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Abstract

Recently Burger et al. (2012) and Xie et al.
(2012) proposed to use a denoising autoen-
coder (DAE) for denoising noisy images.
They showed that a plain, deep DAE can
denoise noisy images as well as the conven-
tional methods such as BM3D and KSVD.
Both of them approached image denoising by
denoising small, image patches of a larger im-
age and combining them to form a clean im-
age. In this setting, it is usual to use the
encoder of the DAE to obtain the latent rep-
resentation and subsequently apply the de-
coder to get the clean patch. We propose
that a simple sparsification of the latent rep-
resentation found by the encoder improves
denoising performance, both when the DAE
was trained with and without sparsity regu-
larization. The experiments confirm that the
proposed sparsification indeed helps both de-
noising a small image patch and denoising a
larger image consisting of those patches. Fur-
thermore, it is found out that the proposed
method improves even classification perfor-
mance when test samples are corrupted with
noise.

1. Introduction

Many latent variable models can be cast as a model
that learns an encoder and a decoder, either explic-
itly or implicitly (Ranzato et al., 2007). The encoder
maps a given data sample to a latent space, and the
decoder decodes the latent representation into the data
space. For instance, principal component analysis
(PCA) learns a linear encoder and decoder so that
the L2 error between a given sample and the sample
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reconstructed by applying the encoder and decoder se-
quentially is minimal (see, e.g., Bishop, 2006).

Often these models are trained to minimize the L2

reconstruction error together with a sparsity regular-
ization. The sparsity regularization ensures that the
number of non-zero components in the latent represen-
tation given a sample is small. Sparse coding (see, e.g.,
Olshausen & Field, 1996) is one example that aims to
minimize the reconstruction error while regularizing
the sparsity of (overcomplete) latent representations.

One popular application of an encoder-decoder model
with sparsity regularization has been image denoising.
Elad & Aharon (2006) showed that a clean image can
be constructed by denoising and combining small im-
age patches of the noisy, original image, where sparse
coding is used for denoising. Hyvärinen et al. (1999)
denoised a large image by explicitly sparsifying the
latent representation of each small image patch ex-
tracted from the larger image with a shrinkage nonlin-
earity.

More recently, Xie et al. (2012) proposed to use, yet,
another encoder-decoder model called sparse denois-
ing autoencoders (spDAE) for image denoising. An
spDAE is a variant of a denoising autoencoder (DAE)
proposed by Vincent et al. (2010) that uses a sparsity
regularization during training. It was shown that the
spDAE is also effective in denoising noisy images, es-
pecially when the number of hidden layers is larger
than one.

These two approaches, sparse coding and denoising
autoencoder, have two important differences. Firstly,
DAEs, including an spDAE, have a parameterized en-
coder while sparse coding relies on optimization to ob-
tain a latent representation. Secondly, the latent rep-
resentation encoded by a DAE is not necessarily sparse
in a strict sense due to the usual use of smooth, sat-
urating nonlinearity functions. Sparse coding, on the
other hand, finds a truly sparse latent representation.

Based on these observations, we claim that faster and



Simple Sparsification Improves Sparse Denoising Autoencoders in Image Denoising

improved denoising can be done by explicitly sparsi-
fying the latent representation found by spDAEs. We
explain an intuition behind the claim by considering
an spDAE as a previously mentioned encoder-decoder
model with, potentially multi-layered, nonlinear map-
pings between data space and (sparse) latent space.
We, then, propose a simple sparsification that explic-
itly sparsifies the latent representation of an spDAE.

We empirically confirm that the proposed simple spar-
sification leads to better performance by denoising var-
ious types of images corrupted with noise using sp-
DAEs having a number of different structures. Fur-
thermore, we show that the proposed sparsification
also improves the discriminative properties of the la-
tent representations obtained by spDAEs.

2. Sparse Denoising Autoencoders and

Simple Sparsification

2.1. Sparse Denoising Autoencoder

We begin with a single-layer spDAE which is a special
form of multi-layer perceptron network with a single
hidden layer (Vincent et al., 2010). An spDAE tries
to learn a network that reconstructs an input vector
optimally by minimizing the following cost function:

N
∑

n=1

∥

∥

∥
g ◦ f

(

η(x(n))
)

− x(n)
∥

∥

∥

2

+ λΩ(W, {x(n)}), (1)

where Ω(W, {x(n)}) is a sparsity regularizer, and

f(x) = φ(W⊤x) and g(h) = Wh

are, respectively, an encoder and decoder with a
component-wise nonlinearity function φ. η explicitly
adds noise to an input sample x(n). W is a matrix
of the weights between the input layer and the hidden
layer and is shared by the encoder and decoder. For
notational simplicity, we omit biases to all units.

2.2. Non-linear Mapping with Constrained

Range

If we assume [0, 1] hidden units with a sigmoid acti-
vation function φ(x) = 1

1+exp(−x) , the encoder f is a

non-linear function that maps a sample x in a data
space1 P ⊆ Rp to a potentially higher-dimensional, la-
tent space Q ⊆ [0, 1]

q
, where p and q are the number

1 For an spDAE that explicitly adds white Gaussian
noise via η when learning the parameters, the data space
P is defined as

P =
{

x ∈ R
p
∣

∣

∣
∃x(n) ∈ D, ‖x− x

(n)‖22 ≤ ǫ
}

,

of visible and hidden units, respectively. The decoder
does exactly the opposite with Q and P as its domain
and range, respectively2. In this setting, the sparsity
regularizer Ω defines, or restricts, the range Q of the
learned encoder f .

We should note that, for any sample x ∈ Rp, the sam-
ple does not belong to P, if f(x) /∈ Q. It is further
expected that any sample that was corrupted by error
smaller than that injected by η is still encoded to a
hidden code in Q, but any highly noisy or corrupted
sample x maps through the encoder f to a region out-
side Q, albeit not necessarily.

Let us consider a specific case of regularizing the aver-
age hidden activation to a predefined sparsity hyper-
parameter ρ (Lee et al., 2008). In this case,

Ω(W, {x(n)}) =
1

2
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∥

∥

∥

∥

1

N

N
∑

n=1

f(x(n))− ρ1

∥

∥

∥

∥

∥

2

2

. (2)

Assuming that the model consists of stochastic binary
hidden units with their probabilities given by the en-
coder f , we can see that f(x) will have, on average,
ρ × q components active while all others are inactive.
If ρ is set close to 0, a sparse latent representation will
be produced by the encoder f .

This leads to an encoder f with a (approximate) range,
conditioned on the data set P,

Q ≈
{

h = f(x)
∣

∣

∣
x ∈ P, ‖Ex∈P [hj ]− ρ‖

2
2 = 0

}

(3)

with the amount of error controlled by the regulariza-
tion constant λ, where hj is the j-th component of
h.

In this case, f(x) of any sample x that is close to one
of training samples will fall in Q. In other words, the
average activation of f(x) will be around the prede-
fined ρ. If the average activation of f(x) is either too
smaller or too larger than ρ, it can be suspected that
the sample x is either not of the same type as training
samples or corrupted with high level of noise.

2.3. Simple Sparsification

Obviously, when the latent representation f(x̃) of a
corrupted sample x̃ is found to be outsideQ, we cannot

where D =
{

x(n)
}N

n=1
is a training set and ǫ is decided by

the variance of white Gaussian noise explicitly added by
η(·).

2Note that the decoder g is a linear mapping in the
case of an spDAE with a single hidden layer. However,
when an spDAE has more than one hidden layer, g becomes
nonlinear as described in Section 2.4.
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(a) Textures (b) Aerials (c) Miscellaneous

Figure 1. Sample images from the test image sets

expect the decoder g to correctly reconstruct the clean
sample, since g was trained to map from only Q to P.
It is, hence, not desirable to simply apply the encoder
and decoder sequentially to denoise an input sample.

Instead, it must be checked whether h = f(x̃) belongs
to Q before the decoder g is applied. If h /∈ Q, one
must project it onto Q such that the decoder will cor-
rectly map h to a clean, denoised sample. As Q is
defined by the sparsity of its data points, another way
to put it is that h needs to be sparsified.

We define a sparsification R by

R(h) = argmin
q∈Q

d(h− q), (4)

where d(·, ·) is a suitable distance metric.

Simply put, R projects h ∈ [0, 1]
q
onto Q. Depending

on a type of a sparsity regularizer and a target appli-
cation, one must choose a suitable d, and the choice
may have impact on the denoising performance.

In the case of the previously described sparsity regular-
izer (2), we can, for instance, use a variant of orthogo-
nal matching pursuit which stops when the number of
zero hidden units reaches the target sparsity ρ̄ or the
average activation reaches 1 − ρ̄. However, this type
of approaches using optimization will be prohibitively
expensive, especially for image denoising task which
requires evaluating the encoder tens and hundreds of
thousands times per image.

Alternatively, we can define R(h) to decrease each
component of h so that the average activation is closer
to 1− ρ̄. We call this approach a simple sparsification,
and this effectively sets small components to zero by

h← max

(

h−max

(

1

q
‖h‖1 − (1− ρ̄) , 0

)

, 0

)

, (5)

where max applies to each component.

Note that it does not attempt to increase the com-
ponents of h even if the average activation of h is
smaller than 1 − ρ̄. This is justified by the fact that
noise is likely to encourage more hidden units to re-
spond meaninglessly, assuming white Gaussian addi-

tive noise. Fig. 2(c) shows that the average activation
of hidden units increases as noise does.

It might seem obvious to choose the target sparsity ρ̄
to be 1− ρ of which ρ was used when training the sp-
DAE. Another possibility is to estimate ρ̄ to minimize
the reconstruction error of noisy training samples cor-
rupted with a predefined level and type of noise. The
latter approach can be useful when the spDAE was not
trained with the sparsity regularization.

2.4. Deep Denoising Autoencoders

Unfortunately, applying the sparsity regularizer, for
instance, the one in (2), is not computationally effi-
cient in DAEs with multiple hidden layers. Hence, it
has been common to use the sparsity regularizer only
during pretraining (see, e.g., Xie et al., 2012).

Once the weights of a deep DAE are initialized by
pretraining, this works as regularization that con-
trols the sparsity of the hidden activations. Af-
ter pretraining, the whole deep DAE can be fur-
ther finetuned by stochastic backpropagation algo-
rithm (Rumelhart et al., 1986).

Considering a deep DAE with 2L−1 hidden layers, we
have an encoder

f(x) = φ
(

W(L−1)φ
(

W(L−2) · · ·φ
(

W(1)x
)

· · ·
))

(6)

that maps from P to Q, and a decoder

g(h) = W(1)⊤φ
(

W(2)⊤ · · ·φ
(

W(L)⊤f(x)
)

· · ·
)

(7)

that reversely maps from Q to P.

In this case, it is not obvious at which stage the pro-
posed sparsification should apply. For instance, the
simple sparsification can be used at each layer of the
encoder, the decoder or both of them. On the other
hands, if all hidden layers in the encoder are consid-
ered as a single non-linear mapping function in whole,
the simple sparsification should be applied at the bot-
tleneck layer.

In this paper, we obtain the denoised sample by only
applying the simple sparsification at the bottleneck
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layer:

x̂ = g(R(f(x))),

where f and g are defined by Eq. (6) and Eq. (7), re-
spectively. It is, however, left for future to investigate
other possibilities.

2.5. Related Approaches

2.5.1. Sparse Coding

Assuming a linear generative model, sparse coding
(see, e.g., Olshausen & Field, 1996) tries to find a
(overcomplete) dictionary of features W and a set of
sparse codes {h(n)}Nn=1 given a set of training samples
{x(n)}Nn=1. This is achieved by minimizing the follow-
ing cost:

N
∑

n=1

∥

∥

∥
x(n) −Wh(n)

∥

∥

∥

2

2
+ λΩ(W, {h(n)}),

where Ω is, again, a sparsity regularizer. Although
this is closely related to the cost function of spDAEs
in Eq. (1), there is no explicit encoder in sparse coding,
and encoding has to be done via optimization.

If one makes the model more precise by requiring the
sparsity of the sparse code h in a form ‖h‖0 ≤ L
for some integer L ≪ q, then, given a sample x and
the weights W, encoding by optimization finds the la-
tent representation h approximately inside Q = {h |
‖h‖0 ≤ L} (Elad & Aharon, 2006). This is contrast to
the spDAEs which do not guarantee that the encoded
representation, without any explicit sparsification, re-
sides in Q.

This optimization-based approach of sparse coding
and the proposed sparsification combined with an sp-
DAE are two opposite approaches in finding a sparse
latent representation. The former, for instance, based
on the pursuit algorithms (see, e.g., (Chen et al.,
2001)), starts from the center of Q (all zero hidden
units) and sequentially finds the non-zero hidden units
that decrease the reconstruction error, until a stopping
criterion is met. The latter, proposed method, first
encodes a given sample to a superset [0, 1]

q
of Q, and

then, projects the found latent representation onto Q.

2.5.2. Shrinkage Nonlinearity

In a similar context of sparse coding, Hyvärinen (1999)
proposed to find a dictionary by independent compo-
nent analysis (ICA) and use a shrinkage nonlinearity
function to find a sparse code. This approach makes
obtaining sparse code computationally less demand-
ing compared to the optimization-based encoding in
the conventional sparse coding.

This approach is closely related to the proposed sim-
ple sparsifiation. Hyvärinen (1999), for instance, sug-
gested the following shrinkage nonlinear function in
the case of each latent component following a super-
Gaussian distribution:

s(h) =
1

1 + σ2a
sign(h)max(0, |h| − bσ2),

where a and b are parameters to be estimated, σ2 is
a noise variance, and h is a latent component. If we
assume a unit noise variance (σ2 = 1) and a = 0, it
becomes

s(h) = sign(h)max(0, |h| − b).

If we set b to ‖h‖1− (1− ρ̄) from Eq. (5), it is easy to
see that applying the shrinkage nonlinearity s to each
latent component is equivalent to the proposed simple
sparsification. Both of them reduce the absolute value
of each latent component.

Compared to these approaches based on sparse cod-
ing, an spDAE, using the simple sparsification, has an
advantage that it is natural to extend the model into
a deeper model. This allows us to build a deep sparse
generative model with a fast inference procedure, un-
like the conventional sparse coding models.

3. Image Denoising

A noisy large image can be denoised by denoising small
patches of the image and combining them together
(see, e.g., Hyvärinen, 1999; Elad & Aharon, 2006). Let
us define a set of N binary matrices Dn ∈ Rp×d that
extract a set of small image patches given a large,
whole image x ∈ Rd, where d = wh is the product
of the width w and the height h p is the size of image
patches (e.g., p = 64 if the size of an image patch is
8× 8). Then, the denoised image is constructed by

x̃ =

(

N
∑

n=1

D⊤
n rθ(Dnx)

)

⊘

(

N
∑

n=1

D⊤
nDn1

)

, (8)

where ⊘ is a element-wise division and 1 is a vector
of ones. rθ(·) is an image denoising function, parame-
terized by θ, that denoises N image patches extracted
from the input image x.

Eq. (8) essentially extracts and denoises image patches
from the input image. Then, it combines them by
taking an average of those overlapping pixels. For a
computational reason, it is usual to use overlapping
image patches separated by a few pixels rather than
all possible patches.

Recently, Burger et al. (2012), Xie et al. (2012) and
Cho (2013) proposed to utilize a denoising autoen-
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Figure 2. (a) Reconstruction error of image patches with varying target sparsity ρ̄. (b) Improvement of reconstruction
error of image patches achieved by using the simple sparsification with fixed ρ̄ = 0.9. (c) Average hidden activations given
a set of noisy image patches with varying noise levels. A solid line and dashed line denote reconstruction errors obtained
by the spDAE with and without the explicit sparsification, respectively. Image patches were randomly collected from the
test sets and corrupted with white Gaussian additive noise of standard deviation 0.1. All errors were obtained using a
single-layer DAE trained on 8× 8 image patches with and without the simple sparsification.

coder (DAE) in place of rθ(·) to perform image denois-
ing. It is straightforward to denoise an image patch
with a DAE, or in our case, spDAE. Given a noisy
image patch, we first obtain a latent representation
by applying the encoder f . Then, the decoder g will
reconstruct a clean patch from the hidden representa-
tion.

The proposed sparsification R can be plugged in be-
fore the decoder is applied, that is, the denoised patch
x̂ = g (R (f (x))). This applies to spDAEs with any
number of hidden layers.

4. Experiments

Following the approach used by Cho (2013), we used
the images from three separate sets, textures, aeri-
als and miscellaneous, from the USC-SIPI Image
Database3 as test images. Fig. 1 presents six sample
images from the three image sets.

All images were converted to grayscale by averaging
three color channels into a single grayscale pixel. Also,
each pixel of the images was normalized into [0, 1] in-
stead of the original [0, 255].

Although we mainly focused on a single-layer spDAE
in this paper, we trained spDAEs with one, two and
four hidden layers on images patches randomly col-
lected from CIFAR-10 dataset (Krizhevsky, 2009) to
see the effect of the simple sparsification on deeper
models. The size of each hidden layer was fixed to a

3http://sipi.usc.edu/database/

constant multiple of the size of a visible layer4. We use
the shorthand notations DAE, DAE(2) and DAE(4)
for denoting the trained DAEs with one, two and four
hidden layers, respectively.

A single-layer spDAE was trained with the sparsity
regularizer given in Eq. (2) with ρ = 0.1. Each layer
of all deep spDAEs with more than one hidden layers
were pretrained as a single-layer spDAE with, again,
ρ set to 0.1. We used 1− ρ for the target sparsity ρ̄ of
the simple sparsification.

Unlike in (Burger et al., 2012) and (Xie et al., 2012),
all the models were trained in a completely blind way.
In other words, no prior knowledge about the level or
type of noise in the test images was used. Regardless
of the types or levels of noise injected in the test im-
ages, each model was trained by adding white Gaus-
sian noise with 0.1 standard deviation and dropping
10% of input pixels at each stochastic gradient update.

4.1. Image Patch Denoising

We have extracted from each image of the test set 50
random image patches. White Gaussian additive noise
of standard deviation 0.1 was added to each pixel, and
it was denoised by the trained single-layer spDAE with
the simple sparsification using the heuristic introduced
in Section 2.3. To see the effect of the simple sparsifi-
cation, we varied ρ̄ from 0.7 to 1.

Fig. 2 (a) shows the reconstruction errors obtained by

4We used 5 as suggested by Xie et al. (2012). For in-
stance, the models trained on 8×8 pathces have 8×8×5 =
320 units per hidden layer.
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Figure 3. MSEs obtained with and without the explicit sparsification. The top and bottom rows show the denoising
performance on the test images corrupted with white Gaussian additive noise and salt-and-pepper noise, respectively, of
different noise levels σ. All images were denoised with the models trained on 8× 8 patches. Lower is better.

the trained single-layer spDAE using the simple spar-
sification with varying target sparsities ρ̄. The dashed-
line shows the reconstruction error obtained without
the simple sparsification. It is clear that lower recon-
struction error could be achieved with the simple spar-
sification around 1 − ρ = 0.9. We could also observe
similar trend with the deeper spDAEs and the GRBM.

Furthermore, in Fig. 2 (b), we can see that the perfor-
mance improvement by the simple sparsification grows
as the level of noise increases. This suggests that the
simple sparsification may help denoising an image es-
pecially when the image is highly corrupted.

4.2. Large Image Denoising

We tested two types of noise which were white Gaus-
sian additive noise and salt-and-pepper noise. Three
levels of noise were tested; 0.1, 0.2 and 0.4. In the
case of white Gaussian noise, those levels correspond
to standard deviations, while they correspond to noisy
pixel probabilities with salt-and-pepper noise. The de-
noising performance was measured by the reconstruc-
tion error between the denoised image from the orig-
inal, clean image. L2-norm of the difference between
them was used as the reconstruction error.

For the large, noisy test images, we first applied
Wiener filtering with 3× 3 neighborhood, as was done
by Cho (2013). Subsequently, we denoised the im-
ages with the trained spDAEs following Eq. (8). We
used overlapping image patches extracted every second
pixel.

In Fig. 3, we can see the effect of the simple sparsi-
fication. It is clear that the proposed sparsification

improves the performance of the spDAEs regardless of
the level of noise. However, the improvement is more
visible when the amount of noise is high (0.2 or 0.4).

This result was expected, as each image patch from
those images corrupted with low level of noise are likely
to be encoded into a latent representation that (ap-
proximately) resides in Q. Hence, the simple sparsi-
fication will not alter it much, giving a performance
similar to the one obtained without the simple sparsi-
fication. On the other hand, when the level of noise is
high, the latent representation is likely to be outside
Q, and the simple sparsification correctly projects it
onto Q to make the decoder behave better, resulting
in superior performance.

The performance improvement was especially appar-
ent with the spDAEs with the smaller number of hid-
den layers (one or two). The improvement decreased
as the number of hidden layers increased. This might
be due to the fact that the deep spDAEs were not fine-
tuned with the sparsity regularizer, which made them
encode a given sample into a less sparse latent repre-
sentation.

4.3. Non-Regularized Denoising Autoencoders

If we consider the case where ρ̄ is chosen to mini-
mize the reconstruction error of noisy training sam-
ples, it is possible to consider the case where the
DAEs were not trained with the sparsity regulariza-
tion. The non-regularized DAEs are further inter-
esting, as Burger et al. (2012) showed that the non-
regularized ones perform comparably to, or better
than, the conventional state-of-the-art denoising meth-
ods.
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Figure 4. MSEs obtained with and without the explicit sparsification using the non-regularized DAEs. The top and
bottom rows show the denoising performance on the test images corrupted with white Gaussian additive noise and salt-
and-pepper noise, respectively, of different noise levels σ. All images were denoised with the models trained on 8 × 8
patches. Lower is better.

4 8 16
DAE 0.83 0.84 0.83
DAE(2) 0.75 0.73 0.74
DAE(4) 0.81 0.75 0.78

Table 1. The estimated ρ̄ for each non-regularized denois-
ing autoencoders trained on square image patches of width
4, 8 and 16.

Hence, we have run the same set of experiments us-
ing the non-regularized DAEs. The test images were
denoised with the simple sparsification using the esti-
mated ρ̄’s in Tab. 1.

In Fig. 4, we can see that the non-regularized DAEs
also benefit from using the proposed simple sparsifi-
cation when the level of noise is high. However, when
only small amount of noise was injected, in some cases,
the performance degraded with the sparsification.

Interestingly, we observed that the sparse DAEs out-
performed the non-regularized DAEs when no sparsi-
fication was used. When the proposed sparsification
was applied, however, the performance gap between
them decreased. This suggests that the existing de-
noising approach based on non-regularized DAEs, for
instance, used by Burger et al. (2012), may also bene-
fit by simply plugging in the simple sparsification.

4.4. Discriminative Performance

Although we focus mainly on image denoising in this
paper, we have also briefly investigated the potential
improvement in the discriminative performance.

We used MNIST handwritten digits dataset

(LeCun et al., 1998) and trained an spDAE with
two hidden layers. Each layer had 4000 units and was
pretrained with the sparsity regularization.

We trained a support vector machine (SVM) using lib-
svm (Chang & Lin, 2011) with a radial-basis function
(RBF) kernel on the raw pixels of MNIST. As our
interest is in a case where there are only noisy test
samples available, we tried classifying, with the traind
SVM, the noisy test set of MNIST after denoising them
with the trained spDAE. The test set was corrupted
with salt-and-pepper noise.

Additionally, we checked the effect of the simple spar-
sification on the discriminative properties of the la-
tent representation. Two SVMs, again with the RBF
kernel, were separately trained on the original latent
representations and explicitly sparsified ones, respec-
tively.

The robustness of the classification performance to the
level of noise was measured by

mp =
E0
Ep

,

where Ep is the classification error with the noise level
p. The classifier with mp dropping more slowly can be
considered more robust to noise in the test samples.

In Table 2, we can clearly see that the proposed spar-
sification makes the classifier more robust to noise in
the test samples. This is especially apparent as the
level of noise increased. This experiment, albeit brief
and simple, suggests that the proposed simple sparsi-
fication improves even the discriminative property of
the latent representations.
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Noise Level p 0.000 0.100 0.200 0.300 0.400

No mp 1 0.861 0.565 0.217 0.106
Sparsification Ep 0.032 0.037 0.057 0.148 0.304

Sparsification
mp 1 0.873 0.615 0.252 0.117
Ep 0.035 0.039 0.056 0.137 0.295

(a)

p 0.000 0.100 0.200 0.300 0.400

mp 1 0.393 0.071 0.035 0.025
Ep 0.015 0.039 0.216 0.438 0.623
mp 1 0.443 0.083 0.039 0.026
Ep 0.016 0.035 0.189 0.399 0.591

(b)

Table 2. The robustness of the classification performance, measured by mp, and the classification error Ep, with varying
noise levels. (a) The SVM was applied to the raw pixels denoised by the spDAE with and without the simple sparsifi-
cation. (b) The SVMs were trained on the latent representations obtained by the spDAE with and without the simple
sparsification.

This is interesting to notice that the classifier benefited
from the feature extraction by the spDAE only when
low level of noise (0 or 0.1) was injected to the test sam-
ples. When, the amount of noise was larger, we were
able to see that the classification using the denoised
raw pixels, especially with the proposed sparsification,
outperformed that using the latent representations.

5. Discussion and Conclusion

A sparse denoising autoencoder (spDAE) learns an en-
coder that maps from a data space, defined by train-
ing samples corrupted with explicit noise, to a sparse
latent space, defined by the sparsity regularization.
A decoder of the spDAE, then, maps back from the
sparse latent space to the data space. As its name
suggests, an spDAE encodes a given noisy sample into
a sparse latent representation and decodes the found
representation into a denoised sample.

However, we noticed that the learned non-linear map-
pings, both encoder and decoder, are not well defined
when a given sample is highly corrupted. In other
words, if a given sample does not belong to the same
data space, then the spDAE is not expected to denoise
it well. Under this observation, we have proposed that
explicit sparsification is necessary after the encoder is
applied. For an spDAE trained with a sparsity regular-
ization given in Eq. (2), a simple sparsification which
makes the average latent activation closer to the target
sparsity ρ̄ was proposed.

Only very recently have deep neural networks, includ-
ing denoising autoencoders, been applied to image de-
noising by Burger et al. (2012) and Xie et al. (2012).
They all showed that these deep neural networks per-
form comparably to, or better than, conventional de-
noising methods. In this context, we have empirically
shown that the proposed simple sparsification further
improves denoising performance of deep neural net-
works. In addition to image denoising, we were able
to see that the proposed sparsification could be used
to improve even the discriminative performance when
test samples were noisy.

In future, different sparsification methods should be
sought for other available sparsity regularizers. Also,
in the context of denoising, another type of datasets,
such as speech, should be investigated in future.
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