaining fast convergence.

A disadvantage of our approach is its restrition to
the likelihood potentials with convex local variational
bounds. Extension to the non-convex case remains an
open problem which we would like to research in the
future. We also aim to combine our dual formulation
with covariance decoupling ideas from Seeger & Nick-
isch (2011), in order to break the O(L3) computational
barrier and to make variational Gaussian inference ap-
plicable to very large problems.

Appendix

We describe the maximization with respect to m and
V to get Eq. 17 and Eq. 18. We substitute the defini-
tion of D[q(z) ‖ p(z)] from Eq. 12 into the Lagrangian
Eq. 15. Derivatives of the Lagrangian with respect to
m and V are given by

1
2 (V −1 −Σ−1 −W T diag(λ)W ) = 0, (28)

−Σ−1(m − µ)−W Tα = 0. (29)

Simplifying, we get Eq. 17 and Eq. 18.
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