
Optimizing the F-Measure in Multi-Label Classification:
Plug-in Rule Approach versus Structured Loss Minimization

Krzysztof Dembczyński1 kdembczynski@cs.put.poznan.pl
Arkadiusz Jachnik1 ajachnik@cs.put.poznan.pl
Wojciech Kot lowski1 wkotlowski@cs.put.poznan.pl
Willem Waegeman2 willemwaegeman@gmail.com
Eyke Hüllermeier3 eyke@mathematik.uni-marburg.de
1Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965 Poznań, Poland
2NGDATA-Europe, Dok-Noord 7, 9000 Gent, Belgium
3Mathematics and Computer Science, Marburg University, Hans-Meerwein-Str., 35032 Marburg, Germany

Abstract

We compare the plug-in rule approach for
optimizing the Fβ-measure in multi-label
classification with an approach based on
structured loss minimization, such as the
structured support vector machine (SSVM).
Whereas the former derives an optimal pre-
diction from a probabilistic model in a sep-
arate inference step, the latter seeks to op-
timize the Fβ-measure directly during the
training phase. We introduce a novel plug-in
rule algorithm that estimates all parameters
required for a Bayes-optimal prediction via
a set of multinomial regression models, and
we compare this algorithm with SSVMs in
terms of computational complexity and sta-
tistical consistency. As a main theoretical re-
sult, we show that our plug-in rule algorithm
is consistent, whereas the SSVM approaches
are not. Finally, we present results of a large
experimental study showing the benefits of
the introduced algorithm.

1. Introduction

Motivated by applications such as tag recommenda-
tion in computer vision or gene function prediction in
bioinformatics, the machine learning community has
witnessed a rapid expansion of research on so-called
multi-label classification (MLC) in recent years. MLC
can be seen as specific type of structured output pre-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

diction, and also shares commonalities with multi-task
learning. The generalization from predicting a single
binary label, like in conventional classification, to pre-
dicting a vector of such labels gives rise to a number of
theoretical challenges; this includes the possibility to
model statistical dependencies between different class
labels as well as to define and minimize appropriate
loss functions.

A large number of MLC loss functions has been pro-
posed in the literature. In experimental studies, many
of these losses are typically analyzed simultaneously.
Yet, it is clear that a method performing optimally
for one loss is likely to perform suboptimally for an-
other loss. There are, however, a few general frame-
works that can indeed be tailored for different loss
functions in a generic way—an important example of
such a framework is structured support vector ma-
chines (SSVMs).

For simple loss functions, analytic expressions of the
Bayes (optimal) classifier can be derived. For example,
it is known that the Hamming loss minimizer coincides
with the marginal modes of the conditional distribu-
tion of the class labels given an instance, and methods
such as binary relevance, stacking or M3L (Hariha-
ran et al., 2012) perform particularly well in this case.
Conversely, for the subset 0/1 loss, the risk minimizer
is given by the joint mode of the conditional distri-
bution, for which methods such as the label powerset
classifier, conditional random fields and SSVMs with-
out margin rescaling might be good choices.

For complex multi-label loss functions, the picture be-
comes more blurry, and the minimization of such losses
requires more involved procedures. The Fβ-measure
is a specifically interesting example. Despite being

Optimizing the F-Measure in Multi-Label Classification

encountered in many application domains, algorithms
suitable for optimizing this measure have been intro-
duced only recently. They can be subdivided in two
categories. Structured loss minimization approaches
such as (Petterson & Caetano, 2010; 2011) intend to
maximize the Fβ-measure during the training phase
in frameworks like SSVMs, whereas plug-in rule ap-
proaches (or decision-theoretic approaches) such as
(Lewis, 1995; Chai, 2005; Jansche, 2007; Dembczyński
et al., 2011; Quevedo et al., 2012; Ye et al., 2012) de-
duce Fβ-measure maximizing predictions from a prob-
abilistic model during an inference step. Let us notice
that a similar distinction is considered by Ye et al.
(2012); however, while our focus is on multi-label prob-
lems, their analysis is more relevant for binary classi-
fication.

As shown by Dembczyński et al. (2011), m2 + 1 pa-
rameters of the conditional joint distribution (with m
the number of labels) are needed to obtain the Bayes
classifier for the latter type of methods. Departing
from those results, we propose a novel algorithm that
estimates these parameters directly via a reduction to
a set of multinomial regression problems. Compared
to the approach of Dembczyński et al. (2011) that con-
structs a model for the conditional joint distribution,
our method avoids an approximation during the in-
ference phase due to sampling from the probabilistic
model. In addition, we analyze and compare the plug-
in rule and structured loss minimization methods in
terms of computational complexity and statistical con-
sistency. Our main theoretical results show that our
algorithm is consistent, while the SSVM approach fol-
lowed in (Petterson & Caetano, 2010; 2011) is not. Fi-
nally, we present results of a large experimental study,
in which we thoroughly compare both approaches.

2. Multi-Label Classification

We start with a more formal definition of the MLC
problem. Let X denote an instance space, and let L =
{λ1, λ2, . . . , λm} be a finite set of class labels. We as-
sume that an instance x ∈ X is (non-deterministically)
associated with a subset of labels L ∈ 2L; this sub-
set is often called the set of relevant (positive) labels,
while the complement L \ L is considered as irrele-
vant (negative) for x. We identify a set L of relevant
labels with a binary vector y = (y1, y2, . . . , ym), in
which yi = 1 iff λi ∈ L. The set of possible label-
ings is denoted Y = {0, 1}m. We assume observations
to be generated independently and randomly accord-
ing to a probability distribution P (X = x,Y = y)
(later denoted P (x,y)) on X × Y, i.e., an observa-
tion (x,y) is the realization of two random vectors,

X = (X1, X2, . . . , Xq) and Y = (Y1, Y2, . . . , Ym).

A multilabel classifierh(x)=(h1(x), h2(x), . . . , hm(x))
assigns a (predicted) label subset to each instance x ∈
X . The prediction accuracy of h is measured in terms
of its risk, that is, its expected loss

L(h, P)=E [`(Y ,h(X))]=

∫
`(y,h(x)) dP (x,y) , (1)

where ` : Y ×Y → R is a loss function. In addition, it
will be convenient to use an expected loss conditioned
on an instance x ∈ X :

L(h, P |x)=E [`(Y ,h(x)) |x]=
∑
y∈Y

`(y,h(x))P (y |x) ,

so that L(h, P) = E[L(h, P |X)].

The optimal classifier, commonly referred to as Bayes
classifier, minimizes the risk conditioned on x:

h∗(x) = arg min
h∈Y

∑
y∈Y

`(y,h)P (y |x) . (2)

We note that h∗ is in general not unique. However,
the risk of h∗, denoted L∗(P), is unique, and is called
the Bayes risk.

Label subsets can be compared in terms of a multitude
of loss functions, many of which lead to intractable op-
timization problems. Therefore, the actual loss func-
tion, often referred to as the task loss, is usually re-
placed by a surrogate loss that is easier to cope with
(e.g., a convex upper bound of the task loss). Alterna-
tively, the original loss minimization problem can be
decomposed into problems of simpler type, for which
efficient algorithmic solutions are readily available.

3. The Fβ-Measure

Given a prediction h(x) = (h1(x), . . . , hm(x)) ∈ Y of
a binary label vector y = (y1, . . . , ym), the Fβ-measure
is defined as follows:

Fβ(y,h(x)) =
(1 + β2)

∑m
i=1 yihi(x)

β2
∑m
i=1 yi +

∑m
i=1 hi(x)

∈ [0, 1] ,

where 0/0 = 1 by definition. This measure essentially
corresponds to the weighted harmonic mean of pre-
cision and recall. Compared to measures like Ham-
ming loss, the Fβ-measure enforces a better balance
between performance on relevant and irrelevant labels,
and, therefore, it is more suitable for multi-label prob-
lems, in which irrelevant labels often prevail.

Since the Fβ-measure is a score of adjustment between
y and h, it is actually not a loss function but rather

Optimizing the F-Measure in Multi-Label Classification

a kind of utility measure. Therefore, we will either
consider the Fβ-based loss function (Fβ-loss for short)

`Fβ (y,h(x)) = 1− Fβ(y,h(x)) , (3)

or speak of utility maximization instead of risk mini-
mization.

4. Bayes Classifier for the Fβ-Measure

Unfortunately, there is no closed-form of the Bayes
classifier that maximizes the Fβ-measure. However, as
shown by Dembczyński et al. (2011), the Bayes classi-
fication can be computed efficiently, even in the gen-
eral case without any assumption about the underlying
probability distribution.

The Bayes classifier for the Fβ-measure is given by (for
the sake of clarity, we will suppress dependence on x
in the notation, whenever it is clear from the context):

h∗= arg max
h∈Y

E [Fβ(Y ,h)] = arg max
h∈Y

∑
y∈Y

Fβ(y,h)P (y)

= arg max
h∈Y

∑
y∈Y

(1 + β2)
∑m
i=1 yihiP (y)

β2
∑m
i=1 yi +

∑m
i=1 hi

. (4)

Problem (4) can be solved via outer and inner max-
imization (Jansche, 2007). Namely, it can be trans-
formed into an inner maximization

h∗k = arg max
h∈Hk

E [Fβ(Y ,h)] , (5)

where Hk = {h ∈ Y |
∑m
i=1 hi = k}, followed by an

outer maximization

h∗ = arg max
h∈{h∗0 ,...,h∗m}

E [Fβ(Y ,h)] . (6)

The outer maximization (6) can be done by simply
checking all m + 1 possibilities. The main effort is
then required for solving the inner maximization (5).

Let us consider the inner maximization problem for a
given k > 0. We first introduce the following notation:

sy =

m∑
i=1

yi, ∆u
ik =

∑
y:yi=u

P (y)

β2sy + k
.

Then, we can write

h∗k = arg max
h∈Hk

∑
y∈Y

(1 + β2)
∑m
i=1 yihiP (y)

β2sy + k
. (7)

By swapping sums in (7), we get

h∗k = arg max
h∈Hk

(1 + β2)

m∑
i=1

hi
∑
y∈Y

yiP (y)

β2sy + k

= arg max
h∈Hk

(1 + β2)

m∑
i=1

hi∆
1
ik . (8)

Since there are only k labels for which we can set
hi = 1, we obtain the optimal solution of the inner
maximization by setting hi = 1 for the top k values of
∆ik. For the solution h∗k, we compute E [Fβ(Y ,h∗k)],
which is further used in the outer maximization. For
the specific case of h0 = 0, E [Fβ(Y ,h0)] = P (Y = 0).

Thus, we only need ∆1
ik for 1 ≤ i, k ≤ m and P (0),

that is, m2 + 1 parameters to compute the optimal
prediction. With these parameters, the solution can
be obtained in O(m2) time, i.e., the dominating part
of the procedure is the inner maximization: For each k,
a selection of the top k elements must be done, which
can be accomplished in linear time. We will call this
approach the General Fβ-Measure Maximizer (GFM).

Under the assumption of independence of the labels
Y1, . . . , Ym, the optimization problem (4) can be sub-
stantially simplified. Lewis (1995) and Jansche (2007)
have shown independently that the optimal solution is
either empty (h∗ = 0) or consists of those labels with
the highest marginal probabilities pi = P (Yi = 1). As
a consequence, the form of the solution of the k-th in-
ner maximization problem is known (the k labels with
the highest marginal probabilities). The only missing
element is to compute the value of the expected Fβ-
measure for a given k in order to select the best k.

Different approaches have been proposed to tackle this
problem. Jansche (2007) introduced an algorithm that
works in O(m4) time. Chai (2005) and Quevedo et al.
(2012) have independently derived O(m3) algorithms
based on dynamic programming. In a more recent
follow-up paper, Ye et al. (2012) further improves the
dynamic programming algorithm of Chai (2005) to an
O(m2) complexity for rational β by additional sharing
of internal representations.

5. Plug-in Rule Classifier

One way to construct a classifier using training data
{(xi,yi)}ni=1 is to estimate all required parameters and
then plug them into the form of the Bayes classifier.
Such an approach is usually referred to as plug-in rule
classifier. In the following, we show that all parame-
ters required by the Bayes classifier for the Fβ-measure
can be efficiently obtained thanks to a specific reduc-
tion to a set of multinomial regression problems.

Let us start with the estimation of the ∆1
ik. Unfortu-

nately, these quantities do not correspond to a proper
probability distribution, i.e, ∆0

ik and ∆1
ik do not sum

up to 1 or to any known constant; moreover, there
is no other subset of these quantities either that may
posses a property of that kind. Yet, there is a simple
trick that we can use. Let us denote by P and W two

Optimizing the F-Measure in Multi-Label Classification

m×m matrices with elements

pis = P (yi = 1, sy = s, |x), wik = (β2s+ k)−1 ,

respectively. Then, the m×m matrix ∆ with elements
∆ik can be obtained by

∆ = PW .

The matrix P can be estimated by using a simple
reduction, namely by solving m multi-class probabil-
ity estimation problems (e.g., multinomial regression)
with at most m+ 1 classes. The scheme of the reduc-
tion for the i-th subproblem is the following:

(x,y)→ (x, y = Jyi = 1K · sy) .

For a given x, we estimate P (y = Jyi = 1K · sy |x),
y ∈ {0, . . . ,m}. We can model the probabilities
P (0 |x), . . . , P (m |x) with a function f(y,x) using the
multinomial logistic transform:

P (y |x) =
exp(f(y,x))∑m
j=0 exp(f(j,x))

Then, the logistic loss has the form

`log(y,x, f) = log

 m∑
j=0

exp(f(j,x))

− f(y,x) .

The learning can be formulated as regularized mini-
mization of the logistic loss:

f∗(y,x) = arg min
f

1

n

n∑
i=1

`log(y,x, f) + λJ(f) ,

where λ controls the trade-off between the average loss
over the training examples and the regularizer J that
penalizes complex solutions. In a similar way, we can
estimate P (0 |x) by performing an additional reduc-
tion to the binary problem

(x,y)→ (x, y = Jy = 0K) ,

and solving it via logistic loss minimization.

The decomposition of the original problem into in-
dependent multinomial regression tasks has compu-
tational advantages. Moreover, since the number of
distinct values of sy is usually small, the number of
classes in a single multinomial regression task is much
smaller than m + 1; only in the worst case, we end
up with a quadratic complexity in the number of la-
bels m. Let us remark, however, that the quantities
to be estimated across different tasks are not fully in-
dependent of each other (e.g., pim is the same for all

i). Consequently, learning on a finite training set may
lead to conflicting estimates of P (0 |x) and the ma-
trix P , that is, estimates that are not in agreement
with any valid distribution. To avoid such conflicts,
one may include additional constraints in the learning
problem or calibrate the estimates afterwards. An-
other alternative is to train a model that estimates
the conditional joint distribution, for example, by us-
ing probabilistic classifier chains; then, estimates of the
required parameters can be obtained by sampling from
this distribution. This approach has been adopted by
Dembczyński et al. (2011). One should note, however,
that sampling usually dominates the complexity of the
inference.

To summarize, the procedure for learning a proba-
bilistic model has a time complexity that is at most
quadratic in m. In the inference phase, we first obtain
estimates of P (0 |x) and P for each test instance x,
again in at most quadratic time. The matrices P and
W are multiplied to get ∆ in at most cubic time. Fi-
nally, all parameters are plugged into the GFM proce-
dure, which requires quadratic time in m. For a mod-
erate number of labels (up to hundreds) and a small
number of distinct values of sy, this yields a feasible
approach for MLC with Fβ as performance measure.
We refer to this method as Exact-Fβ-Plug-in classifier
(EFP).

Under the assumption of label independence, the plug-
in rule approach simplifies a lot. Since we only need
the marginal probabilities pi = P (Yi = 1), we reduce
the problem to m binary classification tasks. For label
λi, the reduction takes the form

(x,y)→ (x, y = yi) ,

and we can learn a classifier in a similar way as
above, namely through minimization of the logistic
loss. Then, for each test instance x, we obtain a vector
of marginal probabilities pi, to which we apply, for ex-
ample, the method of Ye et al. (2012). This results in a
procedure that is much faster than the exact one. The
learning is linear in m, and the inference is quadratic
for rational β or cubic in the general case. We refer to
this method as Label-independence-Fβ-Plug-in classi-
fier (LFP). This method, however, may lead to subop-
timal results if the assumption of label independence
is violated. Theoretically, the difference between these
two approaches can become arbitrarily large (Dem-
bczyński et al., 2011).

6. Structured Loss Minimization

An alternative to the plug-in rule approach outlined
above is to minimize the task loss directly. Since

Optimizing the F-Measure in Multi-Label Classification

this is intractable for the Fβ-loss, one usually mini-
mizes a convex upper bound. Here, we examine the
general framework of structured hinge loss minimiza-
tion (Tsochantaridis et al., 2005), mainly following the
approach of Petterson & Caetano (2010; 2011).

The problem can be stated as learning a function
f(y,x) such that a prediction h(x) is given by:

h(x) = arg max
y∈Y

f(y,x) . (9)

The training consists of minimizing the structural
hinge loss, which can be defined by

˜̀
h(y,x, f) = max

y′∈Y
{`(y,y′)+f(y′,x)}−f(y,x) , (10)

where `(y,y′) is the corresponding task loss. Here, we
consider the Fβ-loss `Fβ (3). The learning problem can
then be stated as

f∗(y,x) = arg min
f

1

n

n∑
i=1

˜̀
h(yi,xi, f) + λJ(f) ,

where we trade-off the average hinge loss over the
training examples and the regularization, similarly
as for the logistic loss minimization in the plug-in
rule approach. This is the so-called margin-rescaling
estimator for SSVMs. The formulation leads to
a quadratic program with exponentially many con-
straints. Therefore, one usually uses the cutting-plane
algorithm (Kelley, 1960), which starts by solving the
problem with no constraints and iteratively adds the
most violated constraint for the current solution of
the optimization problem. In each iteration, one thus
needs to find

y∗i = arg max
y′∈Y

{`Fβ (yi,y
′) + f(y′,x)} . (11)

Depending on the choice of f(y,x), one ends up with
procedures of different complexity. Petterson & Cae-
tano (2010) assume f to be decomposable over labels:

f(y,x;w) =

m∑
i=1

fi(yi,x) . (12)

This form of the function f leads to an effective formu-
lation of the problem. It turns out that the constraint
generation problem (11) can be solved in O(m2) time.
Moreover, the prediction problem (9) can be solved in
linear time with respect to m:

hi(x) = arg max
y∈{0,1}

fi(y,x), i = 1, . . . ,m .

We refer to this method as RML, as it was originally
called in (Petterson & Caetano, 2010).1

1Here, we follow the interpretation of this method as
given by Petterson & Caetano (2011); in the original paper,
it was introduced in a different setting.

An alternative approach was introduced by Petterson
& Caetano (2011), in which f(y,x) additionally mod-
els assortative (submodular) pairwise interactions be-
tween labels:

f(y,x) =

m∑
i=1

fi(yi,x) +
∑

1≤yk<yl≤m

fk,l(yk, yl) , (13)

where the fk,l are non-negative and take into account
the normalized count of co-occurrences of labels λk and
λl. In this model, the prediction (9) can be accom-
plished exactly and efficiently via graph-cuts. How-
ever, the worst-case bound for graph-cut algorithms is
O(m3). The constraint generation problem (11) be-
comes more involved, too, and requires the solution
of an intractable optimization problem. The authors
propose an approximate algorithm working in O(m4),
and they prove the non-trivial guarantee that each la-
bel which is part of the solution is also part of the
optimal solution. We refer to this method as SML, as
originally called in (Petterson & Caetano, 2011).

7. Statistical Consistency

The algorithms introduced in previous sections do not
directly minimize the Fβ-loss. Instead, they either
minimize a surrogate loss or follow a reduction scheme.
The performance of these algorithms can be evalu-
ated empirically for finite samples, using synthetic or
real benchmark data. However, it is also interesting
to analyze their infinite sample performance, by ver-
ifying whether they converge to the Bayes classifier
for the Fβ-measure. This type of consistency analy-
sis has already been performed for different learning
frameworks in general (Bartlett et al., 2006; Tewari
& Bartlett, 2007) and for multi-label classification in
particular (Gao & Zhou, 2011), but not yet for the Fβ-
measure and the algorithms discussed in this paper.
More formally, we will use the following definition of
statistical consistency.

Definition 1. Given a surrogate loss ˜̀(y, f), a task
loss `(y,h), and a prediction function h = h(f), we
say that ˜̀ is consistent with respect to `, if for any
distribution P and any sequence of classifiers f1, f2, . . .
such that

lim
n→∞

L̃(fn, P) = min
f
L̃(f, P) ,

we have

lim
n→∞

L(h(fn), P) = min
h
L(h, P) ,

where L̃(f, P) = E[˜̀(Y , f(X))].

There is an equivalent condition for consistency which
is sometimes more convenient to use:

Optimizing the F-Measure in Multi-Label Classification

Theorem 1 (Gao & Zhou (2011)). For any distribu-
tion P , let A(P) = arg minh L(h, P) be the set of all
Bayes classifiers for loss function `. A surrogate loss
˜̀ is consistent with respect to ` if and only if for all P :

min
f
L̃(f, P) < inf

f

{
L̃(f, P) : h(f) /∈ A(P)

}
(14)

Although the above definition and theorem directly
refer to the surrogate loss, we shall show later that
they can also be applied to the plug-in rule approach.
Starting with the analysis of the structured hinge loss,
we find that both methods proposed in (Petterson &
Caetano, 2010; 2011) are inconsistent, as stated for-
mally in the theorem below. Since the feature vector
x does not play any role in the following, we omit the
dependence on x for the rest of the section.2

Theorem 2. Consider the surrogate loss ˜̀ defined as
in (10):

˜̀(y, f) = max
y′∈Y
{`Fβ (y,y′) + f(y′)} − f(y) , (15)

for any y ∈ Y, and any real valued function f : Y → R.
Let h(f) = arg maxy f(y) be a label vector predicted by

f . Then ˜̀ is inconsistent with respect to `Fβ . The in-
consistency remains even if additional structure given
by (12) or (13) is imposed on the function f .

Proof. For the sake of clarity, we show the theorem
for β = 1, but a small modification of the proof will
suffice to cover any β > 0. Let us choose m = 2,
and the joint label distribution p00 = 0.5, p01 = 0.2,
p10 = 0, p11 = 0.3, where puv = P (y1 = u, y2 = v).
Given a prediction h and a true label vector y, the
F1-loss (3) is summarized by the following table:

h=(0, 0) h=(0, 1) h=(1, 0) h=(1, 1)

y = (0, 0) 0 1 1 1
y = (0, 1) 1 0 1 1/3
y = (1, 0) 1 1 0 1/3
y = (1, 1) 1 1/3 1/3 0

Thus, the Bayes classifier for the F1-loss is (0, 0),
whence A(P) = {(0, 0)}. Now, for any f , the expected
surrogate loss (15), L̃(f, P), is given by

p00(max{0 + f00, 1 + f01, 1 + f10, 1 + f11} − f00)

+p01(max{1 + f00, 0 + f01, 1 + f10,
1
3 + f11} − f01)

+p11(max{1 + f00,
1
3 + f01,

1
3 + f10, 0 + f11} − f11) ,

where we denote fuv = f((u, v)) and used the fact that
p10 = 0. Now, we show that for any choice of f , the

2One may assume that everything is presented condi-
tionally for a given x.

surrogate loss is at least 1. Since we can bound max
from below by any of its terms, we can write

L̃(f, P) ≥ p00(1 + f01 − f00) + p01(1 + f00 − f01)

+ p11(1 + f00 − f11) = 1 + 0.3(f01 − f11)

On the other hand,

L̃(f, P) ≥ p00(1 + f11 − f00) + p01(1 + f00 − f01)

+ p11(1 + f00 − f11) = 1− 0.2(f01 − f11).

The two inequalities above imply that L̃(f, P) ≥ 1 for
any f . Now, if we choose f , such that f00 =−0.1, f01 =
0.1, f10 =−0.1, f11 = 0.1, we have L̃(f, P) = 1, which
means that f is a Bayes classifier for ˜̀. However,
h(f) ∈ {(0, 1), (1, 1)}, and thus h(f) /∈ A(P), which
violates (14). Moreover, it is easy to see that f as
constructed above satisfies (12) and (13) if we set
f1(y1) = 0, f2(y2) = 0.1(2y2− 1), and fk,l ≡ 0, so that
inconsistency even holds under these constraints.

Despite the fact that the plug-in rule approach defined
in Section 5 may deliver conflicting estimates of P and
P (0 |x) for finite training data, we can show that it is
consistent if the sample size grows to infinity.

Theorem 3. Consider the surrogate loss ˜̀(y, f) ob-
tained for the reduction to independent multinomial re-
gression tasks:

˜̀(y,f) = `log(Jsy = 0K, f0) +

m∑
i=1

`log(syJyi = 1K, f i) ,

where f = (f0, . . . , fm) is a vector of real-valued func-
tions f i : {0, . . . ,m} → R. Let h(f) be the prediction
from the GFM procedure, where all probabilities are ob-
tained from f using the logistic transform as described
in Section 5. Then ˜̀ is consistent with respect to `Fβ .

Proof. Consider a standard multinomial logistic loss
`log(y, f) for multi-class classification, and let Pf be a
probability estimate obtained from f through a logis-
tic transform. It is easy to verify that E[`log(Y, f)] =
H(P) + D(P‖Pf), where H(P) is the entropy of
the true distribution P , and D(P‖Pf) is the rela-
tive entropy between P and Pf (Cover & Thomas,
1991). Thus, given any sequence f1, f2, . . . such
that E[`log(Y, fn)]→ minf E[`log(Y, f)], we must have
D(P‖Pfn) → 0, which, according to the Pinkser in-
equality, implies Pfn → P in a total-variation sense.

We prove the theorem directly from Definition 1. Con-
sider any sequence f1,f2, . . . such that L̃(fn, P) →
minf L̃(f , P). Since L̃(fn, P) is a sum of expected

logistic losses, convergence of L̃(fn, P) to its min-
imum implies convergence of each expected logistic

Optimizing the F-Measure in Multi-Label Classification

loss to its respective minimum. This in turn implies
that all probability estimates Pfin converge to the true
probabilities P in a total-variation sense. Since each
term under arg max in (6) is a continuous function
of the probability estimates (and there in only a fi-
nite number of such terms), h(fn) will eventually be
in A(P) for sufficiently large n, i.e., the plug-in clas-
sifier will eventually agree with the Bayes classifier
for the Fβ-loss. This implies that LFβ (h(fn), P) →
minh LFβ (h, P).

8. Experimental Results

We complement our theoretical analysis by an em-
pirical evaluation of the methods on finite data sets.
More specifically, we compare two plug-in rule meth-
ods, namely the Exact-Fβ-Plug-in classifier (EFP) and
the Label-independence-Fβ-Plug-in classifier (LFP),
and two structured loss minimization methods, namely
RML and SML.3 As an additional baseline, we in-
clude the so-called binary relevance (BR) approach
that learns and predicts for each label independently.
This algorithm essentially corresponds to LFP with-
out the inference phase. We consider two performance
measures, F1 and Hamming loss, as well as running
times of the training and inference procedures.

8.1. Setting

All approaches included in the comparison use base
functions that are linear in the feature space. We train
BR, EFP and LFP by using regularized multinomial
regression.4 We tune the regularization parameter λ
for each base classifier independently by minimizing
the logistic loss, which should provide better proba-
bility estimates. We use 5-fold cross-validation and
choose λ from {10−4, 10−3, . . . , 103}.

Similarly, RML has a single parameter λ, and we tune
it in 5-fold cross-validation using the same range of
values. SML has an additional parameter c that deter-
mines the trade-off between the linear fi and the label
interaction terms fj,k in (13). To guarantee a fair com-
parison, we only tune λ using 5-fold cross-validation
for each experiment, whereas the best value of the pa-
rameter c was selected in an earlier series of experi-
ments. Moreover, we use 5% of the label pairs for all
datasets—according to Petterson & Caetano (2011),
the results with other settings are very similar. The

3For both RML and SML, we use the implementation
offered by the authors (Petterson & Caetano, 2011) avail-
able at http://users.cecs.anu.edu.au/~jpetterson/.

4We use the implementation of multinomial regression
by Mallet (McCallum, 2002) available at http://mallet.
cs.umass.edu/.

maximal number of iterations in the cutting-plane al-
gorithm is set to 1000 for both RML and SML.

It needs to be mentioned that the plug-in rule ap-
proaches are implemented in Java, while the RML and
SML are C++ programs. Therefore, the evaluation
times may not be fully comparable. We run the ex-
periments on a Debian virtual machine with 8-core
x64 processor and 5GB RAM.5 We use 6 benchmark
datasets, which are publicly available from Mulan.6

Table 1 provides a summary of some basic statistics of
these datasets.

Table 1. Datasets and their properties: the number of
training (#train) and test (#test) examples, the number
of labels (m) and features (d), and the average number of
classes (q) in a single multinomial regression task of EFP.

Dataset #train #test m d q

Image 1200 800 5 135 4
Scene 1211 1196 6 294 3.33
Yeast 1500 917 14 103 10.36
Medical 333 645 45 1449 2.466
Enron 1123 579 53 1001 6.58
Mediamill 30993 12914 101 120 11.41

8.2. Results

The results are summarized in Table 2. As can be seen,
all methods tailored for the F1-measure outperform
the baseline on this measure, whereas BR achieves the
best results for Hamming loss. This is coherent with
the result of Gao & Zhou (2011), according to which
this approach is consistent for this loss function. With
respect to the F1-measure, the best method is EFP
that wins on five out of six datasets. To some extent,
this result can be explained by our theoretical results
regarding the consistency of the methods.

In general, it seems that the plug-in rule methods are
superior to the methods based on structured loss mini-
mization. Among the latter, RML outperforms SML.7

This is in agreement with the original results of Petter-
son & Caetano (2011), suggesting that SML achieves
better results only for datasets with a reduced number
of features. One may conjecture that the label interac-
tion terms are more helpful in properly modeling the
feature space than in optimizing the Fβ-measure.

5Remark that all methods can be easily parallelized.
All subtasks of LFP and EFP can be trained indepen-
dently. The implementation of RML and SML is also
multi-threaded (Petterson & Caetano, 2011). We used,
however, the sequential variants of the algorithms to sim-
plify the comparison.

6http://mulan.sourceforge.net/datasets.html
7The results we obtained for RML are at least as good

as the ones presented in (Petterson & Caetano, 2011), while
for SML are slightly worse.

http://users.cecs.anu.edu.au/~jpetterson/
http://mallet.cs.umass.edu/
http://mallet.cs.umass.edu/
http://mulan.sourceforge.net/datasets.html

Optimizing the F-Measure in Multi-Label Classification

Table 2. Experimental results for Hamming loss (HL), F1, and running times (in seconds) of cross-validation (tcv), training
(ttrain) (for the best set of parameters) and inference (tinf). The best results are marked by a ’*’.

HL[%] F [%] tcv ttrain tinf HL[%] F [%] tcv ttrain tinf HL[%] F [%] tcv ttrain tinf

Image Scene Yeast

BR *19.90 43.63 *9 *0.392 0.087 10.51 55.73 *29 *0.733 0.241 *20.03 60.59 *26 *0.901 0.128
LFP 27.55 58.86 *9 *0.392 0.119 12.18 74.38 *29 *0.733 0.270 22.24 65.02 *26 *0.901 0.146
EFP 26.07 *59.77 24 0.606 0.183 12.22 *74.44 72 0.995 0.399 22.82 *65.47 101 2.004 0.367
RML 25.07 57.49 94 1.104 *0.051 *9.70 73.92 73 1.001 *0.118 22.82 64.78 206 5.194 *0.056
SML 28.82 56.99 156 7.116 0.052 15.65 68.50 52 1.129 0.123 24.52 63.96 319 4.385 0.070

Medical Enron Mediamill

BR *1.17 70.19 *9 *1 0.952 *4.54 55.49 *52 *4 1.016 *3.19 51.21 *3238 *118 13
LFP 1.18 *81.27 *9 *1 1.513 6.09 56.86 *52 *4 1.519 3.67 55.15 *3238 *118 20
EFP 1.23 80.39 16 1 1.883 5.34 *61.04 214 6 2.628 3.63 *55.16 24620 440 30
RML 1.20 80.63 1253 30 *0.144 6.35 57.69 3897 41 *0.143 4.12 49.35 – 1125 *7
SML 2.50 67.90 715 23 0.773 7.82 54.61 18780 62 0.887 4.18 50.02 – 10365 131

Table 2 also shows the runtimes for parameter tuning
in cross-validation (tcv), training for the best set of pa-
rameters, and inference. As we mentioned above, the
comparison of the running times should be interpreted
with caution, due to the use of different programming
languages and differences in the implementations. For
example, the inference times for BR and RML should
basically be very similar, as in both cases we apply
m linear models. Yet, the implementation of RML is
much more efficient. Nevertheless, we are still able to
derive several important conclusions.

RML is most efficient in inference, which is coherent
with our analysis. Nevertheless, the inference times
of the plug-in rule approaches are quite comparable
to those of BR, despite their quadratic (for LFP) and
cubic (for EFP) complexity. Admittedly, however, the
datasets used in the experiments only contain a small
to moderate number of labels (up to 100). For datasets
with thousands of labels, the difference is likely to be-
come substantially larger. The inference for SML is
slower than for RML, but for all datasets except one,
it is faster than the plug-in rule classifiers. For the Me-
diamill dataset, this method takes the longest time.

The training of BR and LFP (these are exactly the
same procedures) is the most effective. Training of
EFP leads to m multinomial regression models. One
should note, however, that the average number of
classes (column q in Table 1) for all datasets is much
smaller than the highest possible value m+ 1. There-
fore, the training of EFP is still quite effective and
takes only a few times longer than the training of
LFP. The cutting-plane algorithm and the constraint
generation step slow down the training of RML and
SML, and SML performs worst in this regard. Still,
the cutting-plane algorithm converges very fast in sev-
eral cases.

The plug-in rule approaches may tune the parameters
internally for each subtask independently, without ex-
plicitly running the inference step. Therefore, the tun-
ing times of LFP and EFP are also better than those
of RML and SML. For the Mediamill dataset, RML
and SML were not able to perform the parameter tun-
ing step in a reasonable amount of time. To get the
results for this dataset, we trained these methods with
different settings and selected the best result on the
test set. We also reduced the maximum number of
iterations to 200.

9. Conclusion

We discussed and analyzed two conceptually different
approaches to Fβ-measure maximization (Fβ-loss min-
imization) in multi-label classification. The plug-in
rule methods estimate all parameters that are needed
to compute the prediction of the Bayes classifier,
whereas methods based on structured loss minimiza-
tion, such as structured SVMs, produce a classifier
more directly through minimization of the loss on the
training data.

Moreover, we introduced a novel plug-in rule algorithm
that performs parameter estimation via a set of multi-
nomial regression tasks. Theoretically, we have shown
this algorithm to be consistent for the Fβ-measure,
whereas the SSVM approach is not consistent. This
result is corroborated by our experimental studies, in
which the plug-in rule approach performs particularly
well.

Acknowledgments. The first three authors are sup-
ported by the Foundation of Polish Science under the Hom-
ing Plus programme, co-financed by the European Regional
Development Fund. The last author is supported by Ger-
man Research Foundation. We thank all anonymous re-
viewers for their valuable comments.

Optimizing the F-Measure in Multi-Label Classification

References

Bartlett, P., Jordan, M., and Mcauliffe, J. Convexity, clas-
sification and risk bounds. Journal of the American Sta-
tistical Association, 101:138–156, 2006.

Chai, K. Expectation of F-measures: Tractable exact com-
putation and some empirical observations of its proper-
ties. In SIGIR, 2005.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory. John Wiley, 1991.

Dembczyński, K., Waegeman, W., Cheng, W., and
Hüllermeier, E. An exact algorithm for F-measure maxi-
mization. In Advances in Neural Information Processing
Systems, volume 25, 2011.

Gao, W. and Zhou, Z. On the consistency of multi-label
learning. In COLT, 2011.

Hariharan, B., Vishwanathan, S. V. N., and Varma, M. Ef-
ficient max-margin multi-label classification with appli-
cations to zero-shot learning. Machine Learning Journal,
88(1):127–155, 2012.

Jansche, M. A maximum expected utility framework for
binary sequence labeling. In ACL 2007, pp. 736–743,
2007.

Kelley, J. E. The cutting-plane method for solving convex
programs. Journal of the Society for Industrial Applied
Mathematics, 8:704–712, 1960.

Lewis, D. Evaluating and optimizing autonomous text clas-
sification systems. In SIGIR 1995, pp. 246–254, 1995.

McCallum, A. Mallet: A machine learning for language
toolkit. http://mallet.cs.umass.edu, 2002.

Petterson, J. and Caetano, T. S. Reverse multi-label learn-
ing. In Advances in Neural Information Processing Sys-
tems 24, pp. 1912–1920, 2010.

Petterson, J. and Caetano, T. S. Submodular multi-label
learning. In Advances in Neural Information Processing
Systems 24, pp. 1512–1520, 2011.

Quevedo, J., Luaces, O., and Bahamonde, A. Multilabel
classifiers with a probabilistic thresholding strategy. Pat-
tern Recognition, 45, 2012.

Tewari, A. and Bartlett, P. On the consistency of multi-
class classification methods. Journal of Machine Learn-
ing Research, 8:1007–1025, May 2007.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Al-
tun, Y. Large margin methods for structured and in-
terdependent output variables. J. Mach. Learn. Res., 6:
1453–1484, 2005.

Ye, N., Chai, K., Lee, W., and Chieu, H. Optimizing F-
measures: a tale of two approaches. In ICML, 2012.

http://mallet.cs.umass.edu

