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Abstract

Automatic image annotation is a difficult and
highly relevant machine learning task. Re-
cent advances have significantly improved the
state-of-the-art in retrieval accuracy with al-
gorithms based on nearest neighbor classifi-
cation in carefully learned metric spaces. But
this comes at a price of increased computa-
tional complexity during training and testing.
We propose FastTag, a novel algorithm that
achieves comparable results with two simple
linear mappings that are co-regularized in a
joint convex loss function. The loss function
can be efficiently optimized in closed form up-
dates, which allows us to incorporate a large
number of image descriptors cheaply. On
several standard real-world benchmark data
sets, we demonstrate that FastTag matches
the current state-of-the-art in tagging qual-
ity, yet reduces the training and testing times
by several orders of magnitude and has lower
asymptotic complexity.

1. Introduction

Image tag annotations are an important component
of searchable image databases such as FlickrTM ,
PicassaTM or FacebookTM . However, a large fraction
(over 50% in Flickr) of images have no tags at all and
are hence never retrieved for text queries. Automatic
image annotation is an essential tool towards surfac-
ing this “dark content”. A working image annotation
engine can suggest tags to users (Weinberger et al.,
2008) and thus increase the number of tagged images,
or generate relevant tags for image retrieval directly.
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Automatic image annotation is a difficult machine
learning task. Different type of objects require dif-
ferent image descriptors, e.g. rainbows can be iden-
tified through color histograms (Hafner et al., 1995),
whereas insects can be best identified through local
image descriptors (Lowe, 1999). Similar objects can
look very different across images and may only be
partially visible, thus necessitating large training data
sets. Training labels are typically obtained through
crowdsourcing and are noisy and notoriously incom-
plete. The ESP game (Von Ahn & Dabbish, 2004)
proposes a solution to improve label quality by incen-
tivizing pairs of labelers to match their answers. This
results in tag sets with high precision but with no guar-
antees for high recall: each image may be tagged with
only a small subset of tags that describe the most ob-
vious visual features.

Recently, Makadia et al. (2008); Guillaumin et al.
(2009) proposed new algorithms for automatic image
annotation based on nearest neighbor methods. Guil-
laumin et al. (2009) carefully learn embeddings into
metric spaces that combine a diverse set of image de-
scriptors and assign tag-specific weights to overcome
label sparsity. The resulting algorithm significantly
improves over the prior state-of-the-art in both preci-
sion and recall. Although these approaches yield im-
pressive results, they are impractical for large image
databases with n� 0 images. Their training proce-
dures scale on the order of O(n2). Moreover, the task
of tagging a single test image is O(n), linear with the
training set size.

In real world applications, the number of images can be
very large. Millions of images are added every day (e.g.
300 million images are uploaded to Facebook per day,
with a total of 100 billion images1), rendering these
methods impractical even to index the daily uploads.

1CNET 08/2012, http://tinyurl.com/9jfs7ut

http://tinyurl.com/9jfs7ut
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In this paper, we present a novel learning algorithm
for image tag annotation that achieves comparable ac-
curacy to Guillaumin et al. (2009), but can be trained
in O(n) time and applied during testing in constant
time w.r.t. the training set size. Our proposed algo-
rithm, FastTag, can naturally incorporate many image
descriptors and address the difficulties of label sparsity
with a novel approach. It interprets its training data
(images with partial tags) as unlabeled multi-view data
and learns two classifiers to predict tag annotations:
one attempts to reconstruct the (unknown) complete
tag set from the few tags available during training;
the other learns a mapping from image features to
this reconstructed tag set. We propose a joint con-
vex loss function that combines both classifiers via co-
regularization and coerces them into agreement. Our
loss function can be trained efficiently through alter-
nating optimization with simple closed-form updates.
We demonstrate on real world data sets that Fast-
Tag matches the highly competitive state-of-the-art in
terms of precision and recall, but is several orders of
magnitude faster during training and almost instanta-
neous during testing.

2. Related Work

In this section, we review some of the popular meth-
ods for automatic image annotation. The first group of
methods are based on parametric topic models. Monay
& Gatica-Perez (2004) extend the probabilistic latent
semantic analysis model, and Barnard et al. (2003)
extend the latent dirichlet allocation model to multi-
modal data. Each annotated image is modeled as
a mixture of topics over visual and text features.
The mixture proportions are shared between feature
modes, but the topic distributions are distinct. The
second group of methods (Jeon et al., 2003; Lavrenko
et al., 2003; Feng et al., 2004) models the joint distri-
bution of the image features and the tags with mixture
models. The third group of methods trains discrimi-
native models, such as SVM (Cusano et al., 2003),
ranking SVM (Grangier & Bengio, 2008) and boost-
ing (Hertz et al., 2004), to predict tags from image
features.

While these methods achieve promising annotation re-
sults, their complex training processes limit the num-
ber of descriptors that can be incorporated. Recently
proposed models such as the Joint Equal Contribu-
tion model of (Makadia et al., 2008) and the TagProp
model of (Guillaumin et al., 2009) rely on local near-
est neighborhoods and work surprisingly well despite
their simplicity. TagProp is the current state-of-the-
art method for image annotation. Its success can be

attributed to three elements: 1. it incorporates a large
number of different visual descriptors; 2. it can be
trained effectively on images with incomplete tag sets;
3. it treats rare tags special.

Although Tagprop achieves superior performance on
several benchmark datasets, the O(n2) training and
O(n) test complexity hinder its applicability to large
scale datasets (where n is the number of examples in
the training set). In this work, we introduce a new
model that incorporates these three elements for suc-
cessful annotation much more cheaply.

Most existing models assume that a complete list of
relevant tags for each image is available at training
time. However, in practice, this is either impractical
or impossible for a large training set. It is much eas-
ier to tag an image with a few of the most prominent
visual features than to obtain the complete list from a
tag dictionary. To alleviate the need for complete la-
beling, several existing approaches (Fergus et al., 2009;
Schroff et al., 2007; Socher & Fei-Fei, 2010) resort
to semi-supervised approaches to leverage unlabeled
or weakly labeled data from the web. We adopt the
same assumption of sparse training tags and incorpo-
rate partial supervision in our work.

3. Method

We assume, as it is the case in real world applications,
that only a few relevant tags are provided for each
image during training. Given the training images an-
notated with incomplete tags, our goal is to learn a
model that can infer the full list of tags from image
features at test time. Our proposed algorithm is fast
in training and almost instant prediction during test-
ing (only a linear transformation is required). Thus
we refer to our algorithm as FastTag.

Notation. Let T = {ω1, · · · , ωT } denote the dictio-
nary of T possible annotation tags. Let the training
data be denoted by D = {(x1,y1), · · · , (xn,yn)} ⊂
Rd×{0, 1}T , where each vector xi ∈ Rd represents the
features extracted from the i-th image (for details see
section 3.3 and section 4) and each yi is a small partial
subset of tags that are appropriate for the i-th image.
Our goal is to learn a linear function W : Rd → T ,
which maps a test image xi to its complete tag set.

3.1. Duo Classifier Formulation

In this section we introduce a new model for automatic
image annotation from incomplete user tags. It jointly
learns two classifiers on two sources, i.e., image and
text, to agree upon the list of tags predicted for each
image. It leads to an optimization problem which is
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Figure 1. Schematic illustration of FastTag. During training two classifiers B and W are learned and co-regularized to
predict similar results. At testing time, a simple linear mapping x → Wx predicts tags from image features.

jointly convex and has closed form solutions in each
iteration of the optimization.

Co-regularized learning. As we are only provided
with an incomplete set of tags, we create an additional
auxiliary problem and obtain two sub-tasks: 1) train-
ing an image classifier xi → Wxi that predicts the
complete tag set from image features, and 2) training
a mapping yi → Byi to enrich the existing sparse
tag vector yi by estimating which tags are likely to
co-occur with those already in yi. We train both clas-
sifiers simultaneously and force their output to agree
by minimizing

1

n

n∑

i=1

‖Byi −Wxi‖2. (1)

Here, Byi is the enriched tag set for the i-th training
image, and each row of W contains the weights of a
linear classifier that tries to predict the corresponding
(enriched) tag based on image features.

The loss function as currently written has a trivial so-
lution at B = 0 = W, suggesting that the current for-
mulation is underconstrained. We next describe ad-
ditional regularizations on B that guides the solution
toward something more useful.

Marginalized blank-out regularization. We take
inspiration from the idea of marginalized stacked de-
noising autoencoders (Chen et al., 2012) and related
works (?) in formulating the tag enrichment mapping
B :{0, 1}T→RT . Our intention is to enrich the incom-
plete user tags by turning on relevant keywords that
should have been tagged but were not. Imagine that
the observed tags y are randomly sampled from the
complete set of tags: it is a “corrupted” version of the
original set. We leverage this insight and train the en-
richment mapping B to reverse the corruption process.
To this end, we construct a further corrupted version of
the observed tags ỹ and train B to reconstruct y from
ỹ. If this secondary corruption mechanism matches
the original corruption mechanism, then re-applying

B to y would recover the likely original pristine tag
set.

For simplicity, we use uniform corruption as the sec-
ondary corruption mechanism. In practice, human la-
belers may select tags with bias, not uniform proba-
bility. We can approximate the unknown corrupting
distribution with piecewise uniform corruption in the
learning step (see section 3.2). If prior knowledge on
the original corruption mechanism is available, it can
also easily be incorporated into our model.

More formally, for each y, a corrupted version ỹ is
created by randomly removing (i.e., setting to zero)
each entry in y with some probability p≥0 and there-
fore, for each user tag vector y and dimensions t,
p(ỹt = 0) = p and p(ỹt = yt) = 1 − p. We train B
to optimize

B = argmin
B

1

n

n∑

i=1

‖yi −Bỹi‖2.

Here, each row of B is an ordinary least squares re-
gressor that predicts the presence of a tag given all
existing tags in ỹ. To reduce variance in B, we take
repeated samples of ỹ. In the limit (with infinitely
many corrupted versions of y), the expected recon-
struction error under the corrupting distribution can
be expressed as

r(B) =
1

n

n∑

i=1

E
[
‖yi −Bỹi‖2

]
p(ỹi|y)

. (2)

Let us denote as Y ≡ [y1, · · · ,yn] the matrix contain-
ing the partial labels for each image in each column.
Define P ≡ ∑n

i=1 yiE[ỹi]
> and Q ≡ ∑n

i=1 E[ỹiỹ
>
i ],

then we can rewrite the loss in (2) as

r(B) =
1

n
trace(BQB> − 2PB> + YY>) (3)

We use Eq. (3) to regularize B. For the uniform
“blank-out” noise introduced above, we have the ex-
pected value of the corruptions E[ỹ]p(ỹ|y) = (1 − p)y,
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and the variance matrix V[ỹ]p(ỹ|y) = p(1 − p)δ(yy>).
Here δ(·) stands for an operation that sets all the en-
tries except the diagonal to zero (as we corrupt each
tag independently, the variance matrix has non-zeros
entries only on the diagonal). We can then compute
the two matrices in Eq. (3) as

P = (1− p)YY> (4)

Q = (1− p)2YY> + p(1− p)δ(YY>).

Joint loss function. Combining the squared loss in
Eq. (1) with the marginalized blank-out regularization
term r(B) in Eq. (3) and the standard ridge regression
l2 regularizer for W, the joint loss function can be
written as

`(B,W; x,y) =
1

n

n∑

i=1

‖Byi −Wxi‖2

︸ ︷︷ ︸
Co-regularization

+λ‖W‖22

+ γr(B).︸ ︷︷ ︸
Marginalized blank-out

(5)

The first term enforces that the tags enriched through
co-occurrence with existing labels agree with the tags
predicted by the content of the image. A regularizer
on W is included to reduce complexity and avoid over-
fitting. The last term ensures that the enrichment
mapping B reliably predicts tags if they were to be
removed from the training label set.

Test time. At test time, given an image x, the final
mapping W∗ is used to score the dictionary of tags.

3.2. Optimization and Extensions

The loss in Eq. (5) can be efficiently optimized using
block-coordinate descent. When B is fixed, the map-
ping W reduces to standard ridge-regression and can
be solved for in closed form:

W = BYXT (XXT + nλI)−1, (6)

where X and Y respectively contain the training image
features and labels in columns.

Similarly, when W is fixed, the solution to Eq. (5) can
be expressed as the well-known closed-form solution
for ordinary least squares (Chen et al., 2012):

B =
(
γP+WXY>

) (
γQ + YY>

)−1
.

where P and Q can be computed analytically follow-
ing eq. (4). In other words, we can derive the optimal
mapping B under closed form without explicitly creat-
ing any corruptions. The conclusion holds for any cor-
rupting models of which the expected value and vari-
ance can be computed analytically. The loss is jointly

convex with respect to B and W and consequently
coordinate descent converges to the global minimum.
Fig. 1 contains a depiction of this algorithm.

Tag bootstrapping. The enrichment mapping B is
trained to predict missing tags based on pairwise co-
occurrence patterns. We would like to also reconstruct
tags that do not co-occur together but tend to ap-
pear within similar contexts. As an example, the tag
“pond” might rarely co-occur with “lake”, as both de-
scribe similar things and annotators tend to use one
or the other. However, it would be good to give the
predictor W the flexibility to predict both from sim-
ilar image features. We can achieve this via stacking:
starting with the enriched vector Byi as the tag repre-
sentation for the i-th image2, we optimize another layer
of `(B′,W′; x,By) to obtain new mappings B′,W′.
We can have an arbitrary number of layers, each re-
sulting in a new linear mapping Wt from image fea-
tures to tags. To find the right trade-off between two
much bootstrapping and too little, we perform model
selection on a hold-out set, adding layers until it no
longer improves the F1 measure.

Rare tags and Non-Uniform Corruption. Eq. (5)
solves for the linear predictors W for all T tags simul-
taneously. This is computationally efficient in that it
requires only one matrix inversion per iteration. How-
ever, it has the disadvantage that the prediction loss
for each tag is weighed equally, which leads to the over-
all loss to be dominated by contributions from more
frequent tags, sacrificing the prediction accuracy of
rare tags. This is a known problem in tag prediction.
Other approaches also find that dealing with rare tags
is the key to improving tagging performance (Guillau-
min et al., 2009). We introduce several re-optimization
stages, where at each stage we solve a sub-problem of
Eq. (5). That is, we identify a subset of tags with a
recall below a certain threshold (in our experiments
we set it to the average recall). We re-optimize (5)
restricted to only the rows of B and W corresponding
to such tags. We iterate until we no longer improve
the F1 measure on a hold-out set.

This stage-wise re-optimization also allows us to ap-
proximate the unknown true corrupting distribution
with piecewise estimates: each stage of re-optimization
may set a different corruption probability p based on
validation results on a hold-out set, keeping the cor-
ruption probability of remaining tags fixed at their pre-
vious values.

In addition, we weigh each example in a tf-idf-like fash-

2The enriched tags Byi are real numbers. When stack-
ing, we truncate Byi to be within [0, 1]T .
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ion so that losses from rare tags are given more weight
during training. Specifically, each tag ω is assigned a
cost cω = 1

nω
, where nω is the number of times tag ω

appears in the training set. Thus, rarer tags are given
a higher cost than the more frequent ones. We then
assign each example a weight by simply summing over
the costs of its active tags, so that examples with rarer
tags contribute more to the loss in eq. (5). Let Λ de-
note an n × n diagonal matrix containing the weight
for each training example, we can then solve for the
optimal mapping as W = BYΛXT (XΛXT + nλI)−1.
The tag enrichment mapping B can be generalized to
the weighted version in the same fashion.

3.3. Homogeneous feature mapping

Local kNN methods (Guillaumin et al., 2009; Makadia
et al., 2008) enjoy the advantage of naturally identi-
fying non-linear decision boundaries based on multi-
ple feature spaces from different image features. In
our work, we adopt linear image feature classifiers
for their simplicity and speed, and instead incorpo-
rate non-linearity into the feature space as a pre-
processing step. To this end, we adopt the homoge-
neous feature mapping method of Vedaldi and Zis-
serman (Vedaldi & Zisserman, 2012). For each vi-
sual descriptor fm(x) ∈ Rdm extracted from the in-
put image, it uses an explicit feature mapping Ψm :
Rdm → Rdm(2r+1) to project it to a slightly higher-
dimensional feature space, in which the inner product
approximates the kernel distance well. In other words,
〈Ψm(fm(x),Ψm(fm(x′))〉 ≈ Km(fm(x), fm(x′)). For
the family of additive kernels, such as the l1-distance
and χ2-distance used in our experiments, the mapping
Ψ(·) can be computed analytically and approximates
the kernel well even with small r (in our experiment,
we set r = 1). After projecting each visual descrip-
tor independently, we further apply random projec-
tion (Vempala, 2005) to reduce the dimensionality3.

4. Experimental Results

We evaluate FastTag4 on three standard image anno-
tation benchmark datasets. All data sets (with pre-
extracted features) were obtained from http://lear.

inrialpes.fr/people/guillaumin/data.php.

3The dimension k is roughly cross-validated using a
least squares baseline.

4Our open source MATLABTM code is available for
download at http://www.cse.wustl.edu/~mchen/.

4.1. Experimental Setup

We begin with a detailed description of the data sets,
the visual descriptors and the evaluation metrics.

Corel5K. The dataset (Duygulu et al., 2006) contains
5,000 images collected from the larger Corel CD set.
Each image is manually annotated with keywords from
a dictionary of 260 distinct terms. On average, each
image was annotated with 3.5 tags.

ESP game. The dataset consists of 20,770 imagesof
a wide variety, such as logos, drawings, and personal
photos, collected for the ESP collaborative image la-
beling task (Von Ahn & Dabbish, 2004). The images
are annotated with a total of 268 tags. Each image
is associated with a maximum of 15 and 4.6 tags on
average.

IAPRTC-12.5. The dataset consists of 19,627 images
of sports, actions, people, animals, cities, landscapes
and many other aspects of contemporary life (Grub-
inger et al., 2006). Tags are extracted from the free-
flowing text captions accompanying each image. Over-
all, 291 tags are used.

For all these datasets, we follow the training/test split
used in previous work (Guillaumin et al., 2009; Maka-
dia et al., 2008). Please refer to Guillaumin et al.
(2009) for more detailed statistics on the datasets.

Feature extraction. We use the 15 different visual
descriptors, extracted by Guillaumin et al. (2009) for
each dataset. These include one Gist descriptor (Oliva
& Torralba, 2001), six global color histograms, and
eight local bag-of-visual-words features. As described
in section 3.3, we adopt the explicit feature mapping
of Vedaldi & Zisserman (2012) to obtain a non-linear
feature transformation. Here we use the l1 approxi-
mation (i.e. the Euclidean distance after the mapping
approximates the l1 distance) for the global color de-
scriptors, and the approximated χ2 distance for the
local bag-of-visual-words features. Finally, we apply
random projection after each feature mapping to re-
duce the dimensionality.

Evaluation metric. For full comparability, we
adopt the same evaluation metrics as in Guillaumin
et al. (2009). First, all image are annotated with the
five most relevant tags (i.e. tags that have the high-
est prediction value). Second, precision (P) and recall
(R) are computed for each tag. The reported measure-
ments are averaged across all tags. For easier com-
parability, both factors are combined in the F1-score
(F1 = 2 P∗R

P+R ), which is reported separately. We also

5We used the same annotations as in (Guillaumin et al.,
2009; Makadia et al., 2008)

http://lear.inrialpes.fr/people/guillaumin/data.php
http://lear.inrialpes.fr/people/guillaumin/data.php
http://www.cse.wustl.edu/~mchen/
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Figure 2. Predicted keywords using FastTag for sample images in the ESP game dataset (using all 268 keywords).

Table 1. Comparison of FastTag and TagProp in terms of
P, R, F1 score and N+ on the Corel5K dataset. Previously
reported results using other image annotation techniques
are also included for reference.

Name P R F1 N+

leastSquares 29 32 30 125
CRM (Lavrenko et al., 2003) 16 19 17 107

InfNet (Metzler & Manmatha, 2004) 17 24 20 112
NPDE (Yavlinsky et al., 2005) 18 21 19 114

SML (Carneiro et al., 2007) 23 29 26 137
MBRM (Feng et al., 2004) 24 25 24 122
TGLM (Liu et al., 2009) 25 29 27 131

JEC (Makadia et al., 2008) 27 32 29 139
TagProp (Guillaumin et al., 2009) 33 42 37 160

FastTag 32 43 37 166

report the number of keywords with non-zero recall
value (N+). In all metrics a higher value indicates
better performance.

Baselines. We compare against leastSquares, a ridge
regression model which uses the partial subset of tags
y1, . . . ,yn as labels to learn W, i.e., FastTag without
tag enrichment. We also compare against the Tag-
Prop algorithm (Guillaumin et al., 2009), a local kNN
method combining different distance metrics through
metric learning. It is the current best performer on
these benchmark sets. Most existing work do not pro-
vide publicly available implementations. As a result,
we include their previously reported results for ref-
erence (Lavrenko et al., 2003; Metzler & Manmatha,
2004; Yavlinsky et al., 2005; Carneiro et al., 2007; Feng
et al., 2004; Liu et al., 2009; Makadia et al., 2008) .

Table 2. Comparison of FastTag and TagProp in terms of
P , R, F1 score and N+ on the Espgame and IAPRTC-12
datasets.

ESP game IAPR
P R F1 N+ P R F1 N+

leastSquares 35 19 25 215 40 19 26 198
MBRM 18 19 18 209 24 23 23 223

JEC 24 19 21 222 29 19 23 211
TagProp 39 27 32 238 45 34 39 260
FastTag 46 22 30 247 47 26 34 280

4.2. Comparison with related work

Table 1 shows a detailed comparison of FastTag to
the leastSquares baseline and eight published results
on the Corel5K dataset. We can make three obser-
vations: 1. The performance of FastTag aligns with
that of TagProp (so far the best algorithm in terms
of accuracy on this dataset), and significantly outper-
forms the other methods; 2. The leastSquares base-
line, which corresponds to FastTag without the tag
enricher, performs surprisingly well compared to exist-
ing approaches, which suggests the advantage of a sim-
ple model that can extend to a large number of visual
descriptor, as opposed to a complex model that can af-
ford fewer descriptors. One may instead more cheaply
glean the benefits of a complex model via non-linear
transformation of the features. 3. The duo classifier
formulation of FastTag, which adds the tag enricher,
alleviates the intrinsic label sparsity problem of image
annotation. It leads to a 10% improvement on preci-
sion, 28% on recall, and an overall 20% improvement
on F1 score over the leastSquares baseline. We also
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increase the number of tags with positive recall by 34.

Table 2 compares the performance of FastTag over
leastSquares and three existing methods on the ESP
game and IAPRTC-12 datasets. Similar trends are
observed. First, FastTag significantly outperforms the
baseline, MBRM (a generative mixture model) of Feng
et al. (2004), and JEC (a local NN method) of Maka-
dia et al. (2008) on both datasets. FastTag performs
slightly worse than TagProp. However, as we demon-
strate next, FastTag achieves enormous speedup over
TagProp in both training and testing.

Computational time. All experiments were con-
ducted on a desktop with dual 6-core Intel i7 cpus
with 2.66Ghz.

Figure 3 shows the F1 score vs. the training time re-
quired for different methods on these three datasets.
The time is plotted in log scale. We can make three ob-
servations: 1. TagProp outperforms all other related
work in terms of F1 measure, but is also the slowest to
train. It takes close to one hour to train on the rela-
tively small Corel5K dataset, which has around 4,500
training examples. For the larger datasets (ESPgame
and IAPRTC-12) with close to 17,000 examples, the
training time blows up to 16 hours. 2. The JEC
method of (Makadia et al., 2008) falls into the same
category of local NN method as TagProp, with the
difference that it uses the simple average of the 15
distance metrics to define neighbors. JEC does not
require training. However, we can see that it cannot
compete in terms of accuracy performance. Note that,
it still has O(n) test-time complexity, where n is the
number of training examples, because each query ex-
ample requires a neighbor-lookup during testing. 3.
The training time of FastTag is over 50x faster than
that of TagProp. Note the time reported in the fig-
ure for FastTag also includes the feature preprocess-
ing time, i.e., performing homogeneous feature map-
ping and random projection, which takes up the ma-
jority of the computation time. For a total of 16,748
training examples (dimensionality d = 15, 000) and
268 tags, FastTag takes on average 34 seconds to train
for one bootstrap iteration. The optimal number of
bootstrap iterations ranges from 1 to 8 in different re-
optimization iterations (The number of iterations is
usually very small at the beginning, but gradually in-
creases in the later re-optimization stages as it needs
bootstrapping to recover rare tags.). The algorithm
converges within a few re-optimization stages.

4.3. Sample annotations

Figure 2 shows example images from the ESP game
data set and their tag annotations obtained with Fast-

Tag. The figure shows three rows of results. The top
row consists of images with high F1 score, i.e. these
are images on which FastTag reliably retrieves relevant
tags. The middle row shows images that are picked
uniformly at random. Although not perfect, the vast
majority of tags are relevant to the particular image.
The bottom images have low F1 score, and represent
examples where FastTag fails to retrieve relevant tags.

4.4. Further analysis

While these benchmark data sets are appropriate for
algorithm comparisons, they may not be representa-
tive of the quality of training image tags found in the
wild. In practice, most of the images are annotated
with far fewer tags. We run the algorithms on images
with down-sampled sparse tags in order to gauge their
performance in this more realistic setting. Figure 4 de-
picts the comparison of FastTag and TagProp at differ-
ent levels of training set tag sparsity. We “stage” the
training data into successively larger tag sets, starting
by giving each image only one tag (down sampled from
the full set if more tags are available), then up to two
tags, and so on. We can see that FastTag out-performs
TagProp when the maximum number of provided tags
is small. In general, FastTag performs comparably to
Tagprop across different tag sparsity levels. In other
words, the tag enrichment mapping of FastTag indeed
helps to alleviate the intrinsic tag sparsity problem.

5. Conclusions

We present an image tagging method, FastTag, that
performs on-par with current state-of-the-art algo-
rithms, at a fraction of the computation cost. We re-
cast a supervised multi-label classification problem as
unlabeled multi-view learning. We define two classi-
fiers, one for each view of the data, and coerce them
into agreement via co-regularization in a joint loss
function. We trade off complexity in the classifiers
with non-linear mapping of the features and demon-
strate that such a choice pays off. FastTag is computa-
tionally efficient during training and testing yet main-
tains tagging accuracy. It can effectively deal with
sparsely tagged training data and rare tags that are
often obstacles in such large-scale learning problems.
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