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1. Graphs

Supplementary Figure 2 shows an enlarged version of
Figure 1 in the main paper with additional details in
the caption.

Supplementary Figure 3 shows additional data points
for Figure 7 in the main paper.

2. Expert-Authored Concepts in
Information Visualization

We conducted a survey asking ten experienced infor-
mation visualization (InfoVis) researchers to identify
what they consider to be significant and coherent areas
of research in their field. Participants were asked to
label each area, and describe it with lists of exemplary
terms and documents.

We focused on InfoVis research due to relevance, scope
and familiarity. Analysis of academic publications is
one of the common real-world uses of topic modeling
(Griffiths & Steyvers, 2004). Our familiarity with the
InfoVis community allowed us to contact experts ca-
pable of exhaustively enumerating its research areas.
InfoVis has a single primary conference, simplifying
the construction and analysis of its publications.

Survey recruitment was by invitation only. We con-
tacted 23 researchers (12 past chairs of the IEEE In-
formation Visualization Conference, six faculty mem-
bers, two senior industry researchers, and three PhD
students within a year of graduation) on a rolling ba-

sis over four months from March to June 2012. We
sent out 14 surveys, and received ten completed re-
sults from four past chairs, two faculty members, one
industry researcher, and three PhD students. We ini-
tially limited our survey to only past conference chairs,
and expanded our criteria to established researchers to
enable greater participation.

2.1. Survey Design

We asked participants to describe topics using labels,
terms, and documents that they would use as if they
were communicating with a peer. Representative terms
should exemplify a topic and differentiate the topic
from other areas of research. Terms could be any no-
table techniques, methods, systems, or people; multi-
word phrases were allowed. Representative documents
exemplify the core contributions of a topic. Pilot stud-
ies suggested that citing a paper using freeform text is
time consuming, disruptive to the recall process, and
prone to errors. In response, we limited the representa-
tive papers to those published at IEEE Information Vi-
sualization Conference, and provided a drag-and-drop
interface for associating a paper with a topic. We re-
quested that participants enter ten or more terms and
three or more papers per topic, though fewer responses
were permissible. We asked participants to complete
the survey in a single session if possible.

Conducted using a single webpage (Supplementary
Figure 1), we designed the survey to (1) elicit expert
responses with minimal bias, (2) support recall, (3)
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Supplementary Figure 1: Survey user interface: Participants were provided with blank boxes in a single webpage, and
asked to identify all coherent and significant areas of research in information visualization, in a manner as if communicating
with a peer. An optional panel on the right shows 17 years of IEEE Information Visualization Conference proceedings.

enable accurate data collection, and (4) balance be-
tween maximizing the value of available expert time
and preventing participant exhaustion.

To avoid artificially limiting what they consider to be
the scope of InfoVis, the participants were instructed
to consider work published anywhere when creating
the research topics. Participants were provided with
multiple blank boxes, and asked to enumerate all ar-
eas they consider to be significant. The webpage con-
tained twenty boxes by default, but subjects could add
additional boxes if desired.

In pilot studies, the single most prominent issue was re-
call. Exhaustively identifying all concepts in a domain
purely from memory can be difficult. In response, we
added a panel on the right that contains a list of all 442
papers published at the IEEE Information Visualiza-
tion Conference (1995 to 2011), grouped by year. As
InfoVis is a single track conference, we group papers
within each year by session, so the ordering of sessions
and papers are consistent with the actual conference
program. Participants could browse through the pro-
ceedings or search for specific papers by title, author,
or abstract.

The most scarce resource in conducting the survey was
acquiring available expert time. To maximize the value
of their responses, we chose exemplary words and doc-
uments as the means to express a concept. Labels
are widely used in cognitive psychology (Rosch et al.,
1976) for identifying topics. Based on pilot studies,
the two chosen properties — freeform typing of a list

of terms, and drag-and-drop specification of papers —
minimize input complexity and allow experts to focus
on the construction of topics. We omitted other de-
scriptive attributes, such as summary sentences, which
took pilot participants much longer to enter. We dis-
played twenty default boxes to provide reasonably ex-
haustive coverage of the domain while bounding the
length of the survey. In a preliminary study, two of
the authors exhaustively annotated every document
in the corpus with multiple tags. The overlap between
the two sets of annotations indicated that the domain
was covered by approximately twenty shared topics.

2.2. Survey Data

We received a total of 202 topical responses (maxi-
mum of 22 and minimum of 18 per subject). The par-
ticipants specified an average of 5.71 terms (max 19,
min 1, median 8) and 5.15 documents (max 25, min
1, median 7) per topic. Subjects provided 171 distinct
topic labels and 769 distinct terms. Together, the ex-
perts cited a total of 342 distinct documents (77% of
all papers published at IEEE Information Visualiza-
tion Conference) which we consider to be a reasonable
coverage of the field.

We analyzed timing information for seven participants
who had active internet connections for the full dura-
tion of their survey. The survey webpage automat-
ically saved responses every minute, allowing us to
track changes at that granularity. On average, the
experts spent 91.7 minutes (max 162, min 42) edit-
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ing their responses within a maximum of five sessions.
The amount of editing time suggests that the survey
taxed the experts attention and available contiguous
time.

3. Mathematical Derivation:
Convolution Operator

Given a Bernoulli process {xi}∞i=1,definitive where xi is
the probability of observe a positive outcome for the
i-th event, let P kdefinitive(n) represent the probability
that we observe exactly n positive outcomes among
the following k events {xi}ki=1,definitive.

Similarly, given a Bernoulli process {xi}∞i=1,noise where

xi is the probability of observe a positive outcome for
the i-th event, let P knoise(n) be the probability that we
observe exactly n positive outcomes among the follow-
ing k events {xi}ki=1,noise.

Suppose we construct a new series of Bernoulli pro-
cess {xi}mi=1,combined consisted of m events, by ran-

domly drawing from the two processes {xi}definitive and
{xi}noise. Suppose we draw k events from {xi}definitive

and m− k events from {xi}noise.

Let Pcombined(n) be the probability that we observe
exactly n positive outcomes among its m events. I
claim that: Pcombined = P kdefinitive ∗ P

m−k
noise

3.1. Sampling from Two Bernoulli Processes

Since events in a Bernoulli process are considered inde-
pendent, we can re-arrange the order of events without
affecting the expected number of positive outcomes.

3.2. Sampling from Definitive vs. Noise Charts

When computing the expected number of positive out-
comes for Pcombined, the combined definitive and noise
charts, we re-arrange the series {xi}combined so that
the k definitive events occur first and the m− k noise
events later.

3.3. Convolution

Let {xi} be a Bernoulli event where xi is the proba-
bility of observing a positive outcome for event i. We
construct a 2-vector Xi = [1− xi, xi]T .

Let P k be the multinomial distribution represent-
ing the observed cumulative outcome of the first k
events where P k(n) is the probability that we observed
exactly n positive outcomes for the first k events.
We represent P k as an (k + 1)-vector with entries
[P k(0), P k(1), · · · , P k(k)]T .

We prove by induction, that P k+1 = P k ∗Xk+1.

As the base case:

P 0 = [1]T

P 1 = X1 = 1 ∗X1 = P 0 ∗X1

For the inductive step:

P k+1
i = P ki−1 · xk+1 + P ki · (1− xk+1)

= P ki−1 ·Xk+1
1 + P ki ·Xk+1

0

=

1∑
t=0

P ki−t ·Xk+1
t

P k+1 = P k ∗Xk+1

3.4. Associativity

Let P j,k represent the observed cumulative outcome
for events j to k (inclusive). Since convolution is as-
sociative:

P 0,m = P 0,k ∗Xk+1 ∗Xk+2 ∗ · · · ∗Xn

= P 0,k ∗ P k+1,m

It follows that the expected topical-concept matches
for the combined chart is:

Pcombined = Pdefinitive ∗ Pnoise

4. Noise Estimation

4.1. Setting k

By construction, the distributions P and Pnoise have
the same mean. We arbitrarily choose k so that
Pdefinitive has the same mean as P .

For non-integer values of k, Pdefinitive is zero every-
where except for two values, Pdefinitive(bkc) = dke − k
and Pdefinitive(dke) = k − bkc.

4.2. Solving for γ

Discrete convolution can be convert to matrix multipli-
cation. We convert the “convolute by Pnoise” operation

into a Toeplitz matrix A = Anoise. Let P ′ = P
k(1−γ)
definitive.

argmin
γ

KL(P ′ ∗ P γnoise||P )

argmin
γ

KL(AP ′||P )

argmin
γ

P ′TAT log(AP ′)− P ′TAT log(P )

We apply gradient descent to determine the optimal
value γ that minimizes the (convex) objective function.
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5. Denoise Computation

5.1. Solving for Pdenoised

Let P ′′ = Pdenoised.

argmin
P ′′

KL(P ′′ ∗ Pnoise||P )

argmin
P ′′

KL(AP ′′||P )

argmin
P ′′

P ′′TAT log(AP ′′)− P ′′TAT log(P )

subject to ∑
i

P ′′i = 1

0 ≤ P ′′i ≤ 1 for all i

The above is an optimization involving both equal-
ity and inequality constraints. We apply sequential
quadratic programming to solve to P ′′ using three
mathematical components: barrier method to remove
inequality constraints, first-order trust region to solve
for equality-constrained minimizations, and heuristics
to obtain a good initial solution.

5.2. Outer Iteration: Barrier Method

We apply barrier method to remove the inequality con-
straints, in order to reduce complexity and speed up
computation. We modify the objective function as the
following.

P ′′TAT log(AP ′′)− P ′′TAT log(P ) + e−αP
′′

+ eα(1+P ′′)

We perform 50 iterations and gradually increase α
from 500 to 50000.

5.3. Inner Iteration: Trust Region

Within each iteration of the barrier method, we ap-
plied first-order trust region solve for an optimal solu-
tion P ′′.

5.4. Initial Solution

To ensure better convergence, we solve the linear sys-
tem of equations AP ′′ = P , to obtain an initial so-
lution P ′′(0). We clamp the values of P ′′(0) to within
[0, 1] and L1 normalize the vector to ensure it’s a valid
probability distribution. We use the resulting vector
as the initial solution for the aforementioned barrier
method/trust region solver.
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Supplementary Figure 2: Correspondence chart between latent topics and reference concepts. The set of 25 latent
topics are generated by a LDA model (N = 25, α = 0.01, β = 0.01) and displayed along the columns. The set of 18
reference concepts are given by one of the InfoVis experts and displayed along the rows. Area of circles represents
the matching likelihood between topic-concept pairs; likelihoods exceeding random chance are marked with a
bold border. Bars on the right show the probability that a concept is missing (grey), resolved (blue), or repeated
(light blue). Bars on the bottom show the probability that a topic is junk (grey), resolved (orange), or fused
(light orange). This visual analysis tool is available online at: http://vis.stanford.edu/topic-diagnostics

http://vis.stanford.edu/topic-diagnostics


Topic Model Diagnostics: Assessing Domain Relevance via Topical Alignment

0.0001 0.00025 0.0006 0.001 0.0025 0.006 0.01 0.025 0.06 0.1 0.25 0.6 1

0.5
1.25

3
5

12.5
30

50
125

300
500

1250
3000

5000

Alpha vs Beta fieldTyperepeated-fusedresolved-fusedrepeated-resolvedresolved-resolved

The plot of average of fieldProb for modelN broken down by modelBeta vs. modelAlphaN.  Color shows details about fieldType. The data is filtered on modelType, which keeps LDA2. The view is filtered on fieldTypeand modelN. The fieldType filter keeps repeated-fused, repeated-resolved, resolved-fused and resolved-resolved. The modelN filter includes values less than or equal to 80.
Supplementary Figure 3: Exhaustive grid search. Topical alignment for LDA models over a grid of parame-
ter/hyperparameter settings: N ∈ [1, 80] (horizontal axis across subgraphs), 13 values of α ∈ [0.5/N, 5000/N ]
(vertical axis), and 13 values of β ∈ [0.0001, 1] (horizontal axis). We observe a qualitative shift in topical com-
position around β=0.25. For β > 0.25, the models generate fused topics that uncover but do not fully resolve
a majority of the reference concepts as N increases. For β < 0.25, the proportion of resolved and fused topics
remain stable regardless of N . Overall, decreasing β or increasing α leads to a decrease in coverage.


