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Abstract

We present algorithms for topic modeling
based on the geometry of cross-document
word-frequency patterns. This perspective
gains significance under the so called sepa-
rability condition. This is a condition on
existence of novel-words that are unique to
each topic. We present a suite of highly
efficient algorithms with provable guaran-
tees based on data-dependent and random
projections to identify novel words and as-
sociated topics. Our key insight here is
that the maximum and minimum values of
cross-document frequency patterns projected
along any direction are associated with novel
words. While our sample complexity bounds
for topic recovery are similar to the state-of-
art, the computational complexity of our ran-
dom projection scheme scales linearly with
the number of documents and the num-
ber of words per document. We present
several experiments on synthetic and real-
world datasets to demonstrate qualitative
and quantitative merits of our scheme.

1. Introduction

We consider a corpus of M documents composed of
words chosen from a vocabulary of W distinct words
indexed by w = 1, . . . ,W . We adopt the classic “bags
of words” modeling paradigm widely-used in proba-
bilistic topic modeling (Blei, 2012). Each document
is modeled as being generated by N independent and
identically distributed drawings of words from an un-
knownW×1 document word-distribution vector. Each
document word-distribution vector is itself modeled as
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an unknown probabilistic mixture of K < min(M,W )
unknown W × 1 latent topic word-distribution vectors
that are shared among the M documents in the cor-
pus. Documents are generated independently. For fu-
ture reference, we adopt the following notation. We
denote by β the unknown W ×K topic-matrix whose
columns are the K latent topic word-distribution vec-
tors. θ denotes the K ×M weight-matrix whose M
columns are the mixing weights over K topics for the
M documents. These columns are assumed to be iid
samples from a prior distribution. Each column of the
W ×M matrix A = βθ corresponds to a document
word-distribution vector. X denotes a realization of
A: a W ×M matrix whose columns are the empiri-
cal word-frequency vectors of the M documents. Our
goal is to estimate the latent topic word-distribution
vectors (β) from the empirical word-frequency vectors
of all documents (X).

A fundamental challenge here is that words-by-
documents distributions (A) are unknown and only
a realization is available through sampled word fre-
quencies in each document. Another challenge is that
even when these distributions are exactly known, the
decomposition into the product of topic-matrix, β,
and topic-document distributions, θ, which is known
as Nonnegative Matrix Factorization (NMF), has been
shown to be an NP-hard problem in general (Vavasis,
2009). In this paper, we develop computationally effi-
cient algorithms with provable guarantees for estimat-
ing β for topic matrices satisfying the separability con-
dition (Donoho & Stodden, 2004; Arora et al., 2012).

Definition 1. (Separability) A topic matrix β ∈
RW×K is separable if for each topic k, there is some
word i such that βi,k > 0 and βi,l = 0, ∀l ̸= k.

The condition suggests the existence of “novel” words
that are unique to each topic. Our algorithm has three
main steps. In the first step, we identify novel words by
means of data dependent or random projections. A key
insight here is that when each word is associated with
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a vector consisting of its occurrences across all docu-
ments, the novel words correspond to extreme points
of the convex hull of these vectors. A highlight of our
approach is the identification of novel words based on
data-dependent and random projections. Our idea is
that whenever a convex object is projected along a ran-
dom direction, the maximum and minimum values in
the projected direction correspond to extreme points of
the convex object. While our method identifies novel
words with negligible false and miss detections, evi-
dently multiple novel words associated with the same
topic can be an issue. To account for this issue, we
apply a distance–based clustering algorithm to cluster
novel words belonging to the same topic. Our final
step involves linear regression to estimate topic word
frequencies using novel words.

We show that our scheme has a sample complexity that
matches the state-of-art such as (Arora et al., 2013).
On the other hand, the computational complexity of
our scheme can scale as small as O(MNK +WK) for
a corpora containing M documents, with an average of
N words per document from a vocabulary containing
W words. We then present a set of experiments on
synthetic and real-world datasets. The results demon-
strate qualitative and quantitative superiority of our
scheme in comparison to other state-of-art schemes.

2. Related Work

The literature on topic modeling and discovery is ex-
tensive. One direction of work is based on solving
a nonnegative matrix factorization (NMF) problem.
To address the scenario where only the realization X
is known and not A, several papers (Lee & Seung,
1999; Donoho & Stodden, 2004; Cichocki et al., 2009;
Recht et al., 2012) attempt to minimize a regularized
cost function. Nevertheless, this joint optimization is
non-convex and sub-optimal strategies have been used.
Unfortunately, when N ≪ W which is often the case,
many words do not appear in a single document and
such methods often fail in these cases.

Latent Dirichlet Allocation(LDA) (Blei et al., 2003;
Blei, 2012) is an example of probabilistic topic model-
ing approach. In this approach the columns of θ are
modeled as iid random drawings from some prior dis-
tributions such as Dirichlet. The goal is to compute
MAP (maximum aposteriori probability) estimates for
the topic matrix. This setup is inherently non-convex
and MAP estimates are computed using variational
Bayes approximations of the posterior distribution,
Gibbs sampling or expectation propagation.

A number of methods with provable guarantees have

also been proposed. (Anandkumar et al., 2012) de-
scribe a novel method of moments approach. While
their algorithm does not impose structural assumption
on topic matrix β, they require Dirichlet priors for θ
matrix. One issue is that such priors do not permit cer-
tain classes of correlated topics (Blei & Lafferty, 2007;
Li & McCallum, 2006). Also their algorithm is not ag-
nostic since it uses parameters of the Dirichlet prior.
Furthermore, the algorithm suggested involves finding
empirical moments and singular decompositions which
can be cumbersome for large matrices.

Our work is closely related to recent work of
(Arora et al., 2012) and (Arora et al., 2013) with some
important differences. In their work, they describe
methods with provable guarantees when the topic ma-
trix satisfies the separability condition. Their al-
gorithm discovers novel words from empirical word
co-occurrence patterns and then in the second step
the topic matrix is estimated. Their key insight is
that when each word, j, is associated with a W
dimensional vector1 the novel words correspond to
extreme points of the convex hull of these vectors.
(Arora et al., 2013) present combinatorial algorithms
to recover novel words with computational complexity
scaling asO(MN2+W 2). One issue with their method
is that empirical estimates of joint probabilities in the
word-word co-occurrence matrix can be unreliable, es-
pecially when M is not large enough. Another issue is
they require linear independence of the extreme points
of the convex hull. This can be a serious problem in
some datasets where word co-occurrences lie on a low
dimensional manifold.

Major Differences: Our work also assumes the ex-
istence of novel words. We associate each word with
a M -dimensional vector consisting of the word’s fre-
quency of occurrence in the M -documents rather than
word co-occurrences as in (Arora et al., 2012; 2013).
We also show that extreme points of the convex hull
of these cross-document frequency patterns are as-
sociated with novel words. While these differences
appear technical, it has important consequences. In
several experiments our approach appears to signifi-
cantly outperform (Arora et al., 2013) and mirror per-
formance of more conventional methods such as LDA
(Griffiths & Steyvers, 2004). Furthermore, our ap-
proach can deal with degenerate cases found in some
image datasets where the extreme points can lie on a
lower dimensional manifold than the number of topics.
At a conceptual level our approach appears to hinge
on distinct cross-document support patterns of novel

1kth component is probability of occurrence of word j
and word k in the same document in the entire corpus
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words belonging to different topics. This is typically
robust to sampling fluctuations when support pat-
terns are distinct in comparison to word co-occurrences
statistics of the corpora. Our approach also differs
algorithmically. We develop novel algorithms based
on data-dependent and random projections to find ex-
treme points efficiently.

3. Topic Geometry

Recall that β, θ, A, and X denote, respectively, the
topic matrix, the weight matrix, the document word
distribution matrix, and the empirical document word-
frequency matrix and A = βθ. We assume that
β satisfies the Separability condition (Definition 1).

Let Ã := diag(A1)−1Ã denote the ℓ1 row-normalized

A matrix and θ̃ and X̃ the ℓ1 row-normalized θ
and X matrices respectively. Then Ã = β̃θ̃ with
β̃ := diag(A1)−1β diag(θ1). Let Xi (resp. Ai) denote
the ith row of X (resp. A) which represents the cross-
document pattern of word i. Let Ck be the set of novel
words of topic k and C0 be the non-novel words. Our
approach is motivated by the following simple geomet-
ric structure:

Proposition 1. Suppose β is separable. For all i ∈ Cj
and all j ̸= 0, Ãi = θ̃j. For all i ∈ C0, Ãi is a convex

combination of θ̃j’s, j = 1, . . . ,K.

Proof: Since Ã = β̃θ̃, Ã and θ̃ are row-stochastic by
construction, and β is separable, it follows that β̃ is
row-stochastic and for all i ∈ Cj and all j ̸= 0, β̃ij = 1.

The key idea of Proposition 1 is illustrated in Fig. 1.
Without loss of generality, we assume that no row of
θ̃ is in the convex hull of the remaining rows. The
problem of identifying novel words reduces to finding
extreme points of all Ãi’s. Recovering the topic matrix
β is straightforward given all K distinct novel words:

Proposition 2. The topic matrix β can be recovered
using W constrained linear regressions given the ma-
trix A and K distinct novel words {i1, . . . , iK}.

Proof: Since θ̃ = (A⊤
i1
, . . . ,A⊤

iK
)⊤ (Prop.1) and

Ãi = β̃iθ̃, it follows that β̃i can be computed by solv-
ing a linear regression. β can be obtained by column
normalizing β′ since β′ = diag(A1)β̃ = β diag(θ1)−1.

In practice, we are not given A but a sampled real-
ization X with limited number of samples per docu-
ment (N). However, by collecting enough documents
(M →∞), one can asymptotically estimate β to arbi-
trary precision.

Figure 1. A separable topic matrix and the underlying ge-
ometric structure. Solid circles represent rows of Ã, empty
circles represent rows of X̃. Projections of X̃i’s along a
direction d can be used to identify novel words.

4. Proposed Algorithm

Following Proposition 1 and 2, our proposed approach
consists of three main steps:

(1) Novel Word Detection: Given X, extract a set
of novel words I. To this end, we provide algorithms
based on data-dependent and random projections in
Sec. 4.1. 4.2.

(2) Novel Word Clustering: Given a set of novel
words I with |I| > K , cluster them into K groups
corresponding to K topics and pick a representative
sample from each group. We provide a distance based
clustering algorithm for this purpose (Sec. 4.3).

(3) Topic Estimation: The topic matrix is esti-
mated as suggested by Proposition 2 (Sec. 4.4).

4.1. Data Dependent Projections (DDP)

Fig. 1 illustrates the key insight of our approach to
identify novel words as extreme points of some convex
object. If we project every point of a convex body onto
some direction d, the maximum and minimum corre-
spond to extreme points of the convex object. Our two
algorithms both exploit this fact. They only differ in
the choice of projected directions.

To simplify analysis we randomly split each document
into two subsets, and get two statistically independent
document collections X and X′ distributed as A, and
then row normalize to obtain X̃ and X̃′. For a word i,
we project all X̃′

l’s onto d = X̃i. ⟨X̃i, X̃
′
i⟩ is likely to

be the maximum if i is a novel word.

Multiple novel words for a single topic is problematic
since ⟨X̃i, X̃

′
j⟩, j ∈ Ck are asymptotically not distin-
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guishable. Therefore, for some threshold d to be spec-
ified later, and for each word i, we construct a set, Ji,
of all words that are sufficiently different from word i
in the following sense:

Ji = {j |M(X̃i − X̃j)(X̃
′
i − X̃′

j)
⊤ ≥ d/2} (1)

We then declare word i as a novel word if all words
j ∈ Ji are uniformly uncorrelated from i with some
margin, γ/2 to be specified later.

M⟨X̃i, X̃
′
i⟩ ≥M⟨X̃i, X̃

′
j⟩+ γ/2, ∀j ∈ Ji (2)

These steps could asymptotically detect all the novel-
words as M → ∞ under technical assumptions, as is
justified in Sec. 5.

Algorithm 1 NovelWordDetection-DDP

1: Input X̃, X̃′, d, γ,K
2: Output: A set of the novel words I
3: C←M X̃′X̃⊤

4: I ← ∅
5: for all 1 ≤ i ≤W do
6: Ji ← All indices j ̸= i : Ci,i − 2Ci,j + Cj,j ≥ d

2
7: if ∀j ∈ Ji : Ci,i − Ci,j ≥ γ/2 then
8: I ← I ∪ {i}
9: end if

10: end for

The algorithm is elaborated in Algorithm 1. The run-
ning time of the algorithm is polynomial in N,M,W :

Proposition 3. The running time of Algorithm 1 is
O(MN2 +W 2).

4.2. Random Projection (RP)

DDP uses W different directions X̃i’s to find all the
extreme points. Here we use random directions in-
stead. This significantly reduces the time complexity
by decreasing the number of required projections.

The Random Projection Algorithm (RP) uses roughly
P = O(K) random directions drawn uniformly iid over
the unit sphere in RM . For each direction d, we project
all X̃i’s onto it and choose the maximum and mini-
mum. If there are multiple maximums/minimums as
a result of multiple novel words for a single topic, we
choose all of them. Note that X̃id will converge to
Ãid conditioned on d and θ as M increases. More-
over, only for novel words i as extreme points, Ãid
can be the maximum or minimum projection value.
This provides intuition of consistency for RP. Since
the directions are independent, we expect to find all
the novel words using P = O(K) number of random
projections.

The algorithm is summarized in Algorithm 2. It is
completely agnostic and parameter-free. Moreover, it
significantly reduces the computational complexity:

Algorithm 2 NovelWordDetection-RP

1: Input X̃, P
2: Output : A set of the novel words I
3: I ← ∅
4: for all 1 ≤ j ≤ P do
5: Generate d ∼ Uniform(unit-sphere in RM )

6: imax = argmax X̃id, imin = argmax X̃id
7: I ← I ∪ {imax, imin}
8: end for

Proposition 4. Running time of Algorithm 2 is
O(MNK +WK).

4.3. Novel Word Clustering

There may be multiple novel words for a single topic
which is often the case. In such case our DDP or
RP algorithm extract multiple novel words for each
topic. This necessitates clustering step. Conceptually,
the cross-document frequency patterns for two topics,
hence for the novel words of them, should be different.
This motivates our simple distance-based clustering.

To be precise, we construct a graph whose vertices are
the novel words extracted in the first step. Word i
and j is connected if they are close enough, i.e., j /∈
Ji defined in Eq. 1. Clustering therefore reduces to
finding K connected components of this graph. The
procedure is described in Algorithm 3.

Algorithm 3 NovelWordsClustering

1: Input : I, X̃, X̃′, d, K
2: Output : A set J of K distinct novel words
3: C←M X̃′X̃⊤

4: B← a zero matrix of size |I| × |I|
5: for all i, j ∈ I, i ̸= j do
6: Bi,j ← 1(Ci,i − 2Ci,j + Cj,j ≤ d/2)
7: end for
8: J ← ∅
9: for all 1 ≤ j ≤ K do

10: c ← index of a representative of the jth con-
nected component vertices in B

11: J ← J ∪ {c}
12: end for

We can show the clustering scheme is asymptotically
consistent under some technical assumptions :

Proposition 5. Let Ci,j , MX̃iX̃
′⊤
j , Di,j , Ci,i −

2Ci,j + Cj,j. Suppose assumptions in Sec. 5 holds.
Then, as M → ∞, Di,j converges to 0 in probabil-
ity when i and j are novel words of the same topic,
and converges to some strictly positive value greater
than some constant d in probability otherwise.
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Constant d is the same as in Algorithm 1. In principle
we can choose any point in a cluster as the represen-
tative for that cluster to estimate β in the next step.
In practice, we use the average of data points in each
cluster. This turns out to be more noise resilient than
choosing a single point, as the comparison of perfor-
mance of our algorithm against (Arora et al., 2013) in
Sec. 6 indicates.

4.4. Topic Matrix Estimation

Given K distinct novel words of different topics, we
estimate β as suggested in Proposition 2. This
is described in Algorithm 4. This step is similar
to other topic modeling algorithms, which exploit
separability (Arora et al., 2013; Recht et al., 2012).
While our algorithm works with cross-document word-
frequency patterns (conceptually up to the 2nd order
moments occurs in regression), the provable algorithm
in (Arora et al., 2013) works with word co-occurrence
patterns (up to the 4th order moments). We justify
the consistency of this step in Sec. 5.

Algorithm 4 TopicMatrixEstimation

1: Input: J = {j1, . . . , jK}, X, X′

2: Output: β̂, which is the estimation of β matrix
3: Y = (X̃⊤

j1
, . . . , X̃⊤

jK
)⊤,Y′ = (X̃′⊤

j1
, . . . , X̃′⊤

jK
)⊤

4: for all 1 ≤ i ≤W do
5: β̂i ← ( 1

MXi1) argmin
bj≥0,

∑K
j=1 bj=1

M(X̃i − bY)(X̃′
i −

bY′)⊤

6: end for
7: column normalize β̂

5. Theoretical Analysis

In this section, we present the sample complexity
bound for each steps of our algorithm. Specifically,
we provide guarantees for DDP Algorithm 1 and novel
word clustering Algorithm 3 under some mild condi-
tions. The analysis of the random projection algorithm
2 is much more involved and requires elaborate argu-
ments and we will omit it in this paper.

In order to prove consistency of the proposed novel
word detection and clustering algorithms, we assume
that the correlation matrix R and expectation a of the
prior distribution over θ satisfy :

(1) The min. entry of a is lower bounded by a∧ > 0;

(2) There exists a positive value ζ such that for dis-
tinct i and j, Ri,i/(aiai)−Ri,j/(aiaj) ≥ ζ.

The second condition can be interpreted as the re-
quirement that any two novel words of different top-
ics appear in substantial number of distinct docu-

ments. To see this note that if i ∈ C1, j ∈ C2, then
MX̃i(X̃i−X̃j)

⊤ p−→ R1,1/(a1a1)−R1,2/(a1a2). Hence,

this requirement means that M(X̃i − X̃j) should be
fairly distant from the origin, which in turn implies
that the number of documents these two words (thus
two topics) occur in, with similar probabilities, should
be small. This is a reasonable assumption, since other-
wise we can group two related topics into one. In fact,
we show in the supplementary section it holds for the
Dirichlet distribution, which is a traditional choice for
the prior distribution in topic modeling. Moreover,
we have tested the validity of it numerically for the
logistic normal distribution (with non-degenerate co-
variance matrices), which is used in Correlated Topic
Modeling (Blei & Lafferty, 2007).

The above assumptions in turn justify the steps of
DDP as given by Eq. 1, 2.

Proposition 6. Suppose conditions (1) and (2) above
are satisfied. Then there exist positive constants d and
γ such that with high probability, i is a novel word if
and only if Eq. 2 is satisfied.

We further denoting β∧ to be positive lower bounds
on non-zero elements of β, and

Ri,i

aiai
≤ 1

ϕ . We can
prove the consistency and sample complexity of the
DDP algorithm:

Theorem 1. For parameter choices d = 2ζa2∧β
2
∧ and

γ = ζa∧β∧ the DDP Algorithm 1 is consistent as
M →∞. Specifically, true novel and non-novel words
are asymptotically declared as novel and non-novel, re-
spectively. Furthermore, for

M ≥
C1 log

(
W
δ1

)
Nζ2a4∧β

4
∧ϕ2η4

where C1 is constant, Algorithm 1 finds all novel words
without any outlier with probability at least 1− δ1.

We can also prove the consistency and sample com-
plexity of the novel word clustering algorithm:

Theorem 2. For parameter choice d = 2ζa2∧β
2
∧, given

all true novel words as the input, the clustering Algo. 3
asymptotically (as M →∞) recovers K distinct novel
words of different topics. Furthermore, for

M ≥
C2 log

(
W
δ2

)
Nζ2a4∧β

4
∧ϕ2η4

where C2 is a constant, Algorithm 3 clusters all novel
words correctly with probability at least 1− δ2.

We also provide an analysis for the topic estima-
tion Algorithm 4 under the same assumption as in
(Arora et al., 2013) that R is positive definite. R > 0
is not needed for novel words detection and clustering.



Topic Discovery through Data Dependent and Random Projections

Theorem 3. If we further assume that R is positive
definite with its eigenvalues lower bounded by λ∧, then
given K distinct novel words, the output of Algorithm

4 β̂
p−→ β element-wise up to a column permutation.

Specifically, if

M ≥
C3W

4 log(WK
δ3

)

Nλ2
∧η4ϕ2ϵ4a4∧

then ∀i, j, β̂i,j will be ϵ close to βi,j with probability at
least 1− δ3, for ϵ < 1 and C3 being a constant.

6. Experimental Results

Implementation Details: DDP requires two param-
eters d and γ. In practice, we apply DDP without
knowing them adaptively and agnostically. Note that
we use d to construct Ji. We can otherwise construct
Ji by finding r < W words that are maximally distant
from X̃i in the sense of Eq. 1. To bypass γ, we rank
the values of minj∈Ji M⟨X̃i, X̃

′
i⟩ −M⟨X̃i, X̃

′
j⟩ across

all i and declare the topmost s indices as novel words.

d is also used in Algo. 3 to threshold the 0-1
graph. We could avoid hard thresholding by using say
exp (−σ(Ci,i − 2Ci,j + Cj,j)) as weights for the graph
and apply spectral clustering. Typically the size of I
is O(K). The sorting and spectral clustering requires
additional O(W 2 log (W )) and O(K3) time.

For the experiments in Sec. 6.1 & 6.3 we use the ag-
nostic variants with r = W/2 and s = 10 × K. σ is
chosen so that maximum weight is fixed. For the im-
age dataset we used d = 1 and γ = 3. For RP, we set
the number of projections P ≈ 50×K.

6.1. Synthetic Dataset

In this section, we validate our algorithm on synthetic
examples. We generate a W ×K separable topic ma-
trix β withW1/K > 1 novel words per topic as follows:
first, iid 1×K rows-vectors corresponding to non-novel
words are generated uniformly on the probability sim-
plex. Then, W1 iid Uniform[0, 1] values are generated
for the nonzero entries in the rows of novel words. The
resulting matrix is then column-normalized to get one
realization of β. Next, M iid K × 1 column-vectors
are generated for the θ matrix according to a Dirich-

let prior c
K∏
i=1

θαi−1
i . Following (Griffiths & Steyvers,

2004), we set αi = 0.1 for all i. Finally, we obtain X
by generating N iid words for each document.

For different settings of W1/W , K, M and N , we cal-
culate the ℓ1 distance of the estimated topics to the
ground truth after finding the best matching between
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Figure 2. Error of estimated topic matrix in ℓ1 norm. Up-
per: W = 500,W1 = 0.2, N = 100,K = 5; Lower:
W = 500,W1 = 0.2,M = 500,K = 10. Top and Bottom
plots depict error with varying documents M (for fixed N)
and varying words N (for fixed M) respectively. RP &
DDP show consistently better performance.

two sets of topics. For each setting we average the er-
ror over 50 random samples. For RP & DDP we set
parameters as discussed in the implementation details.

We compare the DDP and RP against the Gibbs sam-
pling approach (Griffiths & Steyvers, 2004) (Gibbs),
a state-of-art NMF-based algorithm (Tan & Févotte,
2013) (NMF) and the most recent practical provable
algorithm in (Arora et al., 2013) (RecoverL2). The
NMF algorithm is chosen because it compensates for
the type of noise in our topic model. Figure 2 de-
picts the estimation error as a function of the num-
ber of documents M (Upper) and the number of
words/document N (bottom). RP and DDP have sim-
ilar performance and are uniformly better than compa-
rable techniques. Gibbs performs relatively poor in the
first setting and NMF in the second. RecoverL2 per-
form worse in all the settings. Note thatM is relatively
small (≤ 1, 000) compared to W = 500. DDP/RP out-
perform other methods with fairly small sample size.
Meanwhile, as is also observed in (Arora et al., 2013),
RecoverL2 have very bad performance with small M .
The error of RecoverL2 decreases and became compa-
rable to the other method as M is 10 times larger than
the maximum in the plot (M ≈ 10, 000).

6.2. Swimmer Image Dataset

In this section we apply our algorithm to the
synthetic swimmer image dataset introduced in
(Donoho & Stodden, 2004). There are M = 256 bi-
nary images each of W = 32× 32 = 1024 pixels. Each
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LA 1 LA 2 LA 3 LA 4 RA 1 RA 2 RA 3 RA 4 LL 1 LL 2 LL 3 LL 4 RL 1 RL 2 RL 3 RL 4
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Figure 4. Topics estimated for noisy swimmer dataset by a)proposed RP, b) proposed DDP, c)Gibbs
in(Griffiths & Steyvers, 2004), d) NMF in (Tan & Févotte, 2013) and e) on clean dataset by RecoverL2 in (Arora et al.,
2013) closest to the 16 ideal (ground truth) topics. Gibbs misses 5 and NMF misses 6 of the ground truth topics while
RP DDP recovers all 16 and our topic estimates look less noisy. RecoverL2 hits 4 on clean dataset.
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Figure 3. (a) Example “clean” images in Swimmer dataset;
(b) Corresponding images with sampling “noise” ; (c) Ex-
amples of ideal topics.
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Figure 5. Topic errors for (a) Gibbs (Griffiths & Steyvers,
2004) , (b) NMF (Tan & Févotte, 2013) and c) example
Topics extracted by RecoverL2(Arora et al., 2013) on the
noisy Swimmer dataset. d) Example Topic errors for Re-
coverL2 on clean Swimmer dataset. Figure depicts ex-
tracted topics that are not close to any “ground truth”.
The ground truth topics correspond to 16 different posi-
tions of left/right arms and legs.

image represents a swimmer composed of four limbs,
each of which can be in one of 4 distinct positions, and
a torso. We interpret pixel positions (i, j) as words.
Each image is interpreted as a document composed of
pixel positions with non-zero values. Since each posi-
tion of a limb features some unique pixels in the image,
the topic matrix β satisfies the separability assumption
with K = 16 “ground truth” topics that correspond to
16 single limb positions.

Following the setting of (Tan & Févotte, 2013), we
set body pixel values to 10 and background pixel val-
ues to 1. We then take each “clean” image, suitably
normalized, as an underlying distribution across pix-
els and generate a “noisy” document of N = 200 iid
“words” according to the topic model. Examples are
shown in Fig. 3. We apply RP and DDP algorithms
to the “noisy” dataset and compare against Gibbs
(Griffiths & Steyvers, 2004), NMF (Tan & Févotte,
2013), and RecoverL2 (Arora et al., 2013). Results
are shown in Figs. 4 and 5. We set the parameters
as discussed in the implementation details.

This dataset is a good validation test for different algo-
rithms since the ground truth novel words are known
and are unique. As we see in Fig. 5, both Gibbs and
NMF produce topics that do not correspond to any
pure left/right arm/leg positions. Indeed, many of
them are composed of multiple limbs. Nevertheless, as
shown in Fig. 4, no such errors are realized in RP and
DDP and our topic-estimates are closer to the ground
truth images. In the meantime, RecoverL2 algorithm
failed to work even with the clean data. Although
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it also extracts extreme points of a convex body, the
algorithm additionally requires these points to be lin-
early independent. It is possible that extreme points
of a convex body are linearly dependent (for example,
a 2-D square on a 3-D simplex). This is exactly the
case in the swimmer dataset with dimension of convex
body in clean images being 13 < K = 16. As we see
in the last row in Fig. 4, RecL2 produces only a few
topics close to ground truth. Its extracted topics for
the clean images are shown in Fig. 5. Results of Re-
coverL2 on noisy images are no close to ground truth
as shown in Fig. 5.

6.3. Real World Text Corpora

Table 1. Examples of extracted topics for NIPS
dataset by proposed Random projection method
(RP), Data-dependent projection (DDP), algorithm
in (Griffiths & Steyvers, 2004)(Gibbs), the practical
algorithm in (Arora et al., 2013)(RecocerL2(RecL2)).

RP chip circuit noise analog current voltage gates

DDP chip circuit analog voltage pulse vlsi device

Gibbs analog circuit chip output figure current vlsi

RecL2 N/A

RP
visual cells spatial ocular cortical cortex domi-
nance orientation

DDP
visual cells model cortex orientation cortical
eye

Gibbs
cells cortex visual activity orientation cortical
receptive

RecL2
orientation knowledge model cells visual good
mit

RP
learning training error vector parameters svm
data

DDP
learning error training weight network function
neural

Gibbs
training error set generalization examples test
learning

RecL2 training error set data function test weighted

RP
speech training recognition performance hmm
mlp input

DDP
training speech recognition network word clas-
sifiers hmm

Gibbs
speech recognition word training hmm speaker
mlp acoustic

RecL2
speech recognition network neural positions
training learned

In this section, we apply our algorithm on two real
world text corpora from (Frank & Asuncion, 2010).
The smaller corpus is NIPS proceedings dataset with
M = 1, 700 documents, a vocabulary of W = 14, 036
words and an average of N ≈ 900 words in each docu-
ment. Another large corpus is New York (NY) Times
article dataset, with M = 300, 000, W = 102, 660,
and N ≈ 300. The vocabulary is obtained by re-
moving a standard “stop” word list used in computa-

Table 2. Examples of estimated topics on NY Times using
RP and RecocerL2 algorithms

RP weather wind air storm rain cold

RecL2 N/A

RP feeling sense love character heart emotion

RecL2 N/A

RP
election zzz florida ballot vote zzz al gore re-
count

RecL2 ballot election court votes vote zzz al gore

RP yard game team season play zzz nfl

RecL2 yard game play season team touchdown

RP N/A

RecL2
zzz kobe bryant zzz super bowl police shot
family election

tional linguistics, including numbers, individual char-
acters, and some common English words such as “the”.
In order to compare with the practical algorithm in
(Arora et al., 2013), we followed the same pruning in
there experiment setting to shrink the vocabulary size
to W = 2, 500 for NIPS and W = 15, 000 for NY
Times. Following typical settings in (Blei, 2012) and
(Arora et al., 2013) , we set K = 40 for NIPS and
K = 100 for NY Times. We set other algorithm pa-
rameters as discussed in implementation details.

We compare DDP and RP algorithms against Recov-
erL2 (Arora et al., 2013) and a practically widely suc-
cessful algorithm (Griffiths & Steyvers, 2004)(Gibbs).
Table 1 and 22 depicts typical topics extracted by the
different methods. For each topic, we show its most
frequent words, listed in descending order of the esti-
mated probabilities. Two topics extracted by different
algorithms are grouped if they are the closest in ℓ1
distance.

Different algorithms extract some fraction of similar
topics which are easy to recognize. Table 1 indicates
most of the topics extracted by RP and DDP are simi-
lar and are comparable with that of Gibbs. We observe
that the recognizable themes formed with DDP or RP
topics are more abundant than that by RecoverL2. For
example, topic on “chip design” as shown in the first
panel in Table 1 is not extracted by RecoverL2, and
topics in Table 2 on “weather” and “emotions” are
missing in RecoverL2. Meanwhile, RecoverL2 method
produces some obscure topics. For example, in the last
panel of Table 1 RecoverL2 contains more than one
theme, and in the last panel of Table 2 RecoverL2 pro-
duce some unfathomable combination of words. More
details about the topics extracted are given in the sup-
plementary material.

2the zzz prefix annotates the named entity.
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