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This is supplemental material for the manuscript “That was fast! Speeding up NN search
of high dimensional distributions” (Coviello et al., 2013), appearing on the Proceedings of the
30th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013. (JMLR:
W&CP volume 28).

It consists of a collection of notes that fills in interesting details omitted in (Coviello
et al., 2013) due to space limitations.

In Section 1 we fill in the derivation of the lower bounds. In Section 2 we illustrate
how `m is not always monotonic and prove its convexity (which is used in Lemma 1 of
(Coviello et al., 2013) to prove the monotonicity of `+m). In Section 3 we elaborate on the
approximation made in our branch and bound algorithm, and on how it affects the decisions
of our algorithm.

1. Derivation of the lower bounds.

The lower bound presented in Section 4.2.2 of (Coviello et al., 2013), i.e., `q and `m, are easily
derived from Hershey and Olsen (2007) variational approximation to the KL divergence
between mixture models:

D(A||B) ≈
∑
i

πi log

∑
i′ πi′ exp{−D(Ai||Ai′)}∑
j ωj exp{−D(Ai||Bj)}

. (1)
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where A = {πi,Ai} is a mixture with weights πi and components Ai, and B = {ωj ,Bj} is
a mixture with weights ωj and components Bj .

The lower bound to D(Θ||Q) is found for A = Θ = {θ,M, (1− θ),Q} and B = {1,Q}:

`q = θ log
θ exp{−D(M||M) + (1− θ) exp{−D(M||Q)}

exp{−D(M||Q)}

+(1− θ) log
θ exp{−D(Q||M)}+ (1− θ) exp{−D(Q||Q)

exp{−D(Q||Q)}

= θ log
θ + (1− θ) exp{−D(M||Q)}

exp{−D(M||Q)}
+ (1− θ) log [θ exp{−D(Q||M)}+ 1− θ] (2)

= θ log [θ exp{D(M||Q)}+ (1− θ)] + (1− θ) log [θ exp{−D(Q||M)}+ 1− θ] (3)

where in (2) we use the fact that D(Q||Q) = 0, and in (3) we multiply numerator and
denominator of the fist term inside the logarithm by exp{D(M||Q)}. Similarly, the lower
bound to D(Θ||M) is found for A = Θ = {θ,M, (1− θ),Q} and B = {1,M}:

`m = θ log
θ exp{−D(M||M) + (1− θ) exp{−D(M||Q)}

exp{−D(M||M)}

+(1− θ) log
θ exp{−D(Q||M)}+ (1− θ) exp{−D(Q||Q)}

exp{−D(M||Q)}

= θ log [θ + (1− θ) exp{−D(M||Q)}] + (1− θ) log
θ exp{−D(Q||M)}+ 1− θ

exp{−D(Q||M)}
(4)

= θ log [θ + (1− θ) exp{−D(M||Q)}] + (1− θ) log [θ + (1− θ) exp{D(Q||M)}] (5)

Note that, (3) and (5) hold as lower bounds, as explained in Section 4.2.2 of Coviello
et al. (2013).

2. Monotonicity of lower bound
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(a) `m(θ)
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(b) `m(θ) vs. `+m(θ)

Figure 1: Add some caption
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The function `m(θ) is not always monotonic, as illustrated by the following example.
Consider two histograms Q and M with bins:

q = [0.2, 0.2, 0.15, 0.25, 0.2] (6)

µ = [0.2, 0.2, 0.3, 0.1, 0.2] (7)

for which we have D(Q||M) ≈ 0.1163 and D(M||Q) ≈ 0.1251.
In Figure 1(a), we plot `m(θ) for θ ∈ [0 1], which is visibly non monotonic. On the

opposite, `+m(θ) = max(0, `m(θ)) is monotonic, as illustrated in Figure 1(b).
In general, Lemma 1 in (Coviello et al., 2013) gives a proof of the monotonicity of

`+m(θ). Lemma 1 uses the convexity of `m(θ), which follows from the positivity of the second
derivative (for θ ∈ [0 1]). In particular, using A = exp{−D(M ||Q)} and B = exp{D(Q||M)}
to reduce clutter, we have:

d

dθ
`m(θ) =

d

dθ
θ log[θ + (1− θ)A] +

d

dθ
(1− θ) log[θ + (1− θ)B]

= log[θ(1−A) +A] +
θ(1−A)

θ(1−A) +A

+
1−B

θ(1−B) +B
− log[θ(1−B) +B] +

θ(1−B)

θ(1−B) +B

(8)

d2

dθ2
`m(θ) =

d

dθ

d

dθ
`m(θ)

=
(1−A)[θ(1−A) + 2A]

[θ(1−A) +A]2
+
−(1−B)(1−B)

[θ(1−B) +B]2
− (1−B)[θ(1−B) + 2B]

[θ(1−B) +B]2

=
(1−A)[θ(1−A) + 2A]

[θ(1−A) +A]2
− (1−B)[(θ + 1) +B(1− θ)]

[θ(1−B) +B]2
. (9)

Since B = exp{D(Q||M)} > 1, A = exp{−D(M ||Q)} ∈ [0 1], for θ ∈ [0 1], (9) is positive
(from which follows the convexity).

3. Decisions of the approximated algorithm

In the derivation of Algorithm 2 in (Coviello et al., 2013), we use in sequence an approxi-
mation and a lower bound:

df (xθ, q) ≈ D(Θ||Q) ≥ `+q (θ) (10)

df (xθ, µ) ≈ D(Θ||M) ≥ `+m(θ) (11)

In general, when (10) and (11) do not hold as equalities, the algorithm is subject to making
two types of incorrect decisions, i.e., exploring parts of the search space that could instead
be safely pruned (over-explorative behavior), or pruning away parts that should be explored
(under-explorative behavior). Interestingly, we can argue that, instead of making one type
of mistake or the other randomly, our algorithm is over-explorative on nodes to which the
query is relatively close and under-explorative on nodes to which the query is further away
(see (Coviello et al., 2013)).
Conjecture: If q′ = µ′ + δ′, for δ′ small, we have df (xθ, µ) ≥ l+m(θ).
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Proof: We have x′θ = µ′ + (1 − θ)δ′ and µ′ = x′θ − (1 − θ)δ′. Consider the Riemannian
manifold around x′θ (with curvature ∇f∗(x′θ)), and that the Riemannian metrics associated
to f and f∗ have identical infinitesimal length (Amari, 2009; Nielsen and Nock, 2009).
Consequently we have:1

df (xθ, µ)=
1

2
(1− θ)2δ′t∇2f∗(x′θ)δ

′ (12)

=
1

2
(1− θ)2δt∇2f(xθ)δ = (1− θ)2∆ (13)

where we use the notation ∆ = 1
2δ
t∇2f(xθ)δ to reduce clutter. Similarly, we have that

df (q, µ) = 1
2∆ and df (µ, q) = 1

2∆. Using the approximations exp{a} = 1+a and log a = a−1
(for a small), we have that:

`m(θ)= (1−θ) log [1+(1−θ)∆] + θ log [1−(1−θ)∆] (14)

≤ log {(1−θ) [1+(1−θ)∆] + θ [1−(1−θ)∆]} (15)

= log
{

1 +
[
(1− θ)2 − θ(1− θ)

]
∆
}

(16)

=
[
(1− θ)2 − θ(1− θ)

]
∆ ≤ (1− θ)2∆ (17)

where (15) follow from Jensen inequality and (17) form the fact that θ(1 − θ) ≥ 0 for
θ ∈ [0 1]. Since df (xθ, µ) ≥ 0 we also have df (xθ, µ) ≥ `+m(θ).

Next, we illustrate the over-explorative behavior of our Algorithm 2 from (Coviello et al.,
2013) when the approximations hold as lower bounds, i.e.:

df (xθ, q) ≥ `+q (θ), (18)

df (xθ, µ) ≥ `+m(θ), (19)

L(θ) ≥ `L(θ) ≡ `+q (θ) +
θ

1− θ
(
`+m(θ)−R

)
(20)

In Step 4 of our algorithm when comparing `L(θ) to c = df (xc, q) (where xc is the candidate
NN), we can have the following situations:

• If L(θ) ≥ `L > c we safely prune the node;

• If L(θ) > c > `L [loose lower bound] we incorrectly decide not to prune the node yet:
we may end up exploring more and waste computation;

• If c > L(θ) ≥ `L [tight lower bound] we correctly not prune the node (yet).

For the rest of the comparisons (i.e., Steps 5, 6 and 7 of our algorithm), we can have:

• If `m < df (xθ, µ) < R [tight lower bound]: we correctly assume xθ is in the ball;

– `q ≤ df (xθ, q) ≤ c [tight lower bound]: we correctly decide to explore (e.g., xθ is
better than candidate Xc);

1. To show (12) we can use Legendre duality df (xθ, µ) = f(xθ) + f∗(µ′)− 〈µ′, xθ〉 and second order Taylor
expansion of f∗(µ′) = f∗(x′θ − (1− θ)δ′) around x′θ.

4



supplemental

– `q ≤ c ≤ df (xθ, q) [loose lower bound]: we incorrectly decide to explore — even
if we might have ended up exploring anyway based on later iterations, in general
we may waste computations;

– c ≤ `q ≤ df (xθ, q): we safely update θl;

• If `m < R < df (xθ, µ) [loose lower bound] we incorrectly assume xθ is in the ball

– `q ≤ df (xθ, q) ≤ c [tight lower bound]: we incorrectly decide to explore: wasteful;

– `q ≤ c ≤ df (xθ, q) [loose lower bound]: we incorrectly decide to explore: wasteful;

– c ≤ `q ≤ df (xθ, q): we incorrectly update θr instead of θl: this dilate the effective
size of the ball and may incur in wasteful explorations;

• If R < `m < df (xθ, µ) we safely assume xθ is not the ball, and update θr.

On the opposite, when the query and the node are far away, the approximations can
actually hold as upper bounds, which has the opposite effect of making the the algorithm
under-explorative. Since the left-sided centroid xθ = arg maxc θdf (x, µ) + (1− θ)df (x, q) is
zero forcing (Nielsen and Nock, 2009), it will have smaller support than the mixture model
with modes µ and q, and consequently df (xθ, µ) (respectively, df (xθ, q)) will be smaller
than D(Θ||M) (respectively, D(Θ||Q)). If `+q and `+m are not tight, (10) and (11) will hold
as upper bounds.
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