
ABC Reinforcement Learning

Christos Dimitrakakis christos.dimitrakakis@gmail.com

EPFL, Lausanne, Switzerland

Nikolaos Tziortziotis ntziorzi@gmail.com

University of Ioannina, Greece

Abstract

We introduce a simple, general framework for
likelihood-free Bayesian reinforcement learn-
ing, through Approximate Bayesian Compu-
tation (ABC). The advantage is that we only
require a prior distribution on a class of sim-
ulators. This is useful when a probabilistic
model of the underlying process is too com-
plex to formulate, but where detailed simu-
lation models are available. ABC-RL allows
the use of any Bayesian reinforcement learn-
ing technique in this case. It can be seen as
an extension of simulation methods to both
planning and inference. We experimentally
demonstrate the potential of this approach
in a comparison with LSPI. Finally, we intro-
duce a theorem showing that ABC is sound.

1. Introduction

Bayesian reinforcement learning (Strens, 2000; Vlassis
et al., 2012) is the decision-theoretic approach (DeG-
root, 1970) to solving the reinforcement learning prob-
lem. However, apart from the fact that calculating
posterior distributions and the Bayes-optimal deci-
sion is frequently intractable (Duff, 2002; Ross et al.,
2008), another major difficulty is the specification of
the prior and model class. While there exist a number
of non-parametric Bayesian model classes which can
be brought to bear for estimation of the dynamics of
an unknown process, it may not be a trivial matter to
select the correct class and prior. On the other hand,
it is frequently known that the process can be approxi-
mated well by a complex parametrised simulator. The
question is how to take advantage of this knowledge
when the best simulator parameters are not known.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

We propose a simple, general, reinforcement learn-
ing framework employing the principles of Approxi-
mate Bayesian Computation (ABC, see (Csilléry et al.,
2010) for an overview) for performing Bayesian infer-
ence using simulation. In doing so, we extend rollout
algorithms for reinforcement learning, such as those
described in (Bertsekas, 2006; Bertsekas & Tsitsiklis,
1996; Dimitrakakis & Lagoudakis, 2008; Lagoudakis &
Parr, 2003a), to the case where we do not know what
the correct model to draw rollouts from is.

We show how to use ABC to compute approximate
posteriors over a set of environment models in the con-
text of reinforcement learning. This includes a simple
but general theoretical result on the quality of ABC
posterior approximations. Finally, building on previ-
ous approaches to Bayesian reinforcement learning, we
propose a strategy for selecting policies in this setting.

1.1. The setting

In the reinforcement learning problem, an agent is act-
ing in some unknown environment µ, according to
some policy π. The agent’s policy is a procedure
for selecting a sequence of actions, with the action
at time t being at ∈ A. The environment reacts to
this sequence with a corresponding sequence of obser-
vations xt ∈ X and rewards rt ∈ R. This interaction
may depend on the complete history1 h ∈ H, where
H , (X × A × R)∗ is the set of all state action re-
ward sequences, as neither the agent or the environ-
ment are necessarily finite-order Markov. For exam-
ple, the agent may learn, or the environment may be
partially observable.

In this paper, we use a number of shorthands to sim-
plify notation. Firstly, we denote the (random) prob-
ability measure for the agent’s action at time t by:

πt(A) , Pπ(at ∈ A | xt, rt, at−1), (1.1)

1A history may include multiple trajectories in episodic
environments.

ABC Reinforcement Learning

where xt is a shorthand for the sequence (xi)
t
i=1; sim-

ilarly, we use xt
k for (xi)

t
i=k. We denote the environ-

ment’s response at time t+1 given the history at time
t by:

µt(B) , Pµ((xt+1, rt+1) ∈ B | xt, rt, at). (1.2)

In a further simplification, we shall also use πt(at)
for the probability (or density) of the action actually
taken by the policy at time t, and similarly, µt(xt) for
the realised observation. Finally, we use Pπ

µ to denote
joint distributions on action, observation and reward
sequences under the environment µ and policy π.

The agent’s goal is determined through its utility:

U ,
∞∑
t=1

γt−1rt, (1.3)

which is a discounted sum of the total instantaneous
rewards obtained, with γ ∈ [0, 1]. Without loss of gen-
erality, we assume that U ∈ [0, Umax]. The optimals
policy maximises the expected utility Eπ

µ U . As in the
reinforcement learning problem the environment µ is
unknown, this maximisation is ill-posed. Intuitively,
we can increase the expected utility by either: (i) Try-
ing to better estimate µ in order to perform the max-
imisation later (exploration), or (ii) Use a best-guess
estimate of µ to obtain high rewards (exploitation).

In order to solve this trade-off, we can adopt a
Bayesian viewpoint (DeGroot, 1970; Savage, 1972),
where we consider a (potentially infinite) set of en-
vironment models M. In particular, we select a prior
probability measure ξ onM. For an appropriate subset
B ⊂ M, the quantity ξ(B) describes our initial belief
that the correct model lies in B. We can now formu-
late the alternative goal of maximising the expected
utility with respect to our prior:

Eπ
ξ U =

∫
M
(Eπ

µ U) dξ(µ). (1.4)

We can now formalise the problem as finding a pol-
icy π∗

ξ ∈ argmaxπ E
π
ξ U . Any such policy is Bayes-

optimal, as it solves the exploration-exploitation prob-
lem with respect to our prior belief.

1.2. Related work and our contribution

The first difficulty when adopting a Bayesian approach
to sequential decision making is that finding the pol-
icy maximising (1.4) is hard (Duff, 2002) even in re-
stricted classes of policies (Dimitrakakis, 2011). On
the other hand, simple heuristics such as Thompson
sampling (Strens, 2000; Thompson, 1933) provide an
efficient trade-off (Agrawal & Goyal, 2012; Kaufmanna

et al., 2012) between exploration and exploitation. Al-
ghough other heuristics exist (Araya et al., 2012; Cas-
tro & Precup, 2007; Kolter & Ng, 2009; Poupart et al.,
2006; Strens, 2000), in this paper we focus on an ap-
proximate version of Thompson sampling for reasons
of simplicity. The second difficulty is that in many
interesting problems, the exact posterior calculation
may be intractable, mainly due to partial observabil-
ity (Poupart & Vlassis, 2008; Ross et al., 2008). In-
terestingly, an ABC approach would not suffer from
this problem for reasons that will be made clear in the
sequel.

The most fundamental difficulty in a Bayesian frame-
work is specifying a generative model class: it is not
always clear what is the best model to use for an appli-
cation. However, frequently we have access to a class
of parametrised simulators for the problem. Therefore,
one reasonable approach is to find a good policy for a
simulator in the class, and then apply it to the ac-
tual problem. Methods for finding good policies using
simulation have been extensively studied before (Bert-
sekas, 2006; Bertsekas & Tsitsiklis, 1996; Dimitrakakis
& Lagoudakis, 2008; Gabillon et al., 2011; Wu et al.,
2010). However, in all those cases simulation was per-
formed on a simulator with fixed parameters.

Approximate Bayesian Computation (ABC) (see
Csilléry et al., 2010; Marin et al., 2011, for an
overview) is a general framework for likelihood-free
Bayesian inference via simulation. It has been devel-
oped because of the existence of applications, such as
econometric modelling (e.g. Geweke, 1999), where de-
tailed simulators were available, but no useful analyt-
ical probabilistic models. While ABC methods have
also been used for inference in dynamical systems (e.g
Toni et al., 2009), they have not yet been applied to
the reinforcement learning problem.

This paper proposes to perform Bayesian reinforce-
ment learning through ABC on an arbitrary class of
parametrised simulators. As ABC has been widely
used in applications characterised by large amounts
of data and complex simulations with many unknown
parameters, it may also scale well in reinforcement
learning applications. The proposed methodology is
generally applicable to arbitrary problems, including
partially observable environments, continuous state
spaces, and stochastic Markov games.

ABC Reinforcement Learning generalises methods pre-
viously developed for simulation-based approximation
of optimal policies to the Bayesian case. While in the
standard framework covered by Bertsekas (1999), a
particular simulator of the environment is assumed to
exist, via ABC we can relax this assumption. We only

ABC Reinforcement Learning

need a class of parametrised simulators that contain
one close to the real environment dynamics. Thus, the
only remaining difficulty is computational complexity.

Finally, we provide a simple but general bound for
ABC posterior computation. This bounds the KL di-
vergence of the approximate posterior computed via
ABC and the complete posterior distribution. As far
as we know, this is a new and widely applicable re-
sult, although some other theoretical results using sim-
ilar assumptions appear in (Jasra et al., 2010) and
in (Dean & Singh, 2011) for hidden Markov models.

Section 2 introduces ABC inference for reinforce-
ment learning, discusses its difference from standard
Bayesian inference, and presents a theorem on the
quality of the ABC approximation. Section 3 describes
the ABC-RL framework and the ABC-LSPI algorithm
for continuous state spaces. An experimental illustra-
tion is given in Sec. 4, followed by a discussion in Sec. 5.
The appendix contains the collected proofs.

2. Approximate Bayesian Computation

Approximate Bayesian Computation encompasses a
number of likelihood-free techniques where only an ap-
proximate posterior is calculated via simulation. We
first discuss how standard Bayesian inference in rein-
forcement learning differs from ABC inference. We
then introduce a theorem on the quality of the ABC
approximation.

2.1. Bayesian inference for reinforcement
learning

Imagine that the history h ∈ H has been generated
from a process µ ∈ M controlled with a history-
dependent policy π, something which we denote as
h ∼ Pπ

µ. Now consider a prior ξ on M with the prop-
erty that ξ(· | π) = ξ(·), i.e. that the prior is indepen-
dent of the policy used. Then the posterior probability,
given a history h generated by a policy π, that µ ∈ B
can be written as: 2

ξ(B | h, π) =
∫
B
Pπ
µ(h) dξ(µ)∫

M Pπ
µ(h) dξ(µ)

. (2.1)

Fortunately, the dependence on the policy can be re-
moved, since the posterior is the same for all policies
that put non-zero mass on the observed data:

Remark 2.1. Let h ∼ Pπ
µ. Then ∀π′ 6= π such that

Pπ′

µ (h) > 0, ξ(B | h, π) = ξ(B | h, π′).

Consequently, when calculating posteriors, the policy

2For finite M, the posterior simplifies to ξ(µ | h, π) =
Pπ
µ(h)ξ(µ)/

∑
µ′∈M Pπ

µ′(h)ξ(µ′)

employed need not be considered, even when the pro-
cess and policy depend on the complete history. How-
ever, in the ABC setting we do not have direct access
to the probabilities µt, for the models µ in our model
class M. However, we can always generate observa-
tions from any model: xt+1 ∼ µt. This idea is used by
ABC to calculate approximate posterior distributions.

2.2. ABC inference for reinforcement learning

The main idea of ABC is to approximate samples from
the posterior distribution via simulation. We produce
a sequence of sample models µ(k) from the prior ξ,
and then generate data h(k) from each. If the gen-
erated data is “sufficiently close” to the history h,
then the k-th model is accepted as a sample from the
posterior ξ(µ | h). More specifically, ABC requires
that we define an approximately sufficient statistic
f : H → W on some normed vector space (W, ‖ · ‖). If
‖f(h)− f(h(k))‖ ≤ ε then µ(k) is accepted as a sample
from the posterior. Algorithm 1 gives the sampling
method in detail for reinforcement learning. An im-
portant difference with the standard ABC posterior
approximation, as well as exact inference, is the de-
pendency on π.

Note that even though Remark 2.1 declares that the
posterior is independent of the policy used, when us-
ing ABC this is no longer true. We must maintain
the complete policy used until then to generate sam-
ples, otherwise there is no way to generate a sequence
of observations.3 Intuitively, the algorithm can basi-

Algorithm 1 ABC-RL-Sample

input Prior ξ on M, history h ∈ H, threshold ε,
statistic f : H → W, policy π, maximum number of
samples Nsam, stopping condition τ .
M̂ = ∅.
for k = 1, . . . , Nsam do

µ(k) ∼ ξ.
h(k) ∼ Pπ

µ(k)

if
∥∥f(h)− f(h(k))

∥∥ < ε then

M̂ := M̂ ∪
{
µ(k)

}
.

end if
if τ then
break

end if
end for
return M̂

cally be seen as generating rollouts from a number of
simulators, sampled from our prior distribution. The

3For episodic problems, we must maintain the sequence
of policies used.

ABC Reinforcement Learning

sampled set of simulators with a sufficient close statis-
tic is then an approximate sample from our posterior
distribution. The first question is what types of statis-
tics we need.

In fact, just as in standard ABC, if the statistic is
sufficient, then the samples will be generated according
to the posterior.

Corollary 2.1. If f is a sufficient statistic, then the
set M̂ returned by Alg. 1 for ε = 0 is a sample from
the posterior.

The (standard) proof is deferred to the appendix.
Thus, for ε = 0, when the statistic is sufficient, the
sampling distribution and the posterior are identical.
However, things are not so clear when ε > 0.

We now provide a simple theorem which characterises
the relation of the approximate posterior to the true
posterior, when we use a (not necessarily sufficient)
statistic with threshold ε > 0. First, we remind the
definition of the KL-divergence.

Definition 2.1. The KL-divergence D between two
probability measures ξ, ξ′ on M is

D (ξ ‖ ξ′) ,
∫
M

ln
dξ(µ)

dξ′(µ)
dξ(µ). (2.2)

In order to prove meaningful results, we need some
additional assumptions on the likelihood function. In
this particular case, we simply assume that it is smooth
(Lipschitz) with respect to the statistical distance:

Assumption 2.1. For a given policy π, for any µ,
and histories x, h ∈ H, there exists L > 0 such that∣∣ln [Pπ

µ(h)/P
π
µ(x)

]∣∣ ≤ L‖f(h)− f(x)‖.

We note in passing that this assumption is related to
the notion of differential privacy (Dwork & Lei, 2009),
from which it was inspired.

We now can state the following theorem, whose proof
can be found in the appendix, which generalises the
previous corollary.

Theorem 2.1. Under a policy π and statistic f satis-
fying Assumption 2.1, the approximate posterior dis-
tribution ξε(· | h) satisfies:

D (ξ(· | h) ‖ ξε(· | h)) ≤ (1 + ln |Ah
ε |)Lε, (2.3)

where Ah
ε , { z ∈ H | ‖f(z)− f(h)‖ ≤ ε } is the ε-ball

around the observed history h with respect to the sta-
tistical distance and |Ah

ε | denotes its size.

The divergence depends on the statistic in the follow-
ing ways. Firstly, it approaches 0 as ε → 0. Sec-
ondly, it is smaller for smoother likelihoods. However,

because of the dependence on the size of the ε-ball4

around the observed statistic, the statistic cannot be
arbitrarily smooth. Nevertheless, it may be the case
that a sufficient statistic is not required for good per-
formance. Since in reinforcement learning reinforce-
ment learning we are mainly interested in the utility
rather than in system identification, we may be able
to get good results by using utility-related statistics.

Observation-based statistics A simple idea is
to select features on which to calculate statistics.
Discounted cumulative feature expectation are espe-
cially interesting, due to their connection with value
functions (e.g. Puterman, 1994, Sec. 6.9.2). The
main drawback is that this adds yet another hyper-
parameter to tune. In addition, unlike econometrics
or bioinformatics, we may not be interested in model
identification per se, but only in finding a good policy.

Utility-based statistics Quantities related to the
utility may be a good match for reinforcement learn-
ing. In the simplest case, it may be sufficient to only
consider unconditional moments of the utility, which
is the approach followed in this paper. However, these
may only trivially satisfy Ass. 2.1 for arbitrary poli-
cies. Nevertheless, as we shall see, even a very simple
such statistic has a reasonably good performance.

2.3. A Hoeffding-based utility statistic

In particular, given a history h including Ndat tra-
jectories in the environment, with the i-th trajec-
tory obtaining utility U (i), we obtain a mean estimate

Ê
Ndat

U , 1
Ndat

U (i). We then obtain a history ĥ(k)

containing Ntrj trajectories from the sampled environ-

ment µ(k) and construct the mean estimate Ê
Ntrj

k U . In
order to test whether these are close enough, we use
the Hoeffding inequality (Hoeffding, 1963). In fact,
it is easy to see that, with probability at least 1 − δ,
|Eπ

µ U − Eπ
µ(k) U | is lower bounded by:

|Ê
N

datU−Ê
Ntrj

k U |−Umax

√
ln(2/δ)(Ndat +Ntrj)

2NdatNtrj
, (2.4)

where Umax is the range of the utility func-
tion. We then use (2.4) as the statistical distance∥∥f(h)− f(h(k))

∥∥ between the observed history h and

the sampled history h(k). The advantage of using this
statistic is that the more data we have, it becomes
harder to accept a sample.

4For discrete observations this is simply the counting
measure of the ball. For more general cases it can be ex-
tended to an appropriate measure.

ABC Reinforcement Learning

This statistic has two parameters. Firstly, the error
probability δ, which does not need to be very small
in practice, as the Hoeffding bound is only tight for
high-variance distributions. The second parameter is
Ntrj. This does not need to be very large, since it
only makes a marginal difference in the bound when
Ntrj � Ndat. An illustration of the type of samples
obtained with this statistic is given in Figure 1, which
shows the dependency of the approximate posterior
distribution on the threshold ε when conditioned on a
fixed amount Ndat of training trajectories.

3. ABC reinforcement learning

We now present a simple algorithm for ABC reinforce-
ment learning, based on the ideas explained in the pre-
vious section. For any given set of observations and
policies, we draw a number of sample environments
from the prior distribution. For each environment, we
execute the relevant policy and calculate the appropri-
ate statistics. If these are close enough to the observed
statistic, the sample is accepted. The next step is to
find a good policy for the sampled simulator. As we
can draw an arbitrary number of rollouts in the simu-
lator, any type of approximate dynamic programming
algorithm can be used. In our experiments, we used
LSPI (Lagoudakis & Parr, 2003b), which is simple to
program and effective. The hope is that if the approx-
imate posterior sampling is reasonable, then we can
take advantage of our prior knowledge of the environ-
ment class, to learn a good policy with less data, at
the expense of additional computation.

Algorithm 2 ABC-RL

parameters M, ξ, h, π, f
τ = {|M̂ | = 1}
µ̂ = ABC-RL-Sample(M, ξ, h, π, f, τ)
return π̂ ≈ argmaxπ E

π
µ̂ U

A sketch of the algorithm is shown in Alg.2. This has
a number of additional parameters that need to be dis-
cussed. The most important is the stopping condition
τ . The simplest idea, which we use in this paper, is
to stop when a single model µ̂ has been generated by
ABC-RL-Sample.

Then an (approximate) optimal policy for the sam-
pled model µ̂ can be found via an exact (or approxi-
mate) dynamic programming algorithm. This simpli-
fies the optimisation step significantly, as otherwise it
would be necessary to optimise over multiple models.
This particular version of the algorithm can be seen as
an ABC variant of Thompson sampling (Strens, 2000;
Thompson, 1933).

The exact algorithm to use for the policy optimisation
depends largely upon the class of simulators we have.
In principle any type of environment can be handled,
as long as a simulation-based approximation method
can be used to discover a good policy. In extremis,
direct policy search may be used. However, in the
work presented in this paper, we limit ourselves to
continuous-state Markov decision processes, for which
numerous efficient ADP algorithms exist.

3.1. ABC-LSPI

Let us consider the class of continuous-state, discrete-
action Markov decision processes (MDPs). Then,
a number of sample-based ADP algorithms can be
used to find good policies, such as fitted Q-iteration
(FQI) (Ernst et al., 2005) and least-square policy it-
eration (LSPI) (Lagoudakis & Parr, 2003b), which we
use herein.

Since we take an arbitrary number of trajectories from
the sampled MDP, an important algorithmic param-
eter is the number of rollouts Nrol to draw. Higher
values lead to better approximations, at the expense
of additional computation. Finally, since LSPI uses a
linear value function5 approximation, it is necessary to
select an appropriate basis for the fit to be good.

The computational complexity of ABC-LSPI depends
on the quality of approximation we wish to achieve
and on the number of samples required to sample a
model with statistics ε-close to those of the data. To
reduce computation, if Nsam models have been gener-
ated without one being accepted, we double ε and call
ABC-RL-Sample again.

4. Experiments

We performed some experiments to investigate the vi-
ability of ABC-RL, with all algorithms implemented
using (Dimitrakakis et al., 2007). In these, we com-
pared ABC-LSPI to LSPI. The intuition is that, if
ABC can find a good simulator, then we can per-
form a much better estimation of the value function
by drawing a lage number of samples from the simula-
tor, rather than estimating the value function directly
from the observations.

4.1. Domains

We consider two domains to illustrate ABC-RL. In
both of these domains, we have access to a set of

5The value function V (s) is simply the expected utility
conditioned on the system state s. We omit details as this
is not necessary to understand the framework proposed.

ABC Reinforcement Learning

..

0

.

20

.

40

.

60

.

80

.

100

.

120

.
6

.
6.5

.
7

.
7.5

.
8

.
8.5

.
9

(a) ε = 1, Ndat = 103
..

0

.

20

.

40

.

60

.

80

.

100

.
6

.
6.5

.
7

.
7.5

.
8

.
8.5

.
9

(b) ε = 0.1, Ndat = 103

Figure 1. Pendulum value distribution. In both cases, Nsam = 104 model samples are drawn from the prior and
Nrol = 103 rollouts are performed for each model sample. The vertical dashed line shows the actual value of the policy.
The solid and dot-dashed lines show the histograms of real and estimated values of the original policy in the sampled
environment. The solid line shows the value estimated using 104 rollouts. The dot-dashed line shows the value estimated
in the run itself, with Ntrj rollouts per sample. The × shows the expected value, averaged over the accepted samples. It
can be seen that, while a smaller threshold can result in better accuracy, many fewer samples are accepted.

parametrised simulators M = {µθ | θ ∈ Θ } for the
domains. However, we do not know the true param-
eters θ∗ ∈ Θ of the domains. For ABC, sampled pa-
rameters θ(k) are drawn from a uniform distribution
Unif (Θ), with Θ =

{
θ ∈ Rn

∣∣ θi ∈ [12θ
∗
i ,

3
2θ

∗
i]
}
.

Mountain car This is a generalised version of the
mountain car domain described in Sutton & Barto
(1998). The goal is to bring a car to the top of
a hill. The problem has 7 parameters: upper and
lower bounds on the horizontal position of the car,
upper and lower bounds on the car’s velocity, up-
per bounds on the car’s forwards and backwards ac-
celeration power, and finally the amount of uniform
noise present. The real environment parameters are
θ∗ = (0.5,−1.2, 0.07,−0.07, 0.001, 0.0025, 0.2). In this
problem, the goal is to reach the right-most horizontal
position. The observation consists of the horizontal
position and velocity and the reward is −1 at every
step until the goal is reached.

Pendulum This is a generalised version of the pen-
dulum domain (Sutton & Barto, 1998), but without
boundaries. The goal of the agent in this environment
is to maintain a pendulum upright, using a controller
that can switch actions every 0.1s. The problem has
6 parameters: the pendulum mass, the cart mass, the
pendulum length, the gravity, the amount of uniform
noise, and the simulation time interval. In this envi-
ronment, the reward is +1 for every step where the
pendulum is balanced. The actual environment pa-
rameters are θ∗ = (2.0, 8, 0, 0.5, 9.8, 0.01, 0.01).

4.2. Results

We compared the offline performance of LSPI and
ABC-LSPI on the two domains. We first observe Ndat

trajectories in the real environment drawn using a uni-
formly random policy. These trajectories are used by
both ABC-LSPI and LSPI to estimate a policy. This
policy is then evaluated over 103 trajectories. The
experiment was repeated for 102 runs. Since LSPI re-
quires a basis, in both cases we employed a uniform
4× 4 grid of RBFs, as well as an additional unit basis
for the value function estimation.

The results of the experiment are shown in Fig. 2,
where we plot the expected utility (with a discount
factor γ = 0.99) of the policy found as the number
of trajectories increase. Both LSPI and ABC-LSPI
manage to find an improved policy with more data.
However, the source of their improvement is different.
In the case of LSPI, the additional data leads to better
estimation of the value function. In ABC-LSPI, the
additional data leads to a better sampled model. The
value function is then estimated using a large number
of rollouts in the sampled model. The CPU time taken
by ABC ranges in 20 to 40s, versus 0.05 to 30s for pure
LSPI, depending on the amount of training data. This
is due to the additional overhead of sampling as well
as the increased amount of rollouts used for ADP.

In general, the ABC approach quickly reaches a good
performance, but then has little improvement. This ef-
fect is particularly prominent in the Mountain Car do-
main (Fig. 2(a)), where it is significantly worse asymp-
totically than LSPI. This can be attributed to the fact
that even though more data is available, the number
of samples drawn from the prior is not sufficient for a

ABC Reinforcement Learning

..

-80

.

-70

.

-60

.

-50

.

-40

.

-30

.

100

.

101

.

102

.

103

.

va
lu
e

. trajectories.

ABC

.

LSPI

(a) Mountain Car

..

0

.

20

.

40

.

60

.

80

.

100

.

100

.

101

.

102

.

103

.

va
lu
e

. trajectories.

ABC

.

LSPI

(b) Pendulum

Figure 2. Off-line performance. For Nsam = 103, ε =
10−2, Ntrj = 102, Nrol = 2 · 103, γ = 0.99. The data are
averaged over 102 runs, with each run being evaluated with
103 trajectories. The shaded regions show 95% bootstrap
confidence intervals from 103 bootstrap samples.

good model to be found. In fact, upon investigation
we noticed that although most model parameters were
reliably estimated, there was a difficulty in estimating
the goal location from the given trajectories. This was
probably the main reason why ABC didn’t reach op-
timal performance in this case. However, it may be
possible to improve upon this result with a more effi-
cient sampling scheme, or a statistic that is closer to
sufficiency than the simple utility-based statistic we
used.

On the other hand, the performance is significantly
better than LSPI in the pendulum environment
(Fig. 2(b)). There are two possible reason for this.
Firstly, ABC-LSPI not only uses more samples for

the value function estimation, but also better dis-
tributed samples, as it estimates the value function
by drawing trajectories starting from uniformly drawn
states in the sampled environment. Secondly, and per-
haps more importantly, that even for very differently
parametrised pendulum problems the optimal policies
on the pendulum domain are quite similar. Thus, even
if ABC only samples a very approximate simulator, its
optimal policy is going to be close to that of the real
environment.

5. Conclusion

We presented an extension of ABC, a likelihood-free
method for approximate Bayesian computation, to
controlled dynamical systems. This method is par-
ticularly interesting for domains where it is difficult to
specify an appropriate probabilistic model, and where
computation is significantly cheaper than data collec-
tion. It is in principle generally applicable to any type
of reinforcement learning problem, including continu-
ous, partially observable and multi-agent domains. We
also introduce a general theorem for the quality of the
approximate ABC posterior distribution, which can be
used for further analysis of ABC methods.

We then applied ABC inference to reinforcement learn-
ing. This involves using simulation both to estimate
approximate posterior distributions and to find good
policies. Thus, ABC-RL can be simultaneously seen
as an extension of ABC inference to control problems
and an extension of approximate dynamic program-
ming methods to likelihood-free approximate Bayesian
inference. The main advantage is when have no rea-
sonable probabilistic model, but we do have access to
a parametrised set of simulators, which contain good
approximations to the real environment. This is fre-
quently the case in complex control problems. How-
ever, we see that ABC-RL (specifically ABC-LSPI)
is competitive with pure LSPI even in problems with
low dimensionality where LSPI is expected to perform
quite well.

ABC-RL appears a viable approach, even with a very
simple sampling scheme, and a utility-based statis-
tic. In future work, we would like to investigate more
elaborate ABC schemes such as Markov chain Monte
Carlo, as well as statistics that are closer to suffi-
cient, such as discounted feature expectations and con-
ditional utilities. This would enable us to examine
its performance in more complex problems where the
practical advantages of ABC would be more evident.
However, we believe that the results are extremely en-
couraging and that the ABC methodology has great
potential in the field of reinforcement learning.

ABC Reinforcement Learning

A. Collected proofs

Proof of Remark 2.1. Let h = (xT+1, aT , rT). Using
induction,

Pπ
µ(h) =

T∏
t=0

µt(xt+1)πt(at).

Replacing in the posterior calculation (A.1) we obtain:

ξ(B | h, π) =
∫
B

∏T
t=0 µt(xt+1) dξ(µ)∫

M
∏T

t=0 µt(xt+1) dξ(µ)
(A.1)

since the
∏T

t=0 πt(at) terms can be taken out of the
integrals and cancel out.

Proof of Corollary 2.1. By definition, a sufficient
statistic f : H → W has the following property:

∀µ, π : Pπ
µ(h) = Pπ

µ(h
′) iff f(h) = f(h′). (A.2)

The probability of drawing a model in B ⊂ M is:∫
B

∑
z∈H I {f(z) = f(h)}Pπ

µ(z) dξ(µ)∫
M

∑
z∈H I {f(z) = f(h)}Pπ

µ(z) dξ(µ)

=

∫
B
Pπ
µ(h) dξ(µ)∫

M Pπ
µ(h) dξ(µ)

= ξ(B | h, π), (A.3)

due to (A.2).

Proof of Theorem 2.1. For notational simplicity, we
introduce φ(·) =

∫
M Pπ

µ(·) dξ(µ) for the marginal prior
measure on H, also omitting the dependency on π.
Then the ABC posterior ξε(B | h) equals:∫

B

∑
z∈H I {‖f(z)− f(h)‖ < ε}Pπ

µ(z) dξ(µ)∫
M

∑
z∈H I {‖f(z)− f(h)‖ < ε}Pπ

µ(z) dξ(µ)

=

∫
B
Pπ
µ(A

h
ε) dξ(µ)∫

M Pπ
µ(A

h
ε) dξ(µ)

=

∫
B
Pπ
µ(A

h
ε) dξ(µ)

φ(Ah
ε)

. (A.4)

From Definition 2.1:

D (ξ(· | h) ‖ ξε(· | h)) =
∫
M

ln
dξ(µ | h)
dξε(µ | h)

dξ(µ)

(a)
=

∫
M

ln

(Pπ
µ(h)

Pπ
µ(A

h
ε)

× φ(Ah
ε)

φ(h)

)
dξ(µ)

=

∫
M

ln
Pπ
µ(h)

Pπ
µ(A

h
ε)

dξ(µ) +

∫
M

ln
φ(Ah

ε)

φ(h)
dξ(µ)

(b)

≤
∫
M

ln
Pπ
µ(h)

minz∈Ah
ε
Pπ
µ(z)

dξ(µ) +

∫
M

ln
φ(Ah

ε)

φ(h)
dξ(µ)

(c)

≤
∫
M

∣∣∣∣∣ln Pπ
µ(h)

minz∈Ah
ε
Pπ
µ(z)

∣∣∣∣∣ dξ(µ) +
∫
M

∣∣∣∣ln φ(Ah
ε)

φ(h)

∣∣∣∣ dξ(µ)
(d)

≤ Lε+

∣∣∣∣ln φ(Ah
ε)

φ(h)

∣∣∣∣ (e)

≤ Lε(1 + ln |Ah
ε |).

Equality (a) follows from equations (A.3) and (A.4).
Inequality (b) follows from the fact that Pπ

µ(A
h
ε) =∑

z∈Ah
ε
Pπ
µ(z) ≥ minz∈Ah

ε
Pπ
µ(z), while (c) follows from

|x| ≥ x. For (d), first note that for any z ∈ Ah
ε ,

by the definition of Ah
ε , | ln[Pπ

µ(h)/P
π
µ(z)]| ≤ Lε, by

Assumption 2.1. Thus the first integral is bounded
by

∫
M ξ(µ) = ξ(M) = 1. Similarly, the | · | term

in the second integral is independent of µ and so
is taken out. For (e), the same assumption gives
that φ(z) =

∫
M Pµ,π(z) dξ(µ) ≤ exp(Lε)φ(h) for any

z ∈ Ah
ε so, ln[φ(Ah

ε)/φ(h)] ≤ Lε ln |Ah
ε |. Finally, as

h ∈ Ah
ε , φ(Ah

ε) ≥ φ(h) and we obtain the final re-
sult.

References

Agrawal, Shipra and Goyal, Navi. Analysis of thomp-
son sampling for the multi-armed bandit problem.
In COLT 2012, 2012.

Araya, M., Thomas, V., Buffet, O., et al. Near-optimal
BRL using optimistic local transitions. In ICML,
2012.

Bertsekas, Dimitri P. Nonlinear Programming. Athena
Scientific, 1999.

Bertsekas, Dimitri P. Rollout algorithms for con-
strained dynamic programming. Technical Report
LIDS 2646, Dept. of Electrical Engineering and
Computer Science, M.I.T., Cambridge, Mass., 2006.

Bertsekas, Dimitri P. and Tsitsiklis, John N. Neuro-
Dynamic Programming. Athena Scientific, 1996.

Castro, Pablo Samuel and Precup, Doina. Using linear
programming for Bayesian exploration in Markov
decision processes. In Veloso, Manuela M. (ed.), IJ-
CAI, pp. 2437–2442, 2007.

Csilléry, K., Blum, M.G.B., Gaggiotti, O.E., François,
O., et al. Approximate Bayesian computation
(ABC) in practice. Trends in ecology & evolution,
25(7):410–418, 2010.

Dean, Thomas A and Singh, Sumeetpal S. Asymp-
totic behaviour of approximate bayesian estimators.
arXiv preprint arXiv:1105.3655, 2011.

DeGroot, Morris H. Optimal Statistical Decisions.
John Wiley & Sons, 1970.

Dimitrakakis, Christos. Robust bayesian reinforce-
ment learning through tight lower bounds. In Euro-
pean Workshop on Reinforcement Learning (EWRL
2011), number 7188 in LNCS, pp. 177–188, 2011.

ABC Reinforcement Learning

Dimitrakakis, Christos and Lagoudakis, Michail G.
Rollout sampling approximate policy iteration. Ma-
chine Learning, 72(3):157–171, September 2008. doi:
10.1007/s10994-008-5069-3. Presented at ECML’08.

Dimitrakakis, Christos, Tziortziotis, Nikolaos, and
Tossou, Aristide. Beliefbox: A framework for
statistical methods in sequential decision making.
http://code.google.com/p/beliefbox/, 2007.

Duff, Michael O’Gordon. Optimal Learning Compu-
tational Procedures for Bayes-adaptive Markov De-
cision Processes. PhD thesis, University of Mas-
sachusetts at Amherst, 2002.

Dwork, Cynthia and Lei, Jing. Differential privacy and
robust statistics. In Proceedings of the 41st annual
ACM symposium on Theory of computing, pp. 371–
380. ACM, 2009.

Ernst, Damien, Geurts, Pierre, and Wehenkel, Louis.
Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556,
2005.

Gabillon, Victor, Lazaric, Alessandro, Ghavamzadeh,
Mohammad, and Scherrer, Bruno. Classification-
based policy iteration with a critic. In ICML 2011,
2011.

Geweke, J. Using simulation methods for Bayesian
econometric models: inference, development, and
communication. Econometric Reviews, 18(1):1–73,
1999.

Hoeffding, Wassily. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, March 1963.

Jasra, Ajay, Singh, Sumeetpal S, Martin, James S, and
McCoy, Emma. Filtering via approximate bayesian
computation. Stat. Comput, 2010.

Kaufmanna, Emilie, Korda, Nathaniel, and Munos,
Rémi. Thompson sampling: An optimal finite time
analysis. In ALT-2012, 2012.

Kolter, J. Zico and Ng, Andrew Y. Near-Bayesian ex-
ploration in polynomial time. In ICML 2009, 2009.

Lagoudakis, M. and Parr, R. Reinforcement learning
as classification: Leveraging modern classifiers. In
ICML, pp. 424, 2003a.

Lagoudakis, M.G. and Parr, R. Least-squares policy it-
eration. The Journal of Machine Learning Research,
4:1107–1149, 2003b.

Marin, J.M., Pudlo, P., Robert, C.P., and Ryder,
R.J. Approximate Bayesian computational meth-
ods. Statistics and Computing, pp. 1–14, 2011.

Poupart, P., Vlassis, N., Hoey, J., and Regan, K. An
analytic solution to discrete Bayesian reinforcement
learning. In ICML 2006, pp. 697–704. ACM Press
New York, NY, USA, 2006.

Poupart, Pascal and Vlassis, Nikos. Model-based
Bayesian reinforcement learning in partially observ-
able domains. In International Symposium on Arti-
ficial Intelligence and Mathematics (ISAIM), 2008.

Puterman, Marting L. Markov Decision Processes :
Discrete Stochastic Dynamic Programming. John
Wiley & Sons, New Jersey, US, 1994.

Ross, Stephane, Chaib-draa, Brahim, and Pineau,
Joelle. Bayes-adaptive POMDPs. In Platt, J.C.,
Koller, D., Singer, Y., and Roweis, S. (eds.), Ad-
vances in Neural Information Processing Systems
20, Cambridge, MA, 2008. MIT Press.

Savage, Leonard J. The Foundations of Statistics.
Dover Publications, 1972.

Strens, Malcolm. A Bayesian framework for reinforce-
ment learning. In ICML 2000, pp. 943–950, 2000.

Sutton, Richard S. and Barto, Andrew G. Reinforce-
ment Learning: An Introduction. MIT Press, 1998.

Thompson, W.R. On the Likelihood that One Un-
known Probability Exceeds Another in View of the
Evidence of two Samples. Biometrika, 25(3-4):285–
294, 1933.

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and
Stumpf, M.P.H. Approximate Bayesian computa-
tion scheme for parameter inference and model se-
lection in dynamical systems. Journal of the Royal
Society Interface, 6(31):187–202, 2009.

Vlassis, N., Ghavamzadeh, M., Mannor, S., and
Poupart, P. Reinforcement Learning, chapter
Bayesian Reinforcement Learning, pp. 359–386.
Springer, 2012.

Wu, Feng, Zilberstein, Shlomo, and Chen, Xiaoping.
Rollout sampling policy iteration for decentralized
POMDPs. In The 26th conference on Uncertainty in
Artificial Intelligence (UAI 2010), Catalina Island,
CA, USA, July 2010.

