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Abstract

The use of topic models to analyze domain-
specific texts often requires manual valida-
tion of the latent topics to ensure that they
are meaningful. We introduce a framework
to support such a large-scale assessment of
topical relevance. We measure the correspon-
dence between a set of latent topics and a set
of reference concepts to quantify four types
of topical misalignment: junk, fused, missing,
and repeated topics. Our analysis compares
10,000 topic model variants to 200 expert-
provided domain concepts, and demonstrates
how our framework can inform choices of
model parameters, inference algorithms, and
intrinsic measures of topical quality.

1. Introduction

Data analysts often apply probabilistic topic models
to analyze document collections too large for any one
person to read. In many real-word applications, latent
topics need to be verified by experts to ensure they are
semantically meaningful within the domain of analysis
(Talley et al., 2011; Hall et al., 2008). Human-in-the-
loop supervision may involve inspecting individual la-
tent topics, comparing multiple models, or re-training
using different parameter settings. As a result, manual
validation can dominate the time and cost of building
high-quality topic models.
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Intrinsic evaluation, based on statistical (Blei et al.,
2003) or coherence (Newman et al., 2010b) measures,
can be problematic in these contexts because these
measures do not account for domain relevance. We
also currently lack tools that provide diagnostic feed-
back on how latent topics differ from users’ organiza-
tion of domain concepts during the construction of a
topic model. Analysts often resort to spot-checking
topics in an ad hoc manner after the model is created.

In response, we introduce a framework to support
large-scale assessment of topical relevance. We
first quantify the topical alignment between a set
of latent topics and a set of reference concepts. We
say a topic resolves to a concept if a one-to-one corre-
spondence exists between the two, and recognize four
types of misalignment: when models produce junk or
fused topics or when reference concepts are missing or
repeated among the latent topics.

We then introduce a process to automate the calcula-
tion of topical alignment, so that analysts can com-
pare any number of models to known domain con-
cepts and examine the deviations. Taking a human-
centered approach, we estimate the likelihood of topic-
concept pairs being considered equivalent by human
judges. Using 1,000 ratings collected on Amazon Me-
chanical Turk, we find that a rescaled dot product out-
performs KL-divergence, cosine, and rank-based mea-
sures in predicting user-identified topic matches. We
estimate and remove topical correspondences that can
be attributed to random chance via a generative prob-
abilistic process. Finally, we visualize the results in
a correspondence chart (Figure 1) to provide detailed
diagnostic information.
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Our framework is sufficiently general to support the
comparison of latent topics to any type of reference
concepts, including model-to-model comparisons by
treating one model’s outputs as the reference. For
this work, we demonstrate our approach using expert-
generated concepts. We asked ten experienced re-
searchers in information visualization to exhaustively
identify domain concepts in their field, and compiled
a set of high-quality references.

We show that, in addition to supporting model eval-
uation, our framework can also provide insights into
the following aspects of topic modeling research.

Model Exploration. We construct latent Dirichlet
allocation (LDA) models (Blei et al., 2003) using over
10,000 parameter and hyperparameter settings, and
compare the resulting 569,000 latent topics to the ex-
pert concepts. We observe that a small change in term
smoothing prior can significantly alter the ratio of re-
solved and fused topics. In many cases, increasing the
number of latent topics leads to more junk and fused
topics with a corresponding reduction in resolved top-
ics. About 10% of the concepts in our dataset are only
uncovered within a narrow range of settings.

Evaluation of Inference Algorithms. We examine
the effectiveness of parameter optimization and semi-
supervised learning. We find that hyperparameter op-
timization (Wallach et al., 2009a) is generally effective
for LDA. Author-topic models (Rosen-Zvi et al., 2004)
achieve lower coverage than optimized LDA but favor
resolved over fused topics. Partially labeled LDA mod-
els (Ramage et al., 2011) also achieve lower coverage
but uncover a subset of concepts not resolved by LDA.

Evaluation of Intrinsic Measures. Automatic
evaluation is desirable when reference concepts are not
available. We examine the ability of ten intrinsic mea-
sures (Newman et al., 2010a; Alsumait et al., 2009;
Mimno et al., 2011) to identify topical misalignments.
We find little correlation between these measures and
topics that are identified as junk. While some mea-
sures can distinguish junk topics comprised of function
words, they are unable to separate junk topics com-
prised of incoherent content words from useful topics.

In sum, we provide a new visualization tool and tech-
niques for effective human-in-the-loop construction,
diagnosis, and repair of domain-relevant topic models.

2. Related Work

Latent Dirichlet allocation (Blei et al., 2003) and vari-
ants (Blei et al., 2004; Blei & Lafferty, 2006; Ramage
et al., 2009; Steyvers et al., 2004; Wang & McCallum,
2006) have been applied in numerous domains (Talley

Figure 1. Correspondence chart between latent topics and
reference concepts. Area of circles represents the match-
ing likelihoods; likelihoods exceeding random chance are
marked with a bold border. Bars on the right show
the probability that a concept is missing (grey), resolved
(blue), or repeated (light blue). Bars on the bottom indi-
cate whether a topic is junk (grey), resolved (orange), or
fused (light orange). This visual analysis tool is available
online at: http://vis.stanford.edu/topic-diagnostics

et al., 2011; Newman et al., 2006; Ramage et al., 2010).
While topic models can improve the performance of
task-based systems (Wei & Croft, 2006; Titov & Mc-
Donald, 2008), they are most frequently used in ex-
ploratory text mining and typically evaluated based on
statistical measures such as perplexity (Stevens et al.,
2012) or held-out likelihood (Wallach et al., 2009b).
Such measures, however, do not always correlate with
human judgment of topical quality (Budiu et al., 2007)
nor capture concepts that people consider to be rele-
vant and interpretable (Chang et al., 2009). Chuang
et al. (2012b) emphasize the importance of interpreta-
tion and trust in model-driven data analysis.

More recently, Chang et al. (2009) introduced hu-
man validation of topical coherence via intrusion tests,
but the process requires manual verification of every
model built. Automatic measures of topical coherence
have been proposed using word co-occurrence within
the corpus (Mimno et al., 2011), Wikipedia articles
or Google search results (Newman et al., 2010a), or
WordNet (Musat et al., 2011). Alsumait et al. (2009)
introduced heuristic measures of topical significance.

Researchers have also explored the use of visualizations
for interactive inspections of topic models. The Topic
Browser (Chaney & Blei, 2012) and Termite (Chuang
et al., 2012a) focus on the exploration of a single topic
model while TopicNets (Gretarsson et al., 2012) al-
lows users to adaptively generate new models. How-
ever, none have the ability to measure deviations from
user-defined reference concepts, nor provide diagnostic
information on why models may be under-performing.

http://vis.stanford.edu/topic-diagnostics
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Fused Ṗ (k ≥ 2): 22.8%
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Figure 2. Correspondence Chart Construction. In a correspondence chart, each entry ps,t represents the probability that
a user considers the word distributions associated with concept s and topic t as equivalent. Misalignment scores measure
how much topical alignment deviates from an optimal one-to-one correspondence. Comparing a topic to all concepts, junk
and fused scores measure how likely the topic matches exactly zero, or more than one reference concept. Missing and
repeated scores measure how likely a concept matches exactly zero, or more than one latent topic.

3. Topical Alignment

We present our method for aligning latent topics with
reference concepts, where each topic or concept is a
multinomial distribution over words. At the heart of
our method is the calculation of matching likelihoods
for topic-concept pairs: the probability that a human
judge will consider a latent topic and a reference con-
cept to be equivalent. Based on human-subjects data,
we examine how well various similarity measures pre-
dict topic matches and describe how we transform sim-
ilarity scores into matching likelihoods. To improve ro-
bustness when making a large number of comparisons,
we introduce a method to account for correspondences
that occur due to random chance. We also introduce
the correspondence chart which visualizes the align-
ment between latent topics and reference concepts.

3.1. Correspondence Chart and Misalignments

The correspondence chart is an n × m matrix of all
possible pairings among n reference concepts and m la-
tent topics. We treat each entry ps,t as an independent
Bernoulli random variable representing the matching
likelihood that a user examining the word distributions
associated with concept s and topic t would respond
that the two are equivalent.

We consider a correspondence optimal when every la-
tent topic maps one-to-one to a reference concept. De-
viations from an optimal arrangement lead to four
types of misalignment, as shown in Figure 2. We
treat entries {pi,t}ni=1 corresponding to topic t as a
Bernoulli-like process: a series of independent events
that can take on different probabilities. In this frame-
work, Ṗt(k) is the likelihood that a user responds with
exactly k matches after comparing topic t to all n ref-
erence concepts. Similarly, P̈s(k) is the likelihood of
observing exactly k positive outcomes after compar-
ing concept s to all m latent topics. The junk score
for topic t is the probability Ṗt(0); the topic has no
matching concept. The fused score for topic t is the
likelihood

∑m
k=2 Ṗt(k); the topic matches two or more

concepts. Similarly, the missing score for concept s
is P̈s(0), and the repeated score is

∑n
k=2 P̈s(k).

3.2. Human Judgment of Topic Matches

We conducted a study to acquire data on when top-
ics (probability distributions over terms) are consid-
ered matching by people. We trained two LDA topic
models on a corpus of information visualization pub-
lications and sampled pairs of topics, one from each
model. The texts were chosen to be consistent with the
corpus of the expert-generated concepts that we col-
lected (details in §4). Preliminary analysis suggested
that the corpus contained about 28 domain concepts,
and thus we trained the two models with 40 and 50
latent topics using priors α = 0.01 and β = 0.01.

We presented study subjects with topical pairs, one at
a time in a webpage. Each topic was displayed as a list
of words, sorted by frequency, where the height of each
word was scaled proportional to its frequency in the
topic’s distribution. We asked the subjects whether
the two topics match (“represent the same meaningful
concept”), partially match, or do not match (“repre-
sent different concepts or meaningless concepts”). We
conducted our study using Amazon Mechanical Turk.
We included five topical pairs in each task, posted 200
tasks with a US$0.25 reward per task in December
2012, and received 1,000 ratings for 167 topical pairs.

3.3. Evaluating Topical Similarity Measures

We evaluated how well similarity measures predict hu-
man judgment in terms of precision and recall. For
each topical pair, we assign it a rating of {1, 0.5, 0} for
each {match, partial match, no match} response, and
consider a pair as matching if it has an average rating
above 0.5. We computed the similarity between topics
using four measures. Cosine, Spearman rank coeffi-
cient, and KL-divergence are three common similarity
measures. We also introduce a rescaled dot product to
improve upon cosine (Table 1).
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Figure 3. Precision and recall. Predicting human judgment
of topic matches using topical similarity measures.

Precision-recall scores in Figure 3 compare user-
identified matches to the ordering of topical pairs in-
duced by the similarity measures. Our rescaled dot
product achieved the highest AUC, F1, F0.5, and F2
scores. We found that KL-divergence did a poor job
of predicting human judgment; topical pairs ranked in
the 90th percentile (among the 10% of most divergent
pairs) still contained matches. Spearman rank correla-
tion was concentrated in a narrow range (−0.04, 0.16)
for 96% of our data points. We observed that L2 nor-
malization in the cosine calculation was largely inef-
fective when applied to (L1 normalized) probability
distributions. Instead, given two word distributions
we rescaled their dot product to the range of mini-
mum and maximum possible similarities, and found
that this outperformed the other measures.

3.4. Mapping Similarity Scores to Likelihoods

While the rescaled dot product is predictive of human
judgment, the actual similarity values deviate from our
definition of matching likelihood. Figure 4 plots pre-
cision against the similarity score at which that pre-
cision is achieved. By definition, topical pairs ranked
above a precision of 0.5 are considered matching by
human judges over 50% of the time. For the rescaled
dot product, this threshold occurs at 0.1485 instead of
the desired value of 0.5.

Linear transformation in log-ratio likelihood space per-
forms well for correcting this deviation. We con-
vert both similarity scores and precision values to log-
ratio likelihoods, and apply linear regression to deter-

Table 1. Rescaled dot product. Given a word probability
distribution X, the scalar xi denotes the probability for

term i in topic X.
−→
X is a vector consisting of all xi ordered

in descending values;
←−
X is a vector of xi in ascending order.

Rescaled Dot Product =
P ·Q− dMin

dMax − dMin

dMax =
−→
P ·
−→
Q

dMin =
−→
P ·
←−
Q

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Similarity Scores
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0.4
0.6
0.8
1.0
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Tableau Data Engine Error: 4: The handle is invalid. - (GetFileSizeEx)Handle: 000000000000019C - Path: Z:\SurveyAnalysis\sim-transform-20130114\output\all-measures.tde Min Pages: 1Unable to calculate the filter for the field 'measure'.  The display may not show correct data.Figure 4. Similarity score vs. precision. Topical pairs with
a rescaled dot product score greater than 0.148 were con-
sidered matching by human judges over 50% of the time.

mine optimal mapping coefficients (Table 2). For the
rescaled dot product, the transformed scores deviate
from average user ratings by 0.0650. Transformed co-
sine angles deviate from user ratings by 0.1036. Pro-
vided with sets of reference concepts and latent topics,
we can now populate entries of a correspondence chart
using the transformed rescaled dot product scores.

3.5. Estimating Random Chance of Matching

Matching likelihoods determined from human judg-
ments are rarely exactly zero. As a topic model may
contain hundreds of latent topics, even a small chance
probability of matching can accumulate and bias mis-
alignment scores toward a high number of repeated
concepts or fused topics. To ensure our framework
is robust for large-scale comparisons, we introduce
a method to estimate and remove topical correspon-
dences that can be attributed to random chance.

Given a correspondence matrix, we treat it as a linear
combination of two sources: a definitive matrix whose
entries are either 0 or 1; and a noise matrix represent-
ing some chance probability. We assume that match-
ing likelihoods are randomly drawn from the definitive
matrix (1 − γ) of the time and from the noise matrix
γ of the time, where γ is a noise factor between [0, 1].

Without explicitly specifying the values of the en-
tries in the definitive matrix, we can still construct
P kdefinitive if we know it contains k non-zero values. We
compute the average row and column matching likeli-

Table 2. Transformed similarity score. We fit similarity
scores s to empirically obtained precisions based on lin-
ear regression in log-ratio likelihood space. f denotes the
logit function; f̂ denotes the inverse logit function. The
coefficients are a = 1.567 and b = 2.446 for rescaled dot
product, and are a = 1.970 and b = 4.163 for cosine.

Transformed Similarity Score = f̂ (af(s) + b)
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hoods, and create a noise matrix whose entries equal
p̂s,t = 0.5

∑n
i=1 pi,t/n + 0.5

∑m
j=1 ps,j/m. The action

of sampling from the two source charts produces a

corresponding Pcombined = P
k(1−γ)
definitive ∗ P

γ
noise where ∗

is the convolution operator; mathematical derivations
are provided in the supplementary materials. We com-
pute γ by solving the convex optimization:

argmin
γ

KL(P
k(1−γ)
definitive ∗ P

γ
noise||P )

The optimal γ value represents the estimated amount
of matches that can be attributed to noise. We then
estimate the most likely distribution of topical matches
Pdenoised without the chance matches, by solving the
following constrained optimization:

argmin
Pdenoised

KL(Pdenoised ∗ P γnoise||P )

subject to Pdenoised being a proper probability distri-
bution whose entries sum to 1 and are in the range
[0, 1]. We apply the above process to each row and col-
umn in the correspondence matrix, to obtain Ṗdenoised

and P̈denoised from which we estimate topical misalign-
ment scores as described previously.

4. Reference Concepts

Reference concepts in our diagnostic framework can be
determined from various sources: elicited from domain
experts, derived from available metadata, or based on
the outputs of other topic models. For this work, we fo-
cus on the construction and use of high-quality expert-
authored concepts to demonstrate our framework.

We conducted a survey in which we asked ten expe-
rienced researchers in information visualization (Info-
Vis) to exhaustively enumerate research topics in their
field. Human topical organization can depend on fac-
tors such as expertise (Johnson & Mervis, 1997) where
prior research finds that experts attend to more sub-
tle features and recognize more functionally important
concepts. To ensure quality of our reference concepts,
we designed our survey to meet the following three cri-
teria: (1) admitting only expert participants, (2) elic-
iting an exhaustive instead of partial list of concepts
from each participant, and (3) collecting reference con-
cepts from multiple subjects instead of a single source.

Survey responses consisted of manually-constructed
topics comprising a title, a set of descriptive key-
phrases, and a set of exemplary documents. Respon-
dents authored these topical descriptions using a web-
based interface with a searchable index of all 442 pa-
pers published at IEEE Information Visualization (de-
tails in supplementary materials). We received a total
of 202 reference concepts from the experts.

0 10 20 30 40 50 60 70 80Number of Latent Topics
0.0
0.5
1.0

% of C
oncepts Fused & Repeated

RepeatedResolved
Fused

Resolved/Fused Concepts vs. Number of Latent Topics(alpha=5/N, beta=0.25) fieldTyperepeated-fusedresolved-fusedrepeated-resolvedresolved-resolved

The plot of average of fieldProb for modelN.  Color shows details about fieldType. The data is filtered on model-Type, modelBeta and modelAlphaN. The modelType filter keeps LDA2. The modelBeta filter keeps 0.25. The mod-elAlphaN filter keeps 5. The view is filtered on fieldType and modelN. The fieldType filter keeps repeated-fused,repeated-resolved, resolved-fused and resolved-resolved. The modelN filter includes values less than or equal to80.
Figure 5. Topical alignment. LDA models for N ∈ [1, 80],
α = 5/N , β = 0.25. The y-axis shows the fraction of refer-
ence concepts that have a single matching topic (resolved),
multiple matching topics (repeated) or are subsumed by one
(fused) or multiple fused topics (fused & repeated). These
models uncover up to 75% of the reference concepts, but
coverage increases only marginally for N ≥ 10.

0 10 20 30 40 50 60 70 80Number of Latent Topics
0.0
0.5
1.0

% of C
oncepts Fused & RepeatedFused RepeatedResolved

Resolved/Fused Concepts vs. Number of Latent Topics(alpha=50/N, beta=0.001) fieldTyperepeated-fusedresolved-fusedrepeated-resolvedresolved-resolved

The plot of average of fieldProb for modelN.  Color shows details about fieldType. The data is filtered on model-Type, modelBeta and modelAlphaN. The modelType filter keeps LDA2. The modelBeta filter keeps 0.001. ThemodelAlphaN filter keeps 50. The view is filtered on fieldType and modelN. The fieldType filter keeps repeated-fused, repeated-resolved, resolved-fused and resolved-resolved. The modelN filter includes values less than orequal to 80.
Figure 6. Topical alignment. LDA models for N ∈ [1, 80],
α = 50/N , β = 0.001. This series of models uncovers up
to 40% of the reference concepts. Coverage peaks at N=8.
The proportion of resolved and fused topics remains stable
for N ≥ 15; increasing N produces only more junk topics.

We map survey responses to reference concepts as fol-
lows. For each expert-authored topic, we construct
two term frequency counts: one consisting of provided
title and keyphrase terms, and another consisting of
the terms found in the representative documents. We
perform TF.IDF weighting, normalize, and average the
two distributions to produce a reference concept.

We chose InfoVis because of our familiarity with the
community, which allowed us to contact experts capa-
ble of exhaustively enumerating research topics. The
survey responses, though specific to a domain, consti-
tute a rare and large-scale collection of manual topical
categorization. The dataset provides us with a con-
crete baseline for assessing how machine-generated la-
tent topics correspond to trusted concepts identified
by experts, and enables comparisons with future stud-
ies. We are currently collecting topical categorizations
in other domains and for larger corpora.

5. Applications

All results in this section are based on the InfoVis
corpus. All models are built using Mallet (McCallum,
2013) unless otherwise stated. N denotes the number
of latent topics in a topic model; α and β denote topic
and term smoothing hyperparameters, respectively.
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limitation), and 13 values of β ∈ [0.0001, 1] (horizontal axis). We observe a qualitative shift in topical composition around
β=0.25. For β > 0.25, the models generate fused topics that uncover but do not fully resolve a majority of the reference
concepts as N increases. For β < 0.25, the proportion of resolved and fused topics remain stable regardless of N . Overall,
decreasing β or increasing α leads to a decrease in coverage. See supplementary materials for a more detailed figure.modelBeta0.0001 0.00025 0.0006 0.001 0.0025 0.006 0.01 0.025 0.06 0.1 0.25 0.6 1userA Toolkits
userC Toolkits
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Selectively Resolved fieldTyperepeated-fusedresolved-fusedrepeated-resolvedresolved-resolved

The plot of average of fieldValue for modelN broken down by modelBeta vs. referenceUser and topicLabel.  Color shows details about fieldType. The data is filtered on modelType,which keeps LDA (optimized), LDA, PLDA and Author-Topic. The view is filtered on fieldType, modelN and topicLabel. The fieldType filter has multiple members selected. The mod-elN filter includes values less than or equal to 80. The topicLabel filter keeps Toolkits.Figure 8. Uncovering the toolkit concept. The vertical axis within each subgraph shows the proportion of LDA models,
trained using 10,000 parameter settings, that contained the concept toolkits. We find that the toolkit concept is uncovered
only if β lies within a narrow range of values between [0.06, 0.6]. We also observe that PLDA models (Ramage et al.,
2011) are more likely to uncover this class of topics than LDA models trained with hyperparameter optimization.

5.1. Exploration of Topic Models

We experiment with an exploratory process of topic
model construction, in which users specify reference
concepts a priori and utilize alignment scores to ana-
lyze the parameter space of models. We first examine
the effects of varying N ∈ [1, 80], and then perform an
exhaustive grid search over N , α, and β.

Talley et al. (2011) found that N affects concept res-
olution and the number of poor quality topics. They
arrived at this conclusion only after building a large
number of models and performing an extensive manual
review. In contrast, our framework allows users to map
a large number of models onto predefined concepts and
immediately inspect model qualities. In Figure 5, our
misalignment measures indicate that the number of re-
solved topics peaks at N = 18. While the ratio of fused
topics dips at N = 20, the proportion of fused topics
increases again for N ≥ 30. Trends in Figure 6 suggest
that for a different set of hyperparameters, increasing
N produces only more junk topics.

In Figure 7, we extend the space of models to over
10,000 parameter settings by searching 13 values of
α and β. The set of hyperparameter values are cho-
sen so they center at the default setting (α = 50/N
and β = 0.01) and cover a range across 4 orders of
magnitude. We observe additional qualitative changes
in topic composition, such as the transition between
fused and resolved concepts around β = 0.25.

5.2. Evaluation of Inference Algorithms

We analyze three categories of models to examine the
effectiveness of hyperparameter optimization (Wallach
et al., 2009a) for LDA, and the inclusion of metadata
for author-topic models (Steyvers et al., 2004) and par-
tially labeled LDA (PLDA) (Ramage et al., 2011).

We built 176 LDA models with hyperparameter op-
timization using Mallet (McCallum, 2013) for a grid
of 11 values of N ∈ [5, 80] and 4 initial values for
each of α and β. We manually resolved all author
names in all papers in the InfoVis corpus, and built
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Figure 9. Hyperparameter optimization and inference al-
gorithms. Green lines denote LDA models trained at
β = {1, 0.1, 0.01, 0.001, 0, 0001}. LDA models with hy-
perparameter optimization (red) track with the highest-
performing LDA model for most parameter settings.

10 author-topic models using the Matlab Topic Mod-
eling Toolbox (Steyvers & Griffiths, 2013) by varying
N ∈ [5, 80]. Finally, we built 11 PLDA models using
the Stanford Topic Modeling Toolbox (Ramage, 2013),
without hyperparameter optimization to isolate the ef-
fects of learning from metadata. We trained 10 models
corresponding to concepts identified by each of the 10
experts. We then manually identified 28 concepts pro-
vided by at least 3 experts, and built an additional
PLDA model containing these 28 concepts.

Figure 9 shows the number of resolved concepts for the
best performing model from each category. The graph
also includes the best performing LDA models for five
values of β. We find that hyperparameter optimiza-
tion is often able to select a β value comparable to the
best-performing LDA model among our set of 10,000
from Section 5.1. Both author-topic models and PLDA
without optimization uncover fewer resolved topics.
Qualitatively, we note that author-topic models gen-
erally exhibit a higher proportion of resolved topics
than fused topics. Examining individual concepts, we
find that approximately 10% are uncovered by LDA
only within narrow range of N,α, β values. An exam-
ple of such a topic is toolkit (Figure 8), provided by
eight of our experts. We find that PLDA was able to
consistently recover the toolkit concept.

5.3. Evaluation of Intrinsic Measures

We apply our measures of junk and resolved topics to
assess existing intrinsic measures for topical quality.
We first describe the intrinsic measures under consid-
eration, and then present our comparison results.

Alsumait et al. (2009) proposed three classes of top-
ical significance measures. The authors describe a
latent topic as uninformative if it consists of a uni-
form word distribution (UniformW ), a word distribu-
tion matching the empirical term frequencies in the
corpus (Vacuous), or uniform weights across documents
(Background). The significance of a topic is its distance

from one of these uninformative attributes; the exact
definition of a “distance” was left open by the authors.
For this work, we evaluated six significance measures
based on KL-divergence (UniformW-KL, Vacuous-KL,

Background-KL) and cosine dissimilarity (UniformW-

Cos, Vacuous-Cos, Background-Cos). We also examined
Pearson rank correlation (Vacuous-Cor).1

Newman et al. (2010a) measured topical coherence
based on word co-occurrence in WordNet, Wikipedia
articles, or Google search results. We examined
their two top performing measures: word co-occurrence
in the titles of search engine results2 (BingTitles-10 )

and pointwise mutual information in Wikipedia text
(WikiPMI-10 ). Mimno et al. (2011) measured topical
coherence based on word co-occurrence in the docu-
ment corpus (MimnoCo-10 ). These three coherence
scores examine only the top k most probable words
belonging to a topic. We experimented with various
values up to k ≤ 30, but report only k = 10 which is
representative of the overall results.

We computed the topical significance and coherence
scores for each of the 176 LDA models with hyperpa-
rameter optimization built in Section 5.2. Figure 10
shows the correlation between the Vacuous-KL score
and our junk measure. We observe that a small set
of topics (bottom left) are marked as problematic by
both measures. We also find, however, a large number
of discrepancies (bottom right): junk topics without
a meaningful corresponding expert-identified concept
but marked as significant by Vacuous-KL.

Figure 11 repeats the graph for all ten intrinsic mea-
sures. As a whole, we observe little correlation
across the graphs. Background-KL and Background-Cos

exhibit a similar pattern as Vacuous-KL with some
shared junk topics but a large number of discrepancies.
WikiPMI-10 performs poorly because many domain-
specific terms do not co-occur in Wikipedia articles.
BingTitles-10 can separate topics comprising of func-
tional words but otherwise lacks discriminative power.

We also examined the ranking of topics within each
model. We computed the Spearman rank correlation
between the ranking of topics by the intrinsic scores
and by our junk measure. The median values are
shown in the chart titles in Figure 11. We find low

1Applying Pearson rank correlation to calculate devia-
tions from UniformW or Background leads to mathemati-
cally undefined significance values, due to zero variance in
uniform word and topic distributions. We contacted the
authors, but they were unable to explain or reconstruct
how they computed these measures in their original paper.
By the same reason, the 4-phase weighted combination de-
scribed in the same paper is also ill-defined.

2Google search API was no longer publicly available.
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Figure 10. Topical significance vs. our junk measure. The plot shows topical quality according to Vacuous-KL scores
(horizontal axis; right is significant) and using our junk measure (vertical axis; downward is junk). While the two measures
agree on a small set of problematic topics (“common” at the bottom left), we observe a large number of discrepancies
(“meaningless” at the bottom right) that are considered junk by experts but marked as significant. Color represents how
well a topic is considered resolved and free from misalignments (green for resolved; red otherwise).

Figure 11. Intrinsic measures vs. our junk measure. Within each subgraph, right is significant/coherent and downward is
junk; topical rank correlation score is shown under the subgraph label. Color represents how well a topic is resolved.

levels of correlations, indicating discrepancies between
topics considered meaningful by experts and those
marked significant/coherent by existing measures.

6. Discussion

For many domain-specific tasks, applying topic mod-
eling requires intensive manual processing. In this
paper, we introduce a framework in which analysts
can express their domain knowledge and assess topic
diagnostics. We quantify four types of topical mis-
alignment, and introduce a process to automate the
calculation of topical correspondences. Our technique
enables large-scale assessment of models. Our applica-
tions suggest that diagnostic information can provide
useful insights to both end-users and researchers.

Our long-term research goal is to support a human-
in-the-loop modeling workflow. While recent work has
contributed learning techniques for incorporating user
inputs to aid the construction of domain-specific mod-
els (Hu et al., 2011; Ramage et al., 2011), we believe
empirical studies of human topical organization and

the design of user-facing tools can be equally impor-
tant in supporting effective interactive topic modeling.

For this work, we elicited high-quality expert-authored
concepts for evaluating topic models. In various other
domains, reference concepts may exist but can be of
differing levels of quality or coverage. An open re-
search question is how semi-supervised learning al-
gorithms and automatic measures of topical quality
would perform under noisy or incomplete user inputs.
Our dataset and results provide a benchmark and a
point of comparison for future research in these areas.

Another research question is how topical misalignment
affects a user’s ability to interpret and work with topic
models. Our results suggest that different models pro-
duce different types of misalignment. A better under-
standing may lead to improved detection of problem-
atic latent topics and more informed decisions on how
to match models to analysis tasks. Certain misalign-
ments may be more easily remedied by people; we can
then design interactive diagnostic tools to elicit cor-
rective actions from the users accordingly.



Topic Model Diagnostics: Assessing Domain Relevance via Topical Alignment

References
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