
Consistency of Online Random Forests

Misha Denil mdenil@cs.ubc.ca
David Matheson davidm@cs.ubc.ca
Nando de Freitas nando@cs.ubc.ca

University of British Columbia

Abstract

As a testament to their success, the theory
of random forests has long been outpaced by
their application in practice. In this paper,
we take a step towards narrowing this gap
by providing a consistency result for online
random forests.

1. Introduction

Random forests are a class of ensemble method whose
base learners are a collection of randomized tree
predictors, which are combined through averaging.
The original random forests framework described in
Breiman (2001) has been extremely influential (Svet-
nik et al., 2003; Prasad et al., 2006; Cutler et al., 2007;
Shotton et al., 2011; Criminisi et al., 2011).

Despite their extensive use in practical settings, very
little is known about the mathematical properties of
these algorithms. A recent paper by one of the leading
theoretical experts states that

Despite growing interest and practical use,
there has been little exploration of the sta-
tistical properties of random forests, and lit-
tle is known about the mathematical forces
driving the algorithm (Biau, 2012).

Theoretical work in this area typically focuses on styl-
ized versions of the random forests algorithms used in
practice. For example, Biau et al. (2008) prove the
consistency of a variety of ensemble methods built by
averaging base classifiers. Two of the models they
study are direct simplifications of the forest growing
algorithms used in practice; the others are stylized
neighbourhood averaging rules, which can be viewed

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

as simplifications of random forests through the lens
of Lin & Jeon (2002). An even further simplified ver-
sion of random forests in one dimension is studied in
Genuer (2010; 2012).

In this paper we make further steps towards narrowing
the gap between theory and practice. In particular, we
present what is, to the best of our knowledge, the first
consistency result for online random forests.

2. Related Work

Different variants of random forests are distinguished
by the methods they use for growing the trees. The
model described in Breiman (2001) builds each tree
on a bootstrapped sample of the training set using the
CART methodology (Breiman et al., 1984). The opti-
mization in each leaf that searches for the optimal split
point is restricted to a random selection of features, or
linear combinations of features.

The framework of Criminisi et al. (2011) operates
slightly differently. Instead of choosing only features at
random, this framework chooses entire decisions (i.e.
both a feature or combination of features and a thresh-
old together) at random and optimizes only over this
set. Unlike the work of Breiman (2001), this frame-
work chooses not to include bagging, preferring instead
to train each tree on the entire data set and introduce
randomness only in the splitting process. The authors
argue that without bagging their model obtains max-
margin properties.

In addition to the frameworks mentioned above, many
practitioners introduce their own variations on the ba-
sic random forests algorithm, tailored to their specific
problem domain. A variant from Bosch et al. (2007)
is especially similar to the technique we use in this pa-
per: When growing a tree the authors randomly select
one third of the training data to determine the struc-
ture of the tree and use the remaining two thirds to
fit the leaf estimators. However, the authors consider
this only as a technique for introducing randomness

Consistency of Online Random Forests

into the trees, whereas in our model the partitioning
of data plays a central role in consistency.

In addition to these offline methods, several re-
searchers have focused on building online versions of
random forests. Online models are attractive because
they do not require that the entire training set be ac-
cessible at once. These models are appropriate for
streaming settings where training data is generated
over time and should be incorporated into the model
as quickly as possible. Several variants of online de-
cision tree models are present in the MOA system of
Bifet et al. (2010).

The primary difficulty with building online decision
trees is their recursive structure. Data encountered
once a split has been made cannot be used to correct
earlier decisions. A notable approach to this problem
is the Hoeffding tree (Domingos & Hulten, 2000) algo-
rithm, which works by maintaining several candidate
splits in each leaf. The quality of each split is esti-
mated online as data arrive in the leaf, but since the
entire training set is not available these quality mea-
sures are only estimates. The Hoeffding bound is em-
ployed in each leaf to control the amount of data which
must be collected to ensure that the split chosen on the
basis of these estimates is the true best split with high
probability. Domingos & Hulten (2000) prove that un-
der reasonable assumptions the online Hoeffding tree
converges to the offline tree with high probability. The
Hoeffding tree algorithm is implemented in the system
of Bifet et al. (2010).

Alternative methods for controlling tree growth in an
online setting have also been explored. Saffari et al.
(2009) use the online bagging technique of Oza & Rus-
sel (2001) and control leaf splitting using two param-
eters in their online random forest. One parameter
specifies the minimum number of data points which
must be seen in a leaf before it can be split, and an-
other specifies a minimum quality threshold that the
best split in a leaf must reach. This is similar in flavor
to the technique used by Hoeffding trees, but trades
theoretical guarantees for more interpretable parame-
ters.

One active avenue of research in online random forests
involves tracking non-stationary distributions, also
known as concept drift. Many of the online techniques
incorporate features designed for this problem (Gama
et al., 2005; Abdulsalam, 2008; Saffari et al., 2009;
Bifet et al., 2009; 2012). However, tracking of non-
stationarity is beyond the scope of this paper.

The most well known theoretical result for random
forests is that of Breiman (2001), which gives an up-

per bound on the generalization error of the forest in
terms of the correlation and strength of trees. Fol-
lowing Breiman (2001), an interpretation of random
forests as an adaptive neighborhood weighting scheme
was published by Lin & Jeon (2002). This was fol-
lowed by the first consistency result in this area from
Breiman (2004), who proves consistency of a simpli-
fied model of the random forests used in practice. In
the context of quantile regression the consistency of
a certain model of random forests has been shown by
Meinshausen (2006). A model of random forests for
survival analysis was shown to be consistent in Ish-
waran & Kogalur (2010).

Significant recent work in this direction comes from
Biau et al. (2008) who prove the consistency of a vari-
ety of ensemble methods built by averaging base clas-
sifiers, as is done in random forests. A key feature
of the consistency of the tree construction algorithms
they present is a proposition that states that if the
base classifier is consistent then the forest, which takes
a majority vote of these classifiers, is itself consistent.

The most recent theoretical study, and the one which
achieves the closest match between theory and prac-
tice, is that of Biau (2012). The most significant way
in which their model differs from practice is that it
requires a second data set which is not used to fit the
leaf predictors in order to make decisions about vari-
able importance when growing the trees. One of the
innovations of the model we present in this paper is a
way to circumvent this limitation in an online setting
while maintaining consistency.

3. Online Random Forests with Stream
Partitioning

In this section we describe the workings of our online
random forest algorithm. A more precise (pseudo-
code) description of the training procedure can be
found in Appendix A.

3.1. Forest Construction

The random forest classifier is constructed by building
a collection of random tree classifiers in parallel. Each
tree is built independently and in isolation from the
other trees in the forest. Unlike many other random
forest algorithms we do not perform bootstrapping or
subsampling at this level; however, the individual trees
each have their own optional mechanism for subsam-
pling the data they receive.

Consistency of Online Random Forests

3.2. Tree Construction

Each node of the tree is associated with a rectangular
subset of RD, and at each step of the construction
the collection of cells associated with the leafs of the
tree forms a partition of RD. The root of the tree
is RD itself. At each step we receive a data point
(Xt, Yt) from the environment. Each point is assigned
to one of two possible streams at random with fixed
probability. We denote stream membership with the
variable It ∈ {s, e}. How the tree is updated at each
time step depends on which stream the corresponding
data point is assigned to.

We refer to the two streams as the structure stream
and the estimation stream; points assigned to these
streams are structure and estimation points, respec-
tively. These names reflect the different uses of the
two streams in the construction of the tree:

Structure points are allowed to influence the struc-
ture of the tree partition, i.e. the locations of candidate
split points and the statistics used to choose between
candidates, but they are not permitted to influence the
predictions that are made in each leaf of the tree.

Estimation points are not permitted to influence the
shape of the tree partition, but can be used to estimate
class membership probabilities in whichever leaf they
are assigned to.

Only two streams are needed to build a consistent for-
est, but there is no reason we cannot have more. For
instance, we explored the use of a third stream for
points that the tree should ignore completely, which
gives a form of online sub-sampling in each tree. We
found empirically that including this third stream
hurts performance of the algorithm, but its presence
or absence does not affect the theoretical properties.

3.3. Leaf Splitting Mechanism

When a leaf is created the number of candidate
split dimensions for the new leaf is set to min(1 +
Poisson(λ), D), and this many distinct candidate di-
mensions are selected uniformly at random. We then
collect m candidate splits in each candidate dimen-
sion (m is a parameter of the algorithm) by projecting
the first m structure points to arrive in the newly cre-
ated leaf onto the candidate dimensions. We maintain
several structural statistics for each candidate split.
Specifically, for each candidate split we maintain class
histograms for each of the new leafs it would create, us-
ing data from the estimation stream. We also maintain
structural statistics, computed from data in the struc-
ture stream, which can be used to choose between the
candidate splits. The specific form of the structural

statistics does not affect the consistency of our model,
but it is crucial that they depend only on data in the
structure stream.

Finally, we require two additional conditions which
control when a leaf at depth d is split:

1. Before a candidate split can be chosen, the class
histograms in each of the leafs it would create
must incorporate information from at least α(d)
estimation points.

2. If any leaf receives more than β(d) estimation
points, and the previous condition is satisfied for
any candidate split in that leaf, then when the
next structure point arrives in this leaf it must
be split regardless of the state of the structural
statistics.

The first condition ensures that leafs are not split too
often, and the second condition ensures that no branch
of the tree ever stops growing completely. In order to
ensure consistency we require that α(d) → ∞ mono-
tonically in d and that d/α(d) → 0. We also require
that β(d) ≥ α(d) for convenience.

When a structure point arrives in a leaf, if the first
condition is satisfied for some candidate split then the
leaf may optionally be split at the corresponding point.
The decision of whether to split the leaf or wait to
collect more data is made on the basis of the structural
statistics collected for the candidate splits in that leaf.

3.4. Structural Statistics

In each candidate child we maintain an estimate of the
posterior probability of each class, as well as the total
number of points we have seen fall in the candidate
child, both counted from the structure stream. In or-
der to decide if a leaf should be split, we compute the
information gain for each candidate split which satis-
fies condition 1 from the previous section,

I(S) = H(A)− |A
′|
|A|

H(A′)− |A
′′|
|A|

H(A′′) .

Here S is the candidate split, A is the cell belonging
to the leaf to be split, and A′ and A′′ are the two
leafs that would be created if A were split at S. The
function H(A) is the discrete entropy, computed over
the labels of the structure points which fall in the cell
A.

We select the candidate split with the largest informa-
tion gain for splitting, provided this split achieves a
minimum threshold in information gain, τ . The value
of τ is a parameter of our algorithm.

Consistency of Online Random Forests

3.5. Prediction

At any time the online forest can be used to make
predictions for unlabelled data points using the model
built from the labelled data it has seen so far. To make
a prediction for a query point x at time t, each tree
computes, for each class k,

ηkt (x) =
1

Ne(At(x))

∑
(Xτ ,Yτ)∈At(x)

Iτ=e

I {Yτ = k} ,

where At(x) denotes the leaf of the tree containing x
at time t, and Ne(At(x)) is the number of estimation
points which have been counted in At(x) during its
lifetime. Similarly, the sum is over the labels of these
points. The tree prediction is then the class which
maximizes this value:

gt(x) = arg max
k
{ηkt (x)} .

The forest predicts the class which receives the most
votes from the individual trees.

Note that this requires that we maintain class his-
tograms from both the structure and estimation
streams separately for each candidate child in the
fringe of the tree. The counts from the structure
stream are used to select between candidate split
points, and the counts from the estimation stream are
used to initialize the parameters in the newly created
leafs after a split is made.

3.6. Memory Management

The typical approach to building trees online, which
is employed in Domingos & Hulten (2000) and Saf-
fari et al. (2009), is to maintain a fringe of candidate
children in each leaf of the tree. The algorithm col-
lects statistics in each of these candidate children until
some (algorithm dependent) criterion is met, at which
point a pair of candidate children is selected to replace
their parent. The selected children become leafs in the
new tree, acquiring their own candidate children, and
the process repeats. Our algorithm also uses this ap-
proach.

The difficulty here is that the trees must be grown
breadth first, and maintaining the fringe of potential
children is very memory intensive when the trees are
large. Our algorithm also suffers from this deficiency,
as maintaining the fringe requires O(cmd) statistics
in each leaf, where d is the number of candidate split
dimensions, m is the number of candidate split points
(i.e. md pairs of candidate children per leaf) and c is
the number of classes in the problem. These statistics
can be quite large and for deep trees the memory cost
becomes prohibitive.

In practice the memory problem is resolved either by
growing small trees, as in Saffari et al. (2009), or by
bounding the number of nodes in the fringe of the tree,
as in Domingos & Hulten (2000). Other models of
streaming random forests, such as those discussed in
Abdulsalam (2008), build trees in sequence instead of
in parallel, which reduces the total memory usage.

Our algorithm makes use of a bounded fringe and
adopts the technique of Domingos & Hulten (2000) to
control the policy for adding and removing leafs from
the fringe.

In each tree we partition the leafs into two sets: we
have a set of active leafs, for which we collect split
statistics as described in earlier sections, and a set of
inactive leafs for which we store only two numbers.
We call the set of active leafs the fringe of the tree,
and describe a policy for controlling how inactive leafs
are added to the fringe.

In each inactive leaf At we store the following two
quantities

• p̂(At) which is an estimate of µ(At) = P (X ∈ At),
and

• ê(At) which is an estimate of e(A) =
P (gt(X) 6= Y |X ∈ At).

Both of these are estimated based on the estimation
points which arrive in At during its lifetime. From
these two numbers we form the statistic ŝ(At) =
p̂(At)ê(At) (with corresponding true value s(At) =
p(At)e(At)) which is an upper bound on the improve-
ment in error rate that can be obtained by splitting
At.

Membership in the fringe is controlled by ŝ(At). When
a leaf is split it relinquishes its place in the fringe and
the inactive leaf with the largest value of ŝ(At) is cho-
sen to take its place. The newly created leafs from the
split are initially inactive and must compete with the
other inactive leafs for entry into the fringe.

Unlike Domingos & Hulten (2000), who use this tech-
nique only as a heuristic for managing memory use, we
incorporate the memory management directly into our
analysis. The analysis in Appendix B shows that our
algorithm, including a limited size fringe, is consistent.

4. Theory

In this section we state our main theoretical results and
give an outline of the strategy for establishing consis-
tency of our online random forest algorithm. In the
interest of space and clarity we do not include proofs

Consistency of Online Random Forests

in this section. Unless otherwise noted, the proofs of
all claims appear in Appendix B.

We denote the tree partition created by our online ran-
dom forest algorithm from t data points as gt. As t
varies we obtain a sequence of classifiers, and we are
interested in showing that the sequence {gt} is consis-
tent, or more precisely that the probability of error of
gt converges in probability to the Bayes risk, i.e.

L(gt) = P (gt(X,Z) 6= Y |Dt)→ L∗ ,

as t → ∞. Here (X,Y) is a random test point and Z
denotes the randomness in the tree construction algo-
rithm. Dt is the training set (of size t) and the proba-
bility in the convergence is over the random selection
of Dt. The Bayes risk is the probability of error of
the Bayes classifier, which is the classifier that makes
predictions by choosing the class with the highest pos-
terior probability,

g(x) = arg max
k

P (Y = k |X = x) ,

(where ties are broken in favour of the smaller index).
The Bayes risk L(g) = L∗ is the minimum achievable
risk of any classifier for the distribution of (X,Y). In
order to ease notation, we drop the explicit dependence
on Dt in the remainder of this paper. More informa-
tion about this setting can be found in Devroye et al.
(1996).

Our main result is the following theorem:

Theorem 1. Suppose the distribution of X has a den-
sity with respect to the Lebesgue measure and that this
density is bounded from above and below. Then the
online random forest classifier described in this paper
is consistent.

The first step in proving Theorem 1 is to show that the
consistency of a voting classifier, such as a random for-
est, follows from the consistency of the base classifiers.
We prove the following proposition, which is a straight-
forward generalization of a proposition from Biau et al.
(2008), who prove the same result for two class ensem-
bles.

Proposition 2. Assume that the sequence {gt} of ran-
domized classifiers is consistent for a certain distribu-

tion of (X,Y). Then the voting classifier, g
(M)
t ob-

tained by taking the majority vote over M (not nec-
essarily independent) copies of gt is also consistent.

With Proposition 2 established, the remainder of the
effort goes into proving the consistency of our tree con-
struction.

The first step is to separate the stream splitting ran-
domness from the remaining randomness in the tree
construction. We show that if a classifier is condition-
ally consistent based on the outcome of some random
variable, and the sampling process for this random
variable generates acceptable values with probability
1, then the resulting classifier is unconditionally con-
sistent.

Proposition 3. Suppose {gt} is a sequence of classi-
fiers whose probability of error converges conditionally
in probability to the Bayes risk L∗ for a specified dis-
tribution on (X,Y), i.e.

P (gt(X,Z, I) 6= Y | I)→ L∗

for all I ∈ I and that ν is a distribution on I. If
ν(I) = 1 then the probability of error converges un-
conditionally in probability, i.e.

P (gt(X,Z, I) 6= Y)→ L∗

In particular, {gt} is consistent for the specified distri-
bution.

Proposition 3 allows us to condition on the random
variables {It}∞t=1 which partition the data stream into
structure and estimation points in each tree. Provided
that the random partitioning process produces accept-
able sequences with probability 1, it is sufficient to
show that the random tree classifier is consistent con-
ditioned on such a sequence. In particular, in the re-
mainder of the argument we assume that {It}∞t=1 is a
fixed, deterministic sequence which assigns infinitely
many points to each of the structure and estimation
streams. We refer to such a sequence as a partitioning
sequence.

S I E

Figure 1. The dependency structure of our algorithm. S
represents the randomness in the structure of the tree par-
tition, E represents the randomness in the leaf estimators
and I represents the randomness in the partitioning of the
data stream. E and S are independent conditioned on I.

The reason this is useful is that conditioning on a par-
titioning sequence breaks the dependence between the
structure of the tree partition and the estimators in
the leafs. This is a powerful tool because it gives us
access to a class of consistency theorems which rely
on this type of independence. However, before we are
able to apply these theorems we must further reduce
our problem to proving the consistency of estimators
of the posterior distribution of each class.

Consistency of Online Random Forests

Proposition 4. Suppose we have regression esti-
mates, ηkt (x), for each class posterior ηk(x) =
P (Y = k |X = x), and that these estimates are each
consistent. The classifier

gt(x) = arg max
k
{ηkt (x)}

(where ties are broken in favour of the smaller index)
is consistent for the corresponding multiclass classifi-
cation problem.

Proposition 4 allows us to reduce the consistency of
the multiclass classifier to the problem of proving the
consistency of several two class posterior estimates.
Given a set of classes {1, . . . , c} we can re-assign the
labels using the map (X,Y) 7→ (X, I {Y = k}) for any
k ∈ {1, . . . , c} in order to get a two class problem where
P (Y = 1 |X = x) in this new problem is equal to ηk(x)
in the original multiclass problem. Thus to prove con-
sistency of the multiclass classifier it is enough to show
that each of these two class posteriors is consistent. To
this end we make use of the following theorem from De-
vroye et al. (1996).

Theorem 5. Consider a partitioning classification
rule which builds a prediction ηt(x) of η(x) =
P (Y = 1 |X = x) by averaging the labels in each cell
of the partition. If the labels of the voting points do
not influence the structure of the partition then

E [|ηt(x)− η(x)|]→ 0

provided that

1. diam(At(X))→ 0 in probability,

2. Ne(At(X))→∞ in probability.

Proof. See Theorem 6.1 in Devroye et al. (1996).

Here At(X) refers to the cell of the tree partition con-
taining a random test point X, and diam(A) indicates
the diameter of set A, which is defined as the maxi-
mum distance between any two points falling in A,

diam(A) = sup
x,y∈A

||x− y|| .

The quantity Ne(At(X)) is the number of points con-
tributing to the estimation of the posterior at X.

This theorem places two requirements on the cells of
the partition. The first condition ensures that the cells
are sufficiently small that small details of the posterior
distribution can be represented. The second condition
requires that the cells be large enough that we are

able to obtain high quality estimates of the posterior
probability in each cell.

The leaf splitting mechanism described in Section 3.3
ensures that the second condition of Theorem 5 is sat-
isfied. However, showing that our algorithm satisfies
the first condition requires significantly more work.
The chief difficulty lies in showing that every leaf of the
tree will be split infinitely often in probability. Once
this claim is established a relatively straightforward
calculation shows that the expected size of each di-
mension of a leaf is reduced each time it is split.

So far we have described the approach to proving con-
sistency of our algorithm with an unbounded fringe.
If the tree is small (i.e. never has more leafs than the
maximum fringe size) then the analysis is unchanged.
However, since our trees are required to grow to un-
bounded size this is not possible.

In order to apply Theorem 5 in the case of an un-
bounded fringe we have shown that every leaf will be
split in finite time with arbitrarily high probability. To
extend consistency to this setting we need only show
that the probability of an inactive leaf not being acti-
vated goes to zero as t → ∞. This is sufficient, since
once a leaf is activated it remains in the fringe until it
is split and the argument from the unbounded fringe
setting applies.

In order to show that any leaf will be eventually added
to the fringe, we consider an arbitrary leaf A and show
that we can make the probability that ŝ(A) is not
the largest ŝ(A) value among inactive leafs arbitrar-
ily small by making t sufficiently large.

These details are somewhat lengthy, so we refer the
interested reader to Appendix B a full presentation,
including proofs of the propositions stated in this sec-
tion.

5. Experiments

In this section we demonstrate some empirical results
in order to illustrate the properties of our algorithm.
Code to reproduce all of the experiements in this sec-
tion is available online1.

5.1. Advantage of a Forest

Our first experiment demonstrates that although the
individual trees are consistent classifiers, empirically
the performance of the forest is significantly better
than each of the trees for problems with finite data.

1https://github.com/david-matheson/
rftk-colrf-icml2013

https://github.com/david-matheson/rftk-colrf-icml2013
https://github.com/david-matheson/rftk-colrf-icml2013

Consistency of Online Random Forests

102 103 104

Data Size

0.40

0.45

0.50

0.55

0.60

0.65

0.70
A

cc
ur

ac
y

Forest and tree accuracy

Trees
Forest
Bayes

Figure 2. Prediction accuracy of the forest and the trees it
averages on a 2D mixture of Gaussians. The horizontal line
shows the accuracy of the Bayes classifier on this problem.
We see that the accuracy of the forest consistently domi-
nates the expected accuracy of the trees. Shaded regions
show one standard deviation computed over 10 runs.

We demonstrate this on a synthetic five class mixture
of Gaussians problem with significant class overlap and
variation in prior weights. For this experiment we
used 100 trees and set λ = 1, m = 10, τ = 0.001,
α(d) = 1.1d, β(d) = 1000α(d).

From Figure 2 it is clear that the forest converges much
more quickly than the individual trees. Result profiles
of this kind are common in the boosting and random
forests literature; however, in practice one often uses
inconsistent base classifiers in the ensemble (e.g. boost-
ing with decision stumps or random forests where the
trees are grown to full size). This experiment demon-
strates that although our base classifiers provably con-
verge, empirically there is still a benefit from averaging
in finite time.

5.2. Comparison to Offline

In our second experiment, we demonstrate that our on-
line algorithm is able to achieve similar performance
to an offline implementation of random forests and
also compare to an existing online random forests al-
gorithm on a small non-synthetic problem.

In particular, we demonstrate this on the USPS data
set from the LibSVM repository (Chang & Lin, 2011).
We have chosen the USPS data for this experiment
because it allows us to compare our results directly
to those of Saffari et al. (2009), whose algorithm is
very similar to our own. For both algorithms we use
a forest of 100 trees. For our model we set λ = 10,
m = 10, τ = 0.1, α(d) = 10(1.00001d) and β(d) =
104α(d). For the model of Saffari et al. (2009) we

102 103

Data Size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

USPS

Offline
Online
Saffari et al. (2009)

Figure 3. Comparison between offline random forests and
our online algorithm on the USPS data set. The online
forest uses 10 passes through the data set. The third line
is our implementation of the algorithm from Saffari et al.
(2009). Shaded regions show one standard deviation com-
puted over 10 runs.

set the number of features and thresholds to sample
at 10, the minimum information gain to 0.1 and the
minimum number of samples to split at leaf at 50.
We show results from both online algorithms with 15
passes through the data.

Figure 3 shows that we are able to achieve performance
very similar to the offline random forest on the full
data. The performance we achieve is similar to the
performance reported by Saffari et al. (2009) on this
data set.

5.3. Microsoft Kinect

For our final experiment we evaluate our online ran-
dom forest algorithm on the challenging computer vi-
sion problem of predicting human body part labels
from a depth image. Our procedure closely follows
the work of Shotton et al. (2011) which is used in the
commercially successful Kinect system. Applying the
same approach as Shotton et al. (2011), our online
classifier predicts the body part label of a single pixel
P in a depth image. To predict all the labels of a
depth image, the classifier is applied to every pixel in
parrallel.

For our dataset, we generate pairs of 640x480 resolu-
tion depth and body part images by rendering random
poses from the CMU mocap dataset. The 19 body
parts and one background class are represented by 20
unique color identifiers in the body part image. Figure
4 (left) visualizes the raw depth image, ground truth
body part labels and body parts predicted by our clas-
sifier for one pose. During training, we sample 50 pix-

Consistency of Online Random Forests

Figure 4. Left: Depth, ground truth body parts and pre-
dicted body parts. Right: A candidate feature specified
by two offsets.

els without replacement for each body part class from
each pose; thus, producing 1000 data points for each
depth image. During testing we evaluate the predic-
tion accuracy of all non background pixels as this pro-
vides a more informative accuracy metric since most
of the pixels are background and are relatively easy to
predict. For this experiment we use a stream of 2000
poses for training and 500 poses for testing.

Each node of each decision tree computes the depth
difference between two pixels described by two off-
sets from P (the pixel being classified). At training
time, candidate pairs of offsets are sampled from a 2-
dimensional Gaussian distributions with variance 75.0.
The offsets are scaled by the depth of the pixel P
to produce depth invariant features. Figure 4 (right)
shows a candidate feature for the indicated pixel. The
resulting feature value is the depth difference between
the pixel in the red box and the pixel in the white box.

In this experiment we construct a forest of 25 trees
with 2000 candidate offsets (λ), 10 candidate splits
(m) and a minimum information gain of 0.01 (τ).
For Saffari et al. (2009) we set the number of sample
points required to split to 25 and for our own algo-
rithm we set α(d) = 25 · (1.01d) and β(d) = 4 · α(d).
With this parameter setting each active leaf stores
20 · 10 · 2000 · 2 = 400, 000 statistics which requires
1.6MB of memory. By limiting the fringe to 1000 ac-
tive leaves our algorithm requires 1.6GB of memory for
leaf statistics. To limit the maximum memory used by
Saffari et al. (2009) we set the maximum depth to 8
which uses up to 25 · 28 = 6400 active leaves which
requires up to 10GB of memory for leaf statistics.

Figure 5 shows that our algorithm achieves signifi-
cantly better accuracy while requiring less memory.

103 104 105 106

Data Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Forest Accuracy

Saffari et al. (2009)
Online

Figure 5. Comparison of our online algorithm with Saffari
et al. (2009) on the kinect application. Error regions show
one standard deviation computed over 5 runs.

6. Discussion and Future Work

In this paper we described an algorithm for building
online random forests and showed that our algorithm
is consistent. To the best of our knowledge this is the
first consistency result for online random forests.

Growing trees online in the obvious way requires large
amounts of memory, since the trees must be grown
breadth first and each leaf must store are large num-
ber of statistics in each of its potential children. We
incorporated a memory management technique from
Domingos & Hulten (2000) in order to limit the num-
ber of leafs in the fringe of the tree. This refinement
is important, since it enables our algorithm to grow
large trees. The analysis shows that our algorithm is
still consistent with this refinement.

The analysis we presented in this paper shows that
our algorithm is consistent, but does not give rates of
convergence to the Bayes risk. Analyzing the conver-
gence rate of our algorithm is clear direction for future
work, but the way to proceed does not appear to be
straightforward.

Finally, our current algorithm is restricted to axis
aligned splits. Many implementations of random
forests use more elaborate split shapes, such as random
linear or quadratic combinations of features. These
strategies can be highly effective in practice, especially
in sparse or high dimensional settings. Understanding
how to maintain consistency in these settings is an-
other potentially interesting direction of inquiry.

Acknowledgements

Some of the data used in this paper was obtained from
mocap.cs.cmu.edu (funded by NSF EIA-0196217).

mocap.cs.cmu.edu

Consistency of Online Random Forests

References

H. Abdulsalam. Streaming Random Forests. PhD thesis,
Queens University, 2008.

G. Biau. Analysis of a Random Forests model. JMLR, 13
(April):1063–1095, 2012.

G. Biau, L. Devroye, and G. Lugosi. Consistency of random
forests and other averaging classifiers. JMLR, 9:2015–
2033, 2008.

A. Bifet, G. Holmes, and B. Pfahringer. MOA: Massive
Online Analysis, a framework for stream classification
and clustering. In Workshop on Applications of Pattern
Analysis, pp. 3–16, 2010.

A. Bifet, E. Frank, G. Holmes, and B. Pfahringer. Ensem-
bles of Restricted Hoeffding Trees. ACM Transactions
on Intelligent Systems and Technology, 3(2):1–20, Febru-
ary 2012.

A. Bifet, G. Holmes, and B. Pfahringer. New ensemble
methods for evolving data streams. In ACM SIGKDD
Intl. Conference on Knowledge Discovery and Data Min-
ing, 2009.

A. Bosch, A. Zisserman, and X. Munoz. Image classifica-
tion using random forests and ferns. In International
Conference on Computer Vision, pp. 1–8, 2007.

L. Breiman. Random forests. Machine Learning, 45(1):
5–32, 2001.

L. Breiman. Consistency for a Simple Model of Random
Forests. Technical report, University of California at
Berkeley, 2004.

L. Breiman, J. Friedman, C. Stone, and R. Olshen. Clas-
sification and Regression Trees. CRC Press LLC, Boca
Raton, Florida, 1984.

C. Chang and C. Lin. LIBSVM: A library for support vec-
tor machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011.

A. Criminisi, J. Shotton, and E. Konukoglu. Decision
forests: A unified framework for classification, regres-
sion, density estimation, manifold learning and semi-
supervised learning. Foundations and Trends in Com-
puter Graphics and Vision, 7(2-3):81–227, 2011.

D. Cutler, T. Edwards, and K. Beard. Random forests
for classification in ecology. Ecology, 88(11):2783–92,
November 2007.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic The-
ory of Pattern Recognition. Springer-Verlag, New York,
USA, 1996.

P. Domingos and G. Hulten. Mining high-speed data
streams. In International Conference on Knowledge Dis-
covery and Data Mining, pp. 71–80. ACM, 2000.

J. Gama, P. Medas, and P. Rodrigues. Learning decision
trees from dynamic data streams. In ACM symposium
on Applied computing, SAC ’05, pp. 573–577, New York,

NY, USA, 2005. ACM.

R. Genuer. Risk bounds for purely uniformly random
forests. Technical report, Institut National de Recherche
en Informatique et en Automatique, 2010.

R. Genuer. Variance reduction in purely random forests.
Journal of Nonparametric Statistics, 24(3):543–562,
2012.

H. Ishwaran and U. Kogalur. Consistency of random sur-
vival forests. Statistics and Probability Letters, 80:1056–
1064, 2010.

Y. Lin and Y. Jeon. Random forests and adaptive nearest
neighbors. Technical Report 1055, University of Wiscon-
sin, 2002.

N. Meinshausen. Quantile regression forests. JMLR, 7:
983–999, 2006.

N. Oza and S. Russel. Online Bagging and Boosting. In
Artificial Intelligence and Statistics, volume 3, 2001.

A. Prasad, L. Iverson, and A. Liaw. Newer Classification
and Regression Tree Techniques: Bagging and Random
Forests for Ecological Prediction. Ecosystems, 9(2):181–
199, March 2006. ISSN 1432-9840.

A. Saffari, C. Leistner, J. Santner, M. Godec, and
H. Bischof. On-line random forests. In International
Conference on Computer Vision Workshops (ICCV
Workshops), pp. 1393–1400. IEEE, 2009.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman, and A. Blake. Real-time
human pose recognition in parts from single depth im-
ages. CVPR, pp. 1297–1304, 2011.

V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan,
and B. Feuston. Random forest: a classification and
regression tool for compound classification and QSAR
modeling. Journal of Chemical Information and Com-
puter Sciences, 43(6):1947–58, 2003.

