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Abstract

We present a new algorithm for multi-class
classification with multiple kernels. Our al-
gorithm is based on a natural notion of the
multi-class margin of a kernel. We show
that larger values of this quantity guaran-
tee the existence of an accurate multi-class
predictor and also define a family of mul-
tiple kernel algorithms based on the maxi-
mization of the multi-class margin of a kernel
(M3K). We present an extensive theoretical
analysis in support of our algorithm, includ-
ing novel multi-class Rademacher complexity
margin bounds. Finally, we also report the
results of a series of experiments with sev-
eral data sets, including comparisons where
we improve upon the performance of state-of-
the-art algorithms both in binary and multi-
class classification with multiple kernels.

1. Introduction

The problem of learning with multiple kernels has
attracted much attention from the machine learning
community in the last few years (see e.g. (Lanckriet
et al., 2004; Bach et al., 2004; Kloft et al., 2011) and
the vast list of references in (Cortes et al., 2011)). Un-
like the standard use of kernel methods where the crit-
ical step of selecting a suitable kernel for a task is left
to the user, multiple kernel algorithms instead require
the user only to supply a family of kernels. The al-
gorithm then uses the training data to both select the
appropriate kernel out of that family and to determine
a good hypothesis based on that kernel.
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Much of the literature deals with the problem of learn-
ing kernels in the binary classification case or regres-
sion setting, while the focus of this paper is on learning
with multiple kernels in the multi-class classification
setting. Improvements in multi-class classification per-
formance has emerged as one of the success stories in
multiple kernel learning. While it has proven surpris-
ingly difficult to outperform the simple uniform com-
bination of base kernels for binary classification and
regression problems, multi-class classification has ben-
efited from a number of improvements due to multiple
kernel learning. Zien & Ong (2007) present a one-stage
multi-class multiple kernel learning (MCMKL) algo-
rithm as a generalization of the multi-class loss func-
tion (Crammer & Singer, 2001; Tsochantaridis et al.,
2004). The kernel and the classifiers are trained as
a joint semi-infinite linear program (SILP) problem.
The optimization over the kernel combination is car-
ried out with an L1 regularization that enforces spar-
sity in the kernel domain. They report significant
performance improvements for this algorithm over the
state-of-the-art in terms of AUC, Matthews Correla-
tion Coefficient, and F1-score on a number of real-
world datasets from cell biology.

In (Orabona et al., 2010) and (Orabona & Jie,
2011), stochastic gradient decent methods (named
OBSCURE and UFO-MKL, respectively) are used to
optimize primal versions of equivalent problems that
select linear combinations of kernels with Lp-norm or
mixed-norm regularization terms. The mixed regular-
ization is selected specifically to allow for a strongly
convex objective function, which can be optimized ef-
ficiently using a mirror descent-based algorithm. Since
the problem is solved in the primal, general loss func-
tions including the multi-class loss function can be
used. In (Orabona & Jie, 2011), the OBSCURE and
UFO-MKL algorithms are compared against MCMKL
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and performance improvements in terms of misclassi-
fication accuracy are reported for a multi-class image
classification problem. The OBSCURE algorithm is
also shown to perform comparably to the state-of-the-
art LP-β algorithm of Gehler et al. (Gehler & Nowozin,
2009). LP-β is a two-stage ensemble-based algorithm
where multi-class classifiers are first trained indepen-
dently for each kernel, then the resulting classifiers are
combined by solving an LP problem. Most recently,
Kumar et al. (2012) modeled kernel selection as a bi-
nary classification problem and introduced a multi-
class kernel learning algorithm, BinaryMKL, which
learns non-positive kernel weights that aim to maxi-
mize the distance between points of differing classes.
There are several technical issues with the paper (Ku-
mar et al., 2012), regarding both the theory and the
algorithm, some of which we mention specifically later
in this paper.

We present a new algorithm for multi-class classifica-
tion with multiple kernels. Our algorithm is based on
a natural notion of the multi-class margin of a kernel.
We show that large values of this quantity guarantee
the existence of an accurate multi-class predictor in
the Hilbert space associated to the kernel. This leads
us to the definition of a family of multiple kernel algo-
rithms (M3K) based on the maximization of the multi-
class margin of a kernel or its corresponding regular-
ization. We present an extensive theoretical analysis in
support of our algorithm, including novel multi-class
Rademacher complexity margin bounds. We also re-
port the results of experiments with several data sets,
including comparisons where we improve upon the per-
formance of state-of-the-art both in binary and multi-
class classification with multiple kernels.

2. Preliminaries

We consider a standard multi-class classification su-
pervised learning problem with c ≥ 2 classes. Let X
denote the input space and let Y =

�
1, . . . , c

�
the set

of classes. We assume that the learner receives a la-
beled sample S = ((x1, y1), . . . , (xm, ym)) ∈ X × Y of
size m drawn i.i.d. according to an unknown distribu-
tion D over X × Y.
Consider a family H of hypotheses mapping from
X × Y to R. In multi-class classification, the la-
bel predicted by h ∈ H for point x is chosen as
argmaxy∈Y h(x, y). For any hypothesis h ∈ H, ρh(x, y)
denotes its multi-class margin for the pair (x, y):

ρh(x, y) = h(x, y)−max
y′ �=y

h(x, y�). (1)

We will say that hmisclassifies point x when ρh(x, y) ≤
0 for a labeled example (x, y). The generalization er-

ror of h is denoted by R(h) and defined by R(h) =

E(x,y)∼D[1ρh(x,y)≤0]. We will denote by �D the empir-
ical distribution defined by the sample S. The em-
pirical error of h ∈ H is then defined by �R(h) =
E(x,y)∼ �D[1ρh(x,y)≤0].

We assume that p ≥ 1 positive semi-definite (PSD)
base kernels over X × X are given and we consider a
hypothesis set based on a kernel K of the form K =�p

k=1 µkKk where µ = (µ1, . . . , µp)
� is chosen from

Δq =
�
µ : µ ≥ 0, �µ�q = 1

�
with q ≥ 1. We typically

consider the case q = 1, but much of our analysis holds
for q > 1. The hypothesis set we consider is based on
the kernel property introduced in the next section.

3. Multi-class kernel margin

We first introduce a natural measure of the quality of
a PSD kernel in the multi-class setting.

Definition 1 (multi-class kernel margin). For any
PSD kernel K, we define the multi-class kernel mar-
gin of K for a labeled instance (x, y) ∈ X × Y as the
minimum difference between the average K-similarity
of x to points belonging to its class and its similarity
to points in any other class and denote this quantity
by γK(x, y):

γK(x, y) = E
(x′,y′)∼D

[K(x, x�)|y� = y]

−max
y′ �=y

E
(x′′,y′′)∼D

[K(x, x��)|y�� = y�]. (2)

We define the multi-class kernel margin of K as γK =
E(x,y)∼D[γK(x, y)].

Our notion of kernel margin is distinct from the one
maximized by BinaryMKL (Kumar et al., 2012) which,
for every pair of points (x, x�), creates an instance
(K1(x, x

�), . . . ,Kp(x, x
�)) with binary label 1y=y′ and

then learns a weight vector µ using a linear SVM ob-
jective with a non-negativity constraint µ ≥ 0: the
BinaryMKL objective aims to maximize the difference
between any two distinct classes, while γK is defined
based upon the difference of class y and only the clos-
est distinct class y�. Our choice closely matches the
margin quantity relevant in the multi-class setting (1)
and is further supported by the following proposition,
which shows that for a kernel K with a large multi-
class margin, there exists a hypothesis h∗ : X ×Y → R
defined by h∗(x, y) = E(x′,y′)∼D[K(x, x

�)|y� = y] ad-
mitting a small generalization error. We also point
out that the theoretical guarantees provided in Kumar
et al. (2012) do not appear to match the suggested al-
gorithm: both the fact that the constructed training
examples (x, x�) are no longer i.i.d. and the fact that
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the learned SVM weights are constrained to be positive
are not addressed in their analyses.

Proposition 1. Let K be a PSD kernel with K(x, x)≤
1 for all x ∈ X . Then, the following upper bound holds
for the multi-class generalization error of h∗:

R(h∗) ≤ 1− γK

γKmax

≤ 1− γK

2
. (3)

Proof. By definition of R(h∗), we can write

1−R(h∗) = E
(x,y)∼D

[1ρh∗ (x,y)>0]

= E
(x,y)∼D

[1h∗(x,y)−maxy′ �=y h∗(x,y′)>0]

= E
(x,y)∼D

[1γK(x,y)>0].

For any (x, y), we can write 1γK(x,y)>0 ≥
γK(x, y)/γKmax . Therefore, 1 − R(h∗) ≥
E(x,y)∼D[γK(x, y)/γKmax

] = γK/γKmax
. Since

K(x, x) ≤ 1 for all x ∈ X , by the Cauchy-
Schwarz inequality, the inequality |K(x, x�)| ≤�

K(x, x)K(x�, x�) ≤ 1 holds for all x, x� ∈ X , which
implies that γK(x, y) ≤ 2 for all (x, y) and completes
the proof.

This result further justifies the notion of margin intro-
duced and motivates the algorithms described next.

4. Algorithms

4.1. Multi-class kernel margin maximization

In view of the definition and results of the previous
section, a natural kernel learning algorithm consists
of selecting µ to maximize the empirical multi-class
margin of the combination kernel Kµ =

�p
k=1 µkKk.

Let C(y) denote the set of sample points in S labeled
with y: C(y) =

�
xi : yi = y, i ∈ [1,m]

�
. Then, the

optimization problem can be written as follows:

max
µ∈Δq

1

m

m�

i=1

min
y �=yi

� 1

|C(yi)|
�

x′∈C(yi)

Kµ(xi, x
�)

− 1

|C(y)|
�

x′∈C(y)

Kµ(xi, x
�)
�
(4)

For any k ∈ [1, p], i ∈ [1,m], and y ∈ Y, we define

ηk(xi, yi, y) =
�

x′∈C(yi)
Kk(xi,x

′)

|C(yi)| −
�

x′∈C(y) Kk(xi,x
′)

|C(y)| ,

and denote by η(xi, yi, y) ∈ Rp the vector whose kth
component is ηk(xi, yi, y). Then, the optimization
problem can be equivalently written as

max
µ∈Δq

m�

i=1

min
y �=yi

µ · η(xi, yi, y).

Note that the coefficients η(xi, yi, y) are independent
of µ and can be precomputed for a given sample and
set of kernels. Introducing new variables denoting the
minima, the optimization problem can then be equiv-
alently written as the following convex optimization
problem which is a linear programming (LP) problem
in the case q = 1:

max
µ∈Δq,

γ

m�

i=1

γi s.t. ∀i∈ [1,m], ∀y �= yi,µ · η(xi, yi, y) ≥ γi.

(5)
An alternative idea consists of maximizing the
minimum kernel margin: maxµ∈Δq

minxi,y �=yi
µ ·

η(xi, yi, y). However, this does not directly match the
requirement for the existence of the good multi-class
solution discussed in the previous section and may be
too strong a condition. We have in fact verified that
it typically leads to a poor performance.

4.2. Maximum margin multiple kernel (M3K)
algorithm

Given a training sample, we can define the empirical
multi-class kernel margin as follows:

�γKµ =
1

m

m�

i=1

min
y �=yi

µ · η(xi, yi, y), (6)

which can then be used to define the data-dependent
set �Mq =

�
µ : µ ∈ Δq, �γKµ ≥ γ0

�
. This set can be

incorporated as an additional form of regularization
into a kernel learning optimization problem based on
multi-class SVM (Weston & Watkins, 1999; Crammer
& Singer, 2001):

min
µ∈ �Mq,w,ξ

1

2

c�

y=1

p�

k=1

�wy,k�2
µk

+ C

m�

i=1

ξi (7)

subject to: ∀i ∈ [1,m], ξi ≥ 0, ∀y �= yi,

ξi ≥ 1−
�
wyi

· Φ(xi)−wy · Φ(xi)
�
,

where C ≥ 0 is a regularization parameter. Here,
we have defined for any class y ∈ Y the associated
hypothesis wy = (wy,1, . . . ,wy,p)

� and let Φ(x) =
(ΦK1

(x), . . . ,ΦKp
(x))�, where ΦK denote a feature

mapping associated to the kernel K. We refer to the
algorithm based on optimization (7) as the multi-class
maximum margin multiple kernel (M3K) algorithm.

The additional constraint �γK ≥ γ0 in �Mq ensures that
µ is selected such that the average empirical kernel
margin is at least γ0. It is important to note that if γ0
is chosen to be too large, then the optimization prob-
lem becomes infeasible. There are in fact two extremes
in choosing γ0: setting it equal to the maximum fea-
sible value will guarantee that the selected µ is also
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a solution to the optimization problem in (5), while
setting it equal to −∞ in the case q = 1 will reduce
the algorithm to the MCMKL algorithm presented by
(Zien & Ong, 2007).

The dual formulation of M3K is written as follows:

min
µ∈ �Mq

max
α∈Rm×c

m�

i=1

αi ·eyi−
C

2

m�

i,j=1

(αi ·αj)

p�

k=1

µkKk(xi, xj)

subject to: ∀i ∈ [1,m], αi ≤ eyi
∧αi · 1 = 0.

Here, α∈Rm×c is a matrix, αi is its ith row, and el
the lth unit vector in Rc, l ∈ [1, c]. In the case q= 1,
this min-max problem can be solved using a standard
reduction to a SILP problem as in (Sonnenburg et al.,
2006):

min
µ∈ �M1,θ

θ subject to:

∀α ∈
�
α : ∀i ∈ [1,m], αi ≤ eyi

∧αi · 1 = 0
�

θ ≥
m�

i=1

αi · eyi −
C

2

m�

i=1

(αi ·αj)

p�

k=1

µkKk(xi, xj) .

This SILP problem is solved using a cutting-plane type
algorithm, which considers only a finite subset of the
constraints over α. Initially, we consider no α-based
constraint and only find a feasible µ ∈ �M1. We then
find a most violated constraint α = maxα

�m
i=1 αi ·

eyi
− C

2

�m
i=1(αi ·αj)

�p
k=1 µkKk(xi, xj) and the con-

straint defined by this α is added to the optimiza-
tion problem. An optimal µ that obeys all constraints
added up to this point is then found and a new most vi-
olated α is added to the optimization. These iterations
continue until either a violating constraint cannot be
found or the difference in successive choices of µ is in-
significant. At each iteration we solve an LP to find
the current best choice of µ and a quadratic program
(QP) to find a most violated constraint α. Although
in this paper we focus on L1-regularized choices of µ,
we note that it is also possible to solve the problem for
other Lq regularization (q > 1), or even using group
norms over µ, with different optimization techniques.

5. Generalization bounds

In this section, we present generalization bounds for
learning kernels in the multi-class setting for a hy-
pothesis set based on our notion of multi-class margin.
We start with a general margin-bound for multi-class
classification, then analyze the empirical Rademacher
complexity of the hypothesis set we consider to derive
margin-based guarantees for multiple kernel learning
in the multi-class setting.

5.1. General multi-class margin bounds

Let H be a set of hypotheses mapping from X to R.
We will denote by �RS(H) the empirical Rademacher

complexity of the set H for a sample S: �RS(H) =

Eσ

�
suph∈H

1
m

�m
i=1 σih(xi)

�
, where the σis are in-

dependent uniform random variables taking values in�
− 1,+1

�
.

Fix ρ > 0, then, for any hypothesis h ∈ H, the empiri-
cal margin loss of h in the multi-class setting can be de-
fined by �Rρ(h) =

1
m

�m
i=1 1ρh(xi,yi)≤ρ. Let HX denote

the set of functions defined over X and derived from H
as follows: HX =

�
x �→ h(x, y) : y ∈ Y, h ∈ H

�
. Then,

the following general margin bound can be given in the
multi-class setting. This is a simpler version of a re-
sult given by (Koltchinskii & Panchenko, 2002), a full
proof is provided in the appendix.

Theorem 1. Let H ⊆ RX×Y be a hypothesis set with
Y =

�
1, . . . , c

�
. Fix ρ > 0. Then, for any δ > 0,

with probability at least 1− δ, the following multi-class
classification generalization bound holds for all h ∈ H:

R(h) ≤ �Rρ(h) +
2c2

ρ
�RS(HX ) + 3

�
log 2

δ

2m
. (8)

As for all margin guarantees, the bound expresses a
trade-off between margin maximization (larger ρ val-
ues) and empirical margin loss minimization (smaller

empirical margin loss values, �Rρ). The presence of the
quadratic term c2 suggests that larger margin values
are required in the multi-class setting than in binary
classification to achieve good generalization guaran-
tees.

5.2. Multi-class margin bounds for multiple
kernel learning

To apply this generalization bound in our context, we
will analyze the empirical Rademacher complexity of a
hypothesis set based on convex combinations of p base
kernels and with a lower bounded multi-class kernel
margin. For the sake of brevity, our guarantees are pre-
sented in the case of an L1 regularization for the mix-
ture weights µ, but much of our analysis can be gener-
alized to other Lq and group-norm regularizations with
q > 1. Each element of the hypothesis set H1 is de-
fined by c functions h1, . . . , hc belonging to the Hilbert
space HKµ defined by Kµ where Kµ =

�p
k=1 µkKk.

Thus, the formal definition of H1 is

H1 =
�
(x, y) ∈ X × Y �→ hy(x) : ∀y ∈ Y, hy ∈ HKµ ,

�hy�Kµ ≤ Λ,Kµ =

p�

k=1

µkKk,µ ∈ M1

�
,



Multi-Class Classification with Maximum Margin Multiple Kernel

where γ0 ∈ R, Λ ≥ 0, and M1 =
�
µ : µ ∈ Δ1, γKµ

≥
γ0
�
. We will assume in what follows that γ0 is chosen

so thatM1 �= ∅, that is γ0 is not above the maximum
multi-class margin of Kµ achievable by any µ ∈ Δ1.

The proof of our generalization bound is based on the
following series of lemmas and partly makes use of
some of the results and techniques given by (Cortes
et al., 2010). The proof of the first lemma is given in
the appendix.

Lemma 1. For any labeled sample S of size m, we

have �RS(H
1
X ) ≤ Λ

m Eσ

�
supµ∈M1

√
µ · uσ

�
with uσ =

(σ�K1σ, . . . ,σ
�Kpσ)

�.

In order to bound the Rademacher complexity, we
first analyze and simplify the optimization problem
supµ∈M1

�
µ�uσ. For any kernel K and x ∈ X ,

y, y� ∈ Y with y �= y�, we define

γK(x, y, y
�) =

E
(x′,y′)∼D

[K(x, x�)|y� = y]− E
(x′′,y′′)∼D

[K(x, x��)|y�� = y�].

Thus, by definition of γK , we have γK =
E(x,y)∼D[miny′ �=y γK(x, y, y

�)].

Lemma 2. For any k ∈ [1, p], we also define �γk =
E(x,y)∼D[

1
c−1

�
y′ �=y γKk

(x, y, y�)] and denote by �γ ∈
Rp the vector whose kth coordinate is �γk. Then, the
following inequality holds:

max
µ∈M1

µ�uσ ≤ min
λ≥0

max
k∈[1,p]

uσ,k + λ(�γk − γ0).

Proof. By definition of γks, we can write

γKµ
= E

(x,y)∼D

�
min
y′ �=y

γKµ(x, y, y
�)
�

= E
(x,y)∼D

�
min
y′ �=y

p�

k=1

µkγk(x, y, y
�)
�

≤ E
(x,y)∼D

� 1

c− 1
�

y′ �=y

p�

k=1

µkγk(x, y, y
�)
�

=

p�

k=1

µk E
(x,y)∼D

� 1

c− 1
�

y′ �=y

γk(x, y, y
�)
�
= µ · �γ.

Thus, γKµ
≥ γ0 implies µ · �γ ≥ γ0. Therefore,

maxµ∈M1 µ
�uσ is upper bounded by the optimum of

the following LP problem:

max
µ

µ�uσ subject to (µ ∈ Δ1) ∧ (µ��γ ≥ γ0).

Introducing the dual variables β ∈ Rp, β ≥ 0, ν ∈ R,
and λ ≥ 0, the Lagrangian L for this problem can be
written as

L = −µ�uσ − β�µ+ (−1 + µ�1)ν + λ(γ0 − µ��γ).

��
��
��
���
��
��
��
��

0

�����������������

λ∗

uσ,k

�������������

uσ,k + λ(�γk − γ0)

λ∗ = 0

uσ,k′ + λ(�γk′ − γ0)

uσ,k + λ(�γk − γ0)

uσ,k

uσ,k′

(λ) (λ)

Figure 1. Each blue line in the figure above corresponds to
a line indexed by k, with dependent variable λ. The dotted
red line shows the maximum over these linear functions.

Computing its gradient with respect to µ and setting
it to zero gives

∇µL = 0⇒ uσ + β − ν1+ λ�γ = 0.
Solving for β and plugging in this identity in L leads
to the equivalent dual problem:

min
ν,λ

ν − λγ0 subject to (λ ≥ 0) ∧ (uσ + λ�γ ≤ ν1).

Fixing λ and solving for ν gives the following equiva-
lent convex optimization problem:

min
λ≥0

max
k∈[1,p]

(uσ,k + λ�γk)− λγ0

= min
λ≥0

max
k∈[1,p]

uσ,k + λ(�γk − γ0).

The optimization problem of lemma 2 is the minimiza-
tion of a piecewise linear function, where each line seg-
ment is indexed by some k ∈ [1, p]. Assuming that the
problem is feasible, the optimal solution falls into one
of two cases illustrated in figure 1, where each blue line
corresponds to a choice of k and the red dotted line is
the piecewise linear function that is being minimized
over.

In the left panel of the figure, we see the general sce-
nario where the optimal choice of λ is described by the
intersection of two lines indexed by k and k�. Note that
in this case, one line must have a non-positive slope,
i.e. �γk ≤ γ0 and the other must have a non-negative
slope, i.e. �γk′ ≥ γ0. Thus, it suffices to consider only
the intersection of lines indexed by k and k� that sat-
isfy �γk ≤ γ0 ≤ �γk′ (with �γk �= �γk′).

The second case occurs iff for kmax = argmaxk uσ,k

we have �γkmax ≥ γ0. In this case, the optimal choice
of λ is met at the boundary value 0 and the value
of the optimal is simply uσ,kmax

. The following lemma
describes these observations, with a formal proof found
in the appendix. We first define the following sets

Ip =
�
k ∈ [1, p] : �γk ≥ γ0

�
,

Jp =
�
(k, k�) ∈ [1, p]2 : (�γk ≤ γ0 ≤ �γk′) ∧ (�γk �= �γk′)

�
,

used throughout the remainder of the section.
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Lemma 3. Given the same definitions as in lemma 2,
the following equality holds:

min
λ≥0

max
k∈[1,p]

uσ,k + λ(�γk − γ0) =

max

�
maxk∈Ip uσ,k,
max(k,k′)∈Jp

αk,k′uσ,k + (1− αk,k′)uσ,k′

�
,

where αk,k′ = �γk′−γ0

�γk′−�γk
.

We now use this bound on the Rademacher complexity
to derive our generalization bound.

Theorem 2. Fix ρ > 0 and let p� = Card(Ip) ≤ p
and p�� = Card(Jp) < p2. Then, for any δ > 0, with
probability at least 1− δ over the choice of a sample S
of size m, the following multi-class classification gen-
eralization bound holds for all h ∈ H1:

R(h) ≤ �Rρ(h) +

2c2Λ

mρ

�
23
22e�log(p� + p��)�Tγ0

+ 3

�
log 2

δ

2m
, (9)

where Tγ0
=max(maxk∈IpTr[Kk],max(k,k′)∈Jp

Tr[Kk,k′ ]),

with Kk,k′=αk,k′Kk+(1−αk,k′)Kk′ and αk,k′= �γk′−γ0

�γk′−�γk
.

Proof. First, define the constant function K0 = 0 and
the constant �γ0 = −∞. With this notation, the en-
tire right hand side of the equality in lemma 3 can be
simply written as

max
(k,k′)∈Mp

αk,k′uσ,k + (1− αk,k′)uσ,k′ ,

where Mp =
�
(k, k�) ∈ [0, p]2 × [1, p] : (�γk ≤ γ0 ≤

�γk′) ∧ (�γk �= �γk′)
�
. To see this, first note that Jp is a

subset of Mp. Furthermore, if we fix k = 0 then for
any k� ∈ [1, p] we have α0,k′ = 0, which results in the
expression max(0,k′)∈Mp

α0,k′uσ,0 + (1− α0,k′)uσ,k′ =
maxk′∈Ip uσ,k′ . Thus, the additional elements in Mp

account exactly for the elements in Ip.

Using this and combining lemma 1, lemma 2, and
lemma 3, for any integer r ≥ 1, we can write
m

Λ
�RS(H

1
X )

≤ E
σ

��
max

(k,k′)∈Mp

αk,k′σ�Kkσ + (1− αk,k′)σ�Kk′σ
� 1

2
�

= E
σ

��
max

(k,k′)∈Mp

σ�[αk,k′Kk + (1− αk,k′)Kk′ ]σ
� 1

2

�

≤ E
σ

���

(k,k′)
∈Mp

(σ�Kk,k′σ)r
� 1

2r
�
≤
��

(k,k′)
∈Mp

E
σ

�
(σ�Kk,k′σ)r

�� 1
2r

,

where we used for the second inequality the fact
that � · �∞ is upper bounded by � · �r for any
r ≥ 1 and for the last inequality the concavity of
x �→ x1/2r and Jensen’s inequality. By lemma 1 of
(Cortes et al., 2010), the following inequality holds:1

Eσ

�
(σ�Kk,k′σ)r

�
≤

�
23
22rTr[Kk,k′ ]

�r
. Thus,

�RS(H
1
X ) ≤

Λ

m

� �

(k,k′)∈Mp

�
23
22rTr[Kk,k′ ]

�r� 1
2r

≤ Λ
m

�
23
22 (p

� + p��)
1
r r max

(k,k′)∈Mp

Tr[Kk,k′ ].

The function r �→ r(p� + p��)
1
r reaches its minimum at

log(p� + p��), thus this yields the inequality

�RS(H
1
X ) ≤

Λ

m

�
23
22e�log(p� + p��)� max

(k,k′)∈Mp

Tr[Kk,k′ ].

Finally, by the definition of Mp we have

max
(k,k′)∈Mp

Tr[Kk,k′ ]=max(max
k∈Ip

Tr[Kk], max
(k,k′)∈Jp

Tr[Kk,k′ ]).

Plugging in this upper bound on the Rademacher com-
plexity of H1

X in the learning guarantee of theorem 1
concludes the proof.

The theorem gives a general margin bound for mul-
tiple kernel learning based on µ-combinations of p
based kernels, with an L1 regularization for µ aug-
mented with the multi-class kernel margin regulariza-
tion γKµ

≥ γ0. The effect of the γKµ -regularization
on the complexity term is analyzed by the following
lemma.

Lemma 4. Tγ0
is a non-increasing function of γ0.

Due to space constraints we present the proof of the
lemma in appendix E within the supplementary sec-
tion. The lemma implies that the main complexity
term that depends on γ0 in the bound of theorem 2
becomes smaller as the regularization become more
stringent. Also, note that the dependence on p is only
logarithmic. This weak dependence strongly encour-
ages the idea of using a large number of base kernels.2

Altogether, this analysis provides strong support in fa-
vor of an algorithm minimizing the sum of the empir-
ical margin loss of a multi-class hypothesis defined by

1This is a vectorial version of a Khintchine-Kahane in-
equality with an explicit constant more favorable than the
best we are aware of for this context (Kwapien & Woy-
czynski, 1992) .

2We have also derived an alternative learning bound
with a similar form and a simpler proof not making use of
the results of (Cortes et al., 2010) (theorem 3 in appendix).
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Table 1. Binary classification accuracy of various learning
kernel algorithms as well as the performance of the uniform
combination of kernels, reported with ±1 standard error on
datasets SP (splice), SM (spambase).

unif alignf MCMKL M3K

sl 84.8 ± 2.20 86.1 ± 1.28 84.9 ± 2.63 86.3 ± 0.75
sm 81.3 ± 2.84 82.0 ± 2.34 79.2 ± 2.42 85.7 ± 1.57

(h1, . . . , hc) and a complexity term based on the norm
of these c functions, while controlling the L1-norm of µ
and maximizing the multi-class margin γKµ

. This co-

incides precisely with our M3K algorithm modulo the
maximization of the empirical multi-class margin �γKµ ,
the quantity computable from a finite sample, instead
of γKµ

. Since with high probability these two quanti-

ties are close modulo a term in O(k/
√
m), the bound

also provides a strong foundation for our algorithm.

Other results with a similar analysis can be given for a
regularization based on the Lq-norm of µ. In particu-
lar, for an L2-norm regularization, the dependency on
the number of kernels is of the form O((p� + p��)1/4)
instead of a logarithmic dependency.

6. Experiments

In this section, we report the results of several ex-
periments with our multi-class multiple kernel M3K
algorithm. First, we show that M3K performs well in
binary classification tasks by comparing with MCMKL
(Zien & Ong, 2007) and the best published results
(Cortes et al., 2012). Next, in the multi-class set-
ting, we compare against other state-of-the-art algo-
rithms that learn a kernel for multi-class SVM (Cram-
mer & Singer, 2001). These include BinaryMKL (Ku-
mar et al., 2012), OBSCURE (Orabona et al., 2010)
and UFO-MKL (Orabona & Jie, 2011). In all the ex-
periments that follow, we consider the case of an L1

regularization of µ for the M3K algorithm.

6.1. Binary Classification

Table 1 shows the accuracy of several algorithms on
the splice and spambase binary classification datasets.
The accuracies are shown with ±1-standard deviation
as measured over a 5-fold cross-validation with 1000
examples. We use the same experimental setup as
in (Cortes et al., 2012) which uses 7–8 Gaussian ker-
nels with various bandwidths as the set of base ker-
nels (we refer the reader to that reference for further
details of the methodology and datasets). For both
of these datasets, the parameter γ0 of the M

3K al-
gorithm is simply set to the maximum feasible value,
which can be found using (5), and C is found via a
grid search. We not only find that M3K outperforms

Table 2. Multi-class accuracy with ±1 standard deviation
using the datasets P (plant), NP (nonplant), PSP (psort-
Pos), PSN (psortNeg), PR (protein) with training split
fraction sp and dataset size n.

sp n unif BinMKL M3K
p 0.5 940 86.9± 1.7 90.1± 1.4 91.2± 1.5
np 0.5 2732 89.3± 0.8 87.7± 0.5 91.2± 0.9
psp 0.8 541 88.4± 2.8 90.0± 3.0 90.8± 3.4
psn 0.65 1444 87.9± 1.2 91.2± 0.8 91.5± 0.9
pr 0.5 694 59.2± 2.3 64.9± 2.6 67.2± 2.5

the uniform combination of kernels, which has proven
to be a difficult baseline to beat, but also that it ei-
ther matches or improves over the alignment-based
algorithm (alignf ) presented in (Cortes et al., 2012)
and considered state-of-the-art on these datasets. As
can be seen, M3K is also able to significantly outper-
form MCMKL. More generally, note that M3K strictly
generalizes the MCMKL algorithm of (Zien & Ong,
2007) and thus always performs at least as well as
MCMKL. Hence, in the next section, we focus on
comparing against other state-of-the-art algorithms for
multi-class kernel learning in the multi-class setting.

6.2. Multi-class Classification

In the multi-class setting, we compare to the uniform
combination kernel baseline as well as the BinaryMKL
algorithm using the biological datasets (plant, non-
plant, psortPos, and psortNeg) that are also considered
in (Kumar et al., 2012) (and originally in (Zien & Ong,
2007)), which consist of either 3, 4, or 5 classes and
use 69 biologically motivated sequence kernels.3 We
also experiment with an additional biological dataset
(proteinFold) of (Damoulas & Girolami, 2008), which
consists of 27 classes and 12 base kernels.4 Finally, we
report the results of experiments with the caltech101
vision-task dataset with 48 base kernels.5 For each of
the 102 classes, we select 30 examples (for a total of
3060 points) and then split these 30 examples into test-
ing and training folds, which ensures matching training
and testing distributions. For this dataset, we addi-
tionally compare with the OBSCURE and UFO-MKL
algorithms which achieve state-of-the-art performance
in this task. The choice of C ∈

�
0.5, 1, 2, 4, . . .

�
and

γ0 (in the case of M
3K) is optimized via a grid search.

For the OBSCURE and UFO-MKL algorithm, we fol-
low the methodology of (Orabona et al., 2010) and
(Orabona & Jie, 2011), respectively, for selecting pa-
rameters. All kernels are first centered and then scaled
so that for all i and k we have Kk(xi, xi) = 1.

The multi-class accuracy of the uniform combination,

3http://raetschlab.org//projects/protsubloc.
4http://mkl.ucsd.edu/dataset/protein-fold-prediction.
5http://files.is.tue.mpg.de/pgehler/projects/iccv09.
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Figure 2. Accuracy rates when using a uniform combination of kernels or various multi-class kernel learning algorithms
with biological datasets (left) as well as on the caltech101 dataset with various training set sizes (right). Corresponding
numerical values are found in table 2 (and table 4 in appendix G).

Table 3. Training time (in seconds) on a 12-core 2.67GHz
Intel Xeon CPU with 24GB of RAM for different algo-
rithms using the datasets P (proteinFold), C (caltech101 ),
PSN (psortNeg), NP (nonplant).

m c p M3K BinMKL obscure ufo
p 347 27 12 51.9 3.4 11.6 0.2
c 1020 102 48 1048.8 24.6 330.9 18.8
psn 936 5 69 190.6 238.6 66.5 2.4
np 1366 3 69 821.8 1084.6 462.9 5.35

BinaryMKL, and M3K algorithms for the biological
datasets is shown in table 2 with one standard devi-
ation as computed over 10 random splits of the data.
We observe that for the biological datasets both kernel
learning algorithms can perform better than the lin-
ear combination, while M3K always performs at least
as well as BinaryMKL and sometimes performs sig-
nificantly better (in particularly nonplant and pro-
teinFold). The results of figure 2 (right) show that
M3K performs comparably to all algorithms in the
range of 10-20 training points per class for the cal-
tech101 dataset and performs even better than state-
of-the-art algorithms when training with 25 points per
class. Finally, we note that in simple multiclass tasks
where overfitting is not an issue we observe that M3K
does not always provide a significant improvement over
MCMKL. However, for more challenging tasks with
more confusable classes, we expect significant improve-
ments, as we found empirically even in some binary
classification tasks.

The training time of different algorithms is shown in
table 3 for several datasets. BinaryMKL is substan-
tially faster than M3K for the first two datasets of
table 3. However, we observe that, when the number
of kernels p or the ratio m/c is large, the training time
of M3K becomes more favorable than that of Bina-
ryMKL, as in the next two datasets of the table.6 In all

6BinaryMKL subsamples to balance the negative and
positive examples in the quadratic binary problem it gen-
erates, which can result in an effective training sample of
size 2

�c
j=1 m

2
j , that is 2m

2/c when the classes sizes mj are

equal, which can become very large depending on m/c. We
also note that this subsampling is not reflected in the theo-
retical guarantees provided in (Kumar et al., 2012), which

cases, UFO-MKL, which uses a fast stochastic gradi-
ent descent method to solve the optimization problem,
is significantly faster than all other algorithms. We be-
lieve that M3K can benefit from a fast implementation
similar to that of UFO-MKL and will actively pursue
this question. Let us mention, however, that, as shown
in the caltech101 dataset, the increased speed of UFO-
MKL appears to come at some cost in performance.
Overall, we find M3K to be a robust algorithm with
a competitive performance in all datasets, including
significant improvements in several cases.

7. Conclusion

We presented a new analysis of the problem of multi-
ple kernel learning in the multi-class classification set-
ting. We defined the notion of multi-class kernel mar-
gin, used it to define a new learning algorithm (M3K),
and presented new generalization bounds for hypoth-
esis sets defined in terms of this margin. We also pre-
sented a series of empirical results demonstrating the
good performance of our algorithm in practice. These
results further motivate the search for more efficient
solutions to the optimization problems introduced, as
well as a finer analysis of alternative algorithms based
on the multi-class kernel margin.

References

Bach, Francis R., Lanckriet, Gert R. G., and Jordan,
Michael I. Multiple kernel learning, conic duality,
and the smo algorithm. In ICML, 2004.

Bartlett, Peter L. and Mendelson, Shahar.
Rademacher and Gaussian complexities: Risk
bounds and structural results. JMLR, 3, 2002.

Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh,
Afshin. Generalization bounds for learning kernels.
In ICML, pp. 247–254, 2010.

Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh,
Afshin. Tutorial: Learning kernels. In ICML, 2011.

creates a disconnect between their theory and experiments.



Multi-Class Classification with Maximum Margin Multiple Kernel

Cortes, Corinna, Mohri, Mehryar, and Rostamizadeh,
Afshin. Algorithms for learning kernels based on
centered alignment. Journal of Machine Learning,
2012.

Crammer, Koby and Singer, Yoram. On the algo-
rithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Re-
search, 2:265–292, 2001.

Damoulas, Theodoros and Girolami, Mark A. Prob-
abilistic multi-class multi-kernel learning: on pro-
tein fold recognition and remote homology detec-
tion. Bioinformatics, 24(10):1264–1270, 2008.

Gehler, P. and Nowozin, S. On feature combination
for multiclass object classification. In International
Conference on Computer Vision, pp. 221–228, 2009.

Kloft, M., Brefeld, U., Sonnenburg, S., and Zien, A.
Lp-norm multiple kernel learning. Journal of Ma-
chine Learning Research, 12, 2011.

Koltchinskii, Vladmir and Panchenko, Dmitry. Em-
pirical margin distributions and bounding the gen-
eralization error of combined classifiers. Annals of
Statistics, 30, 2002.

Kumar, A., Niculescu-Mizil, A., Kavukcoglu, K., and
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