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Abstract

We consider a similarity-score based
paradigm to address scenarios where either
the class labels are only partially revealed
during learning, or the training and testing
data are drawn from heterogeneous sources.
The learning problem is subsequently for-
mulated as optimization over a bilinear
form of fixed rank. Our paradigm bears
similarity to metric learning, where the
major difference lies in its aim of learning
a rectangular similarity matrix, instead of
a proper metric. We tackle this problem
in a Riemannian optimization framework.
In particular, we consider its applications
in pairwise-based action recognition, and
cross-domain image-based object recogni-
tion. In both applications, the proposed
algorithm produces competitive performance
on respective benchmark datasets.

1. Introduction

We consider a similarity-score based learning problem:
Denote by x̂ ∈ Rn̂ and x ∈ Rn instances from two
different sources, predict whether a pair of unseen in-
stances (x̂, x) belongs to the same class. The problem
is key to many seemingly-unrelated real-life applica-
tions, where we are asked to make predictions given
access to either heterogeneous sources that differ from
training to testing phases, or provided only incomplete
knowledge of the set of possible class labels, or even
both. In particular, they include the applications of
domain adaptation as well as pair-matching.

In domain adaptation (Pan & Yang, 2010), data from
the source and target domains are often very different,
and might reside in separate spaces. The closest re-
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search here might be the work of (Saenko et al., 2010;
Kulis et al., 2011): The Symm method of (Saenko
et al., 2010) is developed based on metric learning with
cross-domain constraints. Symm aims to learn a sym-
metric transformation to project the source and target
domain data into a domain-invariant space. The ARC-
t method of (Kulis et al., 2011) extends this idea fur-
ther by instead learning a asymmetric transformation
to map the target domain data to the source domain.
Designated to work with square similarity matrices,
it remains cumbersome to address the n̂ 6= n scenar-
ios often seen when dealing with heterogeneous data
sources such as sound tracks and videos. The appli-
cations of pair-matching have been raised in e.g. face
or action recognitions (Chen et al., 2005; Kliper-gross
et al., 2012), where there is a practical demand to iden-
tify a new face image or a clip of unseen action, a class
label that does not exist in the training set. Note this
pair-matching application is also referred to as face
verification (Kumar et al., 2009; Yin et al., 2011).

One distinct feature of pairwise similarity learning lies
in its ability to make predictions on novel class labels
not provided in training set. Recently its potential
has drawn increasing attention, ranging from theoreti-
cal studies (Balcan & Blum, 2006; Wang et al., 2009b)
to real-life applications such as face and action recog-
nition (Chen et al., 2005; Huang et al., 2007; Kliper-
gross et al., 2012). This pairwise similarity learning
problem is in spirit similar to the metric learning re-
search work (Davis et al., 2007; Jain et al., 2012; Bellet
et al., 2012; Mensink et al., 2012): One main difference
is here we need to deal with non-symmetric and non-
square similarity matrices, versus the more well-posed
metric functions 1 usually considered in metric learn-
ing. This line of research is also related to one-shot
learning or learning from one example (Miller et al.,
2000; Fei-fei et al., 2006). The algorithm development
is usually emphasized on the specific scenario where

1A metric is a function that satisfies three conditions:
(a) non-negativity and identity at zero, (b) symmetry, and
(c) triangle inequality.
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the similarity function is symmetric – in other words,
x̂ and x have to come from the same source.

We consider a general similarity learning scenario
where x̂ and x are from the different sources and even
reside in different dimensions, n̂ 6= n. Our aim is to
learn this n̂ by n similarity matrix W , which is well-
known to be a smooth (C∞) manifold (e.g. Exam-
ple 8.14 of (Lee, 2003)). However, this often leads
to a huge number of unknowns, as both dimensions
could be large. Two strategies natural follow as a
consequence: (1) Work with sparse methods to ex-
ploit the sparsity (e.g. `1-norm) or structural spar-
sity (e.g. sparsity induced norm) of the matrix (Bach
et al., 2012), or (2) Utilize matrix factorization tech-
niques (Hubert et al., 2000; Eldén, 2007), in order to
uncover the inherit matrix structure. Meanwhile, an
important observation here is that the rank of this
matrix is usually very low, as being reported by re-
lated research work (Ying et al., 2009; Bi et al., 2011),
which is also empirically supported by our synthetic
experiments in Sec. 4. This inspires us to consider a
rank-related matrix factorization, and a natural choice
is SVD. Recent development in manifold-based opti-
mization (Absil et al., 2008) offers new geometric in-
sight into the underlining geometric structures for this
type of low rank matrices. By resorting to computa-
tional differential geometry principles and techniques,
competitive or even superior performance has been
achieved on matrix-related applications (Shalit et al.,
2012; Vandereycken, 2013).

Our Contributions The main contributions in this
paper are three-fold. First, we propose to work with
similarity learning in the general setting, as such we
aim at learning a non-symmetric, non-square similar-
ity matrix with fixed rank. This is less-restrictive com-
paring to the existing work discussed earlier. It thus
enables to directly work with the n̂ 6= n settings. Sec-
ond, our algorithm offers a new geometric interpre-
tation for similarity learning, and by this we wish to
bring some insights in understanding the characteris-
tics of the similarity matrix. Third, our work brings in-
teresting connections between the applications of pair-
matching and domain adaptation. The proposed geo-
metric algorithm also connects to and makes possible
the exploitation of Riemannian manifold-based opti-
mization (Absil et al., 2008). Empirical experiments
verify the competitive performance of our algorithm in
real-life vision tasks of object and action recognition.

Related Work The closest work is that of Kulis et
al. (Kulis et al., 2011), which also aims to learn a non-
symmetric similarity matrix. Meanwhile, there is no

explicit rank or sparsity constraints on the matrix to
be learned, leaving the potential for overfitting. The
works in Mahalanobis metric learning e.g. (Bellet,
2012) are closely related, where the main focus is on
symmetric positive semi-definite matrices. Another
thread of intimately related works is bilinear learn-
ing (Tenenbaum & Freeman, 2000; Pirsiavash et al.,
2009; Pirsiavash & Ramanan, 2012; Akhter et al.,
2012). Denote the trace operator of a matrix as tr(·),
and factorize the matrix W as W := WlW

T
r , with Wl

and Wr being a n̂ × d and a n × d matrix, respec-
tively. The bilinear function of interest usually takes
the following form

f̂W (X) := tr
(
WT
l XWr

)
= tr

((
WlW

T
r

)T
X

)
.

On the other hand, significant progress has been made
over the past few years in optimization on Riemannian
manifolds (Absil et al., 2008). Recently research has
also been carried on toward the topic of geometric low-
rank matrix factorization (Vandereycken, 2013; Mishra
et al., 2012). Our Riemannian approach can be viewed
as an adaptation of the works of (Vandereycken, 2013;
Absil et al., 2008) to similarity learning.

2. Preparation

We briefly recall the related notions of matrix man-
ifold and retraction. Motivated readers can refer to
(do Carmo, 1992; Lee, 2003; Absil et al., 2008) for fur-
ther details.

Stiefel Manifold (Lee, 2003) Define the set of
n̂ × d orthonormal matrices as st(n̂, d) := {U ∈
Rn̂×d : UTU = Id}, with Id an identity matrix of
size d × d, and n̂ ≥ d. It is a differentiable manifold
that can be locally approximated by a set of Euclidean
spaces. Consider an arbitrary point in the manifold,
U ∈ st(n̂, d). To perform differential calculus, de-
fine the tangent space at U as TUst(n̂, d), which is
also a subset of n̂ × d matrices. It is easy to check
UT ρ = −ρUT for any tangent vector ρ ∈ TUst(n̂, d).

Retraction (Absil et al., 2008) Intuitively, re-
traction generalizes the notion of moving in the direc-
tion of a vector in Euclidean space to manifolds. An
ideal retraction is the exponential map (Lee, 2003): In
our context, the exponential map at point W , RW (η),
maps a tangent vector η ∈ TWM to a point in the
manifold M, as projecting along a geodesic curve
started at W in the direction of η. In practice, usually
a computationally less demanding retraction is used
instead of the exact exponential map. Formally, a re-
traction on a manifold M at point W is a function
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RW : TWM→M that satisfies two properties (Absil
et al., 2008). (1) RW (0) = W . (2) The geodesic curve
defined by γW (t̄) := RW (t̄η) satisfies γ̇W (0) = η, with
t̄ being a real. In general, a retraction can approx-
imate the exponential map at least to its first order
Taylor expansion.

Vector Transport (do Carmo, 1992; Absil et al.,
2008) In a way similar to retractions vs. exponential
mapping, the vector transport (Absil et al., 2008) is an
approximation of parallel transport (do Carmo, 1992),
by transporting a tangent vector ξ from a point W ∈
M to a point W ′ := RW (η) ∈ M along a geodesic
curve defined by η. More specifically, it is defined w.r.t.
an existing retraction R as (η, ξ) 7→ Tη(ξ) ∈ TW ′M
for any η, ξ ∈ TWM and W ′ := RW (η), satisfying
T0(ξ) = ξ, and Tη(aξ + bς) = aTη(ξ) + bTη(ς), with
a, b ∈ R.

Riemannian Connection (do Carmo, 1992) and
Riemannian Hessian (Absil et al., 2008) In an
Euclidean space, A connection ∇ηξ amounts to the
directional derivative of ξ along η at a point W , as
∇ηξ := limt→0

ξW+tη−ξW
t , where ξ and η are both vec-

tor fields. This is the special case of affine connection
on a manifold M, which satisfies three properties: i)
∇fη+gιξ = f∇ηξ + g∇ιξ, ii) ∇η

(
aξ + bς

)
= a∇ηξ +

b∇ης, and iii) Leibniz’ rule: ∇η
(
fξ
)

=
(
ηf
)
ξ + f∇ηξ.

where η, ι, ξ, ς ∈ TM, f, g are real functions of M,
and a, b ∈ R. A Riemannian metric on a differen-
tiable manifold is a correspondence that associates
to each point W ∈ M an inner product, 〈·, ·〉W in
the tangent space of MW . A differentiable man-
ifold with a given Riemannian metric is termed a
Riemannian manifold. A Riemannian Connection is
thus the unique affine connection ∇ of the Rieman-
nian manifold M that is i) symmetric and ii) com-
patible with its Riemannian metric. The Riemannian
Hessian is related to the Riemannian Connection as
HessJ(W )[η] := ∇ηGradWJ(W ), for any η in the tan-
gent space of MW .

Riemannian Trust Region Methods (Nocedal &
Wright, 2006; Absil et al., 2008) Trust region
methods (Nocedal & Wright, 2006) work by simulta-
neously choose the descending direction and the step-
size, by explicitly approximating the objective function
J(W ) with a quadratic model mW . In analogy to its
Euclidean space counterparts, at each iteration of the
Riemannian trust region methods (Absil et al., 2008),
the following trust-region subproblem is to be solved:

min
ξ∈TWM

mW (ξ) (1)

:= J(W ) + 〈GradWJ(W ), ξ〉+
1

2
〈HessJ(W )[ξ], ξ〉

subject to constraint 〈ξ, ξ〉 ≤ ∆2, where ∆ is current
trust-region radius. The solution this subproblem pro-
vides a descending direction in the tangent space of
current point W ∈M.

3. Our approach

In our context, an example is represented as a triplet
(x̂, x, y), with pair of instances x̂ ∈ Rn̂ and x ∈ Rn,
as well as y ∈ {±1} depending on whether the labels
of the two instances are equivalent. We consider a bi-
linear form fW : (x̂, x) 7→ x̂TWx, with W a matrix
of size n̂ by n taking a fixed rank d � min{n̂, n}.
In general, the Left Hand Side (LHS) feature vector’s
dimension n̂ is not necessarily the same as the RHS di-
mension n, therefore W is rectangular. An important
fact is the existence of a factorization W = UΣV T

by SVD (Golub & Loan, 1996): Σ := diag(σ1, . . . , σd)
contains positive singular values uniquely determined
by W , while U and V form the eigen-bases of WWT

and WTW , respectively. As a result, through fW
the vector x̂ is mapped to a d-dimensional vector
space, Σ

1
2UT x̂, and x mapped to the same space

via Σ
1
2V Tx. This fact can be subsequently used

to construct a hypothesis function h for prediction
problems, for example, h(x̂, x) := sgn(fW (x̂, x)) =

sgn
((

Σ
1
2UT x̂

)T (
Σ

1
2V Tx

))
. Intuitively, h(x̂, x) = 1

if the inner product is positive (i.e. along the same
direction).

The problem is then ready to be formulated as solving
an optimization problem over a set of t training triplets

min
W :rank(W )=d

J(W ) :=
λ

2
Ω(W ) +

t∑
i=1

l(x̂i, xi, yi; fW )

(2)

A variety of differentiable loss function can be con-
sidered in our context w.r.t. fW (x̂, x), including for
example the squared hinge loss lhinge2(x̂, x, y; fw) =
max{0, 1− yfW (x̂, x)}2, the log loss llog(x̂, x, y; fw) =
log
(
1+e−yfW (x̂,x)

)
, and the ridge loss l2(x̂, x, y; fw) =

1
2

(
fW (x̂, x) − y

)2
. We have empirically experimented

with a number of loss functions, and it turns out
that the log loss consistently delivers a top perfor-
mance. So from now on we focus our attention to
the log loss. Note here we choose not to consider
the non-differentiable loss functions such as the hinge
loss, which are more intricate for convergence anal-
ysis. Nevertheless we would like to mention that
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the set of manifold subgradients can be obtained for
non-differentiable functions, and certain types of sub-
gradient descent algorithms are also known to con-
verge (Ferreira & Oliveira, 1998). Furthermore, the
regularizer term is necessary to ensure W a bounded
matrix. In this paper we restrict our attention to the
Frobenius norm, Ω(W ) := ‖W‖F .

Geometric Meaning of SVD Denote a set
MW := {W = UΣV T }, s.t. U ∈ st(n̂, d), V ∈ st(n, d),
and Σ = diag(σ1, . . . , σd), with σi > 0, ∀i. In other
words, diag(σ1, . . . , σd) denotes a d × d positive diag-
onal matrix. It has been shown by (Absil et al., 2008;
Vandereycken, 2013) thatMW is indeed a Riemannian
manifold, with its tangent space at point W being es-
tablished by

TWM :=

{
UMV T + UpV

T + UV Tp

}
(3)

for M being arbitrary d by d matrices, UTp U = 0, and

V Tp V = 0. The Riemannian metric becomes 〈ζ, η〉 =

tr(ζT η), with tr(·) being the matrix trace.

From Euclidean gradient to Riemannian Gra-
dient and Riemannian Hessian Denote the Eu-
clidean gradient of our objective function w.r.t. W as
gradWJ ∈ Rn̂×n, by (3) its Riemannian gradient is
computed as a projection onto the tangent space of
MW

GradW J = P
H
U gradW J P

H
V + P

V
U gradW J P

H
V + P

H
U gradW J P

V
V

with shorthand notations PHU := UUT and PVU :=
I − UUT for U , as well as similar notations for V .

It turns out impossible in our context to compute an
analytic form of the Riemannian Hessian HessJ(W ).
We instead perform finite difference approximation of
the Hessian by forward difference of the Riemannian
gradients (Nocedal & Wright, 2006; Absil et al., 2008),
where the vector transport is utilized to move the Rie-
mannian gradients from the forward point back to the
tangent space of the current point.

Retraction For any tangent vector η ∈ TWM, its
retraction RW (η) into the manifold is naturally deter-
mined by

RW (η) := argmin
X∈M

∥∥W + η −X
∥∥
F
.

It is easy to verify that it results in a closed form so-
lution

RW (η) =

d∑
i=1

σiuiv
T
i ,

with σi, ui and vi being the i-th singular values and
vectors of SVD of W + η, respectively.

RSL As an adaptation of the Riemannian trust-
region method of (Absil et al., 2008), the proposed
algorithm for Riemannian Similarity Learning, or RSL
in short, is presented in Algorithm 1. At each itera-
tion, the trust-region subproblem is solved following
the truncated conjugate gradient method presented
in (Absil et al., 2008) chapter 7, which produces a
candidate tangent vector ξk. To decide whether to ac-
cept ξk as well as the new trust-region radius ∆k, we
evaluate the following ρk value

ρk :=
J(Wk)− J

(
RW (ξk)

)
mWk

(0)−mWk
(ξk)

. (4)

Ideally ρk is expected be close to 1, then we accept ξk
and the trust-region radius ∆k+1 may be enlarged; If
ρk is however less than a small positive ρ′, then the
model is not accurate and in this case we must reject
the candidate and reduce the trust-region radius; If ρk
is not too small (≥ ρ′) but still away from 1 (i.e., ρk <
1
4 ), we accept the candidate while still reducing the
radius; Lastly if ρk � 1, the model is inaccurate while
there is a significant decrease in objective function J ,
we can choose to accept the candidate and increase the
radius, in the hope of a greater decrease in J value.
This explains the logic underlying Algorithm 1.

The initial model parameter W0 is started randomly
as U0 Id V

T
0 , with the orthonormal matrices U0 and

V0 obtained from SVD of a randomly generated real
matrix A of size n̂× n. Throughout experiments, the
following parameters are fixed: ∆ is computed as (n̂+

n)× k, ∆0 = ∆
4 , kmax = 300, ρ′ = 0.1, and ε = 1e−4.

Kernelization It is straightforward to work with
the kernelized input instances, by considering implicit
feature maps φ : x 7→ φ(x) for x, and likewise φ̂ for

x̂. The kernelized version of x̂TWx becomes K̂
1
2LK

1
2 ,

with K̂(i, j) = φ̂(x̂i)
T φ̂(x̂j), K(i, j) = φ(xi)

Tφ(xj),
and L being a t× t similarity matrix. The correspond-
ing kernelized optimization problem is thus written as

min
L:rank(L)=d

λ

2
Ω(L) +

t∑
i=1

l(δ̂Ti K̂
1
2LK

1
2 δi), (5)

Where δ̂, δ denote the selector functions, and for the

log loss llog := log

(
1 + e−yiδ̂

T
i K̂

1
2 LK

1
2 δi

)
. With little

modification, the proposed Algorithm 1 can also be
applied to learn the similarity matrix L. Denote X̂
and X the column-stacked LHS and RHS examples
during training, respectively. At test run, a new pair of
examples x̂, x is observed, and its corresponding score
can be computed as

φ̂(x̂)TWφ(x) = k̂(x̂, X̂) K̂−
1
2LK−

1
2 k(X,x),
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Algorithm 1 Riemannian Similarity Learning: RSL

Input: The set of triplets (x̂, x, y)
Output: W ←Wk

Init: ε, W0, kmax, ρ′, ∆, ∆0 ∈ (0,∆), and k ← 0
repeat

Obtain ξk by solving (1)
Evaluate ρk using (4)
if ρk > ρ′ then
Wk+1 ← RW (ξk)

else
Wk+1 ←Wk

end if
if ρk <

1
4 then

∆k+1 ← 1
4∆k

else if ρk >
3
4 and ‖ξk‖ = ∆k then

∆k+1 ← min(2 ∆k,∆)
else

∆k+1 = ∆k

end if
k ← k + 1

until
∥∥GradWJ

∥∥2

F
< ε or k ≥ kmax

with k̂(x̂, X̂) := φ̂(x̂)T φ̂(X̂) a 1 × t row vector, and
k(X,x) := φ(X)Tφ(x) a t × 1 column vector, respec-
tively.

Generalization Analysis One may concern the
generalization ability of the proposed algorithm on un-
seen examples. Bounds on the generalization error is
related to the capacity of the function class, which can
be captured by its VC-dimension for 0-1 loss as well
as its pseudo-dimension (Mohri et al., 2012) general-
ization for other loss functions. Denote e := exp(1).

It has been shown in (Srebro et al., 2004) that d̂, the
VC-dimension / pseudo-dimension of our matrix W ,
is upper bounded by:

d (n̂+ n) log

(
16emin{n̂, n}

d

)
. (6)

Note that the VC-dimension of our rank-d matrix is
much smaller than the VC-dimension of a full rank
matrix which is roughly n̂ by n. This is key in our
scenario of learning a similarity function with satisfac-
tory prediction performance. Following this guidance,
in practice we usually choose a relative small d, e.g.
d = 10.

Convergence Analysis Trust region methods in
Euclidean space Rn are well-known to converge to local
fixed points under mild conditions (see e.g. (Nocedal
& Wright, 2006)). It is also known (Yang, 2007; Absil
et al., 2008) that on matrix manifolds they enjoy simi-
lar convergence properties as their analogs in Euclidian
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Figure 1. Synthetic experiments: Each curve displays the
accuracy over increasingly more difficult datasets (from lin-
early separable to highly inseparable). Top: Comparison
of performance by varying n, the dimension of RHS in-
stances. Bottom: Comparison of performance by varying
d, the rank of W . See text for details.

space. Similarly it can be shown that our RSL algo-
rithm is guaranteed to decrease the objective function
value monotonically as iteration increases, thus con-
verges to local fixed points. Moreover, it has also been
proved by Theorem 7.4.11 of (Absil et al., 2008) that
Riemannian trust region methods such as our RSL al-
gorithm have a super-linear convergence rate.

Computational Analysis At each iteration, the
main computational load is from computing the Eu-
clidean gradient gradWJ , its projection onto the man-
ifold tangent space GradWJ , and the retraction step
RW . It takes up to tn̂n flops to compute the Eu-
clidean gradient for our loss functions. Since d �
min{n̂, n}, the computational cost of computing the
manifold gradient is up to 4(n̂ + n)d2, and up to
14(n̂ + n)d2 for retraction. The overall complexity is
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O
(

18
(
n̂+n

)
d2 + tn̂n

)
, with a mild constant when e.g.

the maximum number of iterations kmax is considered.

4. Experiments

We first examine the proposed RSL algorithm on syn-
thetic datasets. This is followed by evaluations on two
real-life applications: the ASLAN challenge (Kliper-
gross et al., 2012) of pairwise similarity prediction for
action recognition, and domain adaptation for object
recognition (Saenko et al., 2010). The following pa-
rameter values are used: The trade-off parameter λ is
fixed to 1; Except for the synthetic experiments, the
subspace dimension d is set to 10.

Synthetic Experiments Experiments are con-
ducted on synthetic datasets, in order to analyze
the characteristics of the RSL algorithm under con-
trolled settings. As illustrated in both plots of in
Fig 1, We focus on the accuracy measure as a function
over increased difficulty levels, ranging from being lin-
early separable to highly inseparable. The synthetic
datasets are constructed for binary classes, with each
class being sampled from a Gaussian distribution with
fixed covariance matrix. For the linearly separable
cases, all instances that would be misclassified by the
Bayes optimal classifier are dropped off. The difficulty
level is increased as we decrease the ratio of between-
class dispersions and within-class dispersions (similar
to what has been used in Linear Discriminant Anal-
ysis (Bishop, 2006)). In practice, this is achieved by
shortening the distance of two Gaussian means while
keeping the rest unchanged. Unless stated explicitly,
by default the following set-up is adopted: The number
of training examples is t = 5, 000 with a half for each
class, the LHS feature vector’s dimension is n̂ = 50
and for RHS n = 100, the subspace dimension (i.e.
rank of W ) is set to d = 5. Each accuracy value is
obtained by averaging over 20 repeats.

The first experiment is carried out by varying the RHS
dimension n while fixing other factors. As displayed
in Fig 1 top panel, there is no clear trend of perfor-
mance changes, although there are slight variations of
accuracies w.r.t. different n. This supports our hy-
pothesis that the influence of the two dimensions (n̂
and n) being the same or not is insignificant.

To examine the influence of different subspace dimen-
sions d (i.e. rank of W ) toward the overall perfor-
mance, we run a second experiment by varying d val-
ues, which is presented in Fig 1 bottom panel. The
empirical results suggest that the model matrix W
here resides in a low-dimensional subspace. Moreover,
except for the extreme cases where d equals to 1 for

taking a too small (or possibly too large) values, the
overall performance seems otherwise rather close for
a rather broad set of d values between 5 and 20. In
other words, the performance is relatively stable over a
rather broad range of matrix ranks for W . As a result,
throughout the remaining experiments of this paper,
we consider a fixed low rank of d = 10 for W .

Pairwise Action Recognition The ASLAN Chal-
lenge (Kliper-gross et al., 2012) is a recent ac-
tion recognition benchmark. It contains 3,697 hu-
man action clips collected from YouTube, spanning
over 432 unique action categories that is organized
around a tree hierarchy from CMU Motion Capture
Dataset (cmu). The sample distribution over cate-
gories is highly uneven, with 116 classes possessing
only one video clip. Instead of explicitly performing
a multiclass classification, the aim of the benchmark
is to make “same” or “not-same” binary prediction
each time on a pair of actions.

Following (Kliper-gross et al., 2012), from each video
local salient points are obtained (Wang et al., 2009a),
where each point possesses three types of descriptors:
Histogram of Oriented Gradients (HoG), Histogram
of Optical Flow (HoF), and a concatenation of both
(referred to as HnF). k-means clustering method is
then used to produce a codebook of c=5,000 code-
words from the training data, which naturally gives
rise to a bag-of-words (BoW) representation (Fei-Fei
& Perona, 2005). An action video is thus collectively
represented as a histogram vector of length c. We work
with the view-2 benchmark (the major one for perfor-
mance evaluation), where the categories are split into
10 disjoint subsets, to be used for 10-fold cross vali-
dation. For each subset, 300 same and 300 not-same
pair of action videos are randomly selected. Together
it forms a benchmark of 10-splits that each contains
mutually exclusive action labels: If videos of a cer-
tain action appear in one split, no videos of that same
action will appear in any other split.

Under the same protocol of (Kliper-gross et al., 2012),
results of the proposed algorithm are produced and are
compared with the state-of-the-art methods, which in-
clude the 13 methods reported in (Kliper-gross et al.,
2012). To save space, for each experiment, only the
best of the 13 results are reported here and is col-
lectively referred to as “best of (Kliper-gross et al.,
2012)”. The detailed performance of these methods
can be found in (Kliper-gross et al., 2012). The best
result of (Kliper-Gross et al., 2011) on one-short sim-
ilarity metric, using CSML initialization and cosine
similarity score (Kliper-Gross et al., 2011), is also in-
cluded and referred to as “OSS-CS”.
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The results of competing algorithms are shown in Ta-
ble 1 on the basic ASLAN benchmark as well as in
Table 2 on the ASLAN-KTH benchmark (Kliper-gross
et al., 2012). Overall RSL outperforms the comparison
methods over these different spatial-temporal features.
Moreover, RSL is able to work reasonably well in sce-
narios where the LHS and RHS features are from dif-
ferent sources. This is in contrast with existing meth-
ods of this benchmark, which are unable to cope with
such a situation. In particular, on the basic ASLAN
benchmark, RSL produces 58.43% for HoG → HoF,
and 60.19% for HoG → HnF, respectively.

Table 2. Comparison of pairwise action recognition accu-
racy (%) on ASLAN-KTH Benchmark. See text for details.

local features best of RSL
(Kliper-gross et al., 2012)

HoG → HoG 82.78 84.21
HoF → HoF 85.44 88.01
HnF → HnF 90.00 90.44

Cross-domain Object Recognition We further
evaluate on the cross-domain object recognition ap-
plication, using the benchmark dataset of Berke-
ley31 (Saenko et al., 2010; Kulis et al., 2011). This
Berkeley31 dataset contains images taken from three
different image domains, with each having 31 object
categories. The first domain consists of product im-
ages downloaded from Amazon, which are in a canoni-
cal pose and with a white background. The second do-
main comprises images taken with a digital SLR cam-
era in office. They are high-resolution images with
varying poses and backgrounds. The third domain
includes low-resolution webcam images with varying
poses and backgrounds. These three domains are also
referred to as amazon, dslr, and webcam, respectively.
A summary of the dataset is presented in Table 3. Our
protocol follows that of (Kulis et al., 2011). Specifi-
cally, all images are resized to the same size (300 ×
300) and converted to gray-scale, and are extracted to
form SURF feature points. Each image is then rep-
resented in BoW: 800 codewords are used for webcam
and amazon domains, and 600 for dslr domain.

The methods are evaluated on two experimental set-
tings: (1) All 31 categories are available in both train-
ing and testing phases; (2) During training only the
first 15 categories are available. The trained model is
then evaluated in testing phase on the rest 16 cate-
gories. For training in both settings, 20 images per
category from source domain and 3 images per cate-
gory from target domain are randomly selected, while
the rest is retained for evaluation. Since the number

of training instances is much lower than the feature di-
mension, the competing methods considered here are
applied with kernels. Here RBF kernel is used for all
methods. The final results presented are averaged over
10 rounds of randomly sampled training examples.

Table 3. A summary of the object recognition dataset of
Berkeley31.

Domains # dims # images
amazon 800 2,813
dslr 600 498

webcam 800 795

Table 4. Comparison of Cross-domain Object Recognition
accuracy (%) on Berkeley31 with dslr as the default target
domain. Rows 2-3 is for setting (1): All 31 categories are
seen during training. Bottom row is for setting (2): Train-
ing on partial categories, and evaluating on the remaining
(unseen) categories. See text for details.

Source SVM-t Symm ARC-t HFA RSL
webcam 49.1 53.2 53.0 54.3 54.6
amazon 49.1 50.1 53.2 55.4 55.3

webcam 37.7 48.3 51.8

A list of competing methods is provided below. In
particular, three state-of-the-art methods, namely
Symm (Saenko et al., 2010), ARC-t (Kulis et al.,
2011), and HFA (Duan et al., 2012), are considered:

SVM-t A standard SVM model is trained only with
examples from the target domain.

Symm (Saenko et al., 2010) Labels from both do-
mains are used to learn a symmetric transforma-
tion.

ARC-t (Kulis et al., 2011) Labels from both domains
are used to learn a asymmetric transformation.

HFA (Duan et al., 2012) Labels from both domains
are used by first projecting to a common subspace,
followed by a feature augmentation step.

The average classification accuracies are reported in
rows 2-3 of Table 4 for setting (1), and the bottom
row for setting (2). Here 2 cross-domain tasks are con-
sidered: from webcam or amazon as “source domain”
to dslr as the default “target domain”. In both set-
tings, our RSL method performs competitively com-
paring with the state-of-the-art methods. In particu-
lar, RSL outperforms the ARC-t method, which is a
dedicated method (Kulis et al., 2011) for addressing
the object recognition problem using this particular
dataset, and is closely related to our approach. The
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Table 1. Comparison of pairwise action recognition accuracy (%) on ASLAN Challenge. See text for details.

local features best of (Kliper-gross et al., 2012) OSS-CS (Kliper-Gross et al., 2011) RSL
HoG → HoG 58.55 60.63 61.84
HoF → HoF 56.82 59.53 61.75
HnF → HnF 58.87 60.83 62.61

competitive performance can be largely attributed to
the manifold-based matrix factorization approach we
have adopted.

5. Summary and Outlook

In this paper, we consider a similarity-score based
paradigm that can be used to address scenarios where
either the class labels are only partially available in
training, or the training and testing data are drawn
from heterogeneous sources. Our aim in this context
becomes that of learning a rectangular similarity ma-
trix of a fixed rank. We formulate the problem as
manifold-based optimization, propose a trust-region
type algorithm, and apply to applications in recogniz-
ing visual objects and actions. Empirical performance
on both applications suggest the competitiveness of
the proposed approach.

For future work, we plan to develop and analyze im-
proved algorithms, as well as investigate their applica-
tions into related problems such as bilinear learning.
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