
General Functional Matrix Factorization Using Gradient Boosting

Tianqi Chen tqchen@apex.sjtu.edu.cn

Shanghai Jiao Tong University, China

Hang Li hangli.hl@huawei.com

Huawei Noah’s Ark Lab, Hong Kong

Qiang Yang qyang@cse.ust.hk

Huawei Noah’s Ark Lab, Hong Kong

Yong Yu yyu@apex.sjtu.edu.cn

Shanghai Jiao Tong University, China

Abstract

Matrix factorization is among the most suc-
cessful techniques for collaborative filtering.
One challenge of collaborative filtering is how
to utilize available auxiliary information to
improve prediction accuracy. In this paper,
we study the problem of utilizing auxiliary
information as features of factorization and
propose formalizing the problem as general
functional matrix factorization, whose mod-
el includes conventional matrix factorization
models as its special cases. Moreover, we
propose a gradient boosting based algorith-
m to efficiently solve the optimization prob-
lem. Finally, we give two specific algorithms
for efficient feature function construction for
two specific tasks. Our method can construc-
t more suitable feature functions by search-
ing in an infinite functional space based on
training data and thus can yield better pre-
diction accuracy. The experimental results
demonstrate that the proposed method out-
performs the baseline methods on three real-
world datasets.

1. Introduction

Matrix factorization has been proved to be one of
the most successful approaches to collaborative fil-
tering. It assumes that the users’ preference matrix

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

Y ∈ Rn×m can be factorized into a product of t-
wo low rank matrices U ∈ Rd×n and V ∈ Rd×m as
Ŷ(i, j) = UT

i Vj , and conducts collaborative filtering
by exploiting U and V. In real world scenarios, many
types of auxiliary information are available besides the
matrix Y, and the use of them may enhance the predic-
tion accuracy. For example, information such as time
and location can help better predict users’ preferences
based on the contexts, while information such as user-
s’ ages and gender can help make better prediction on
the basis of user profiles. From the viewpoint of learn-
ing, the use of auxiliary information can overcome the
sparsity of the matrix data.

The use of auxiliary information in matrix factoriza-
tion has been studied, various models (Agarwal &
Chen, 2009; Rendle et al., 2011; Weston et al., 2012)
have been proposed. In these models, auxiliary in-
formation is encoded as features and factorization of
the matrix amounts to linearly mapping the feature
vectors in the feature space into a latent space. The
key question here is how to encode useful features to
enhance the performance of the model. Ideally one
would like to automatically construct “good” feature
functions in the learning process.

To the best of our knowledge, little work has been done
on automatic feature function construction in matrix
factorization. In this paper, we try to tackle the chal-
lenge by employing general functional matrix factor-
ization and gradient boosting. In our method, feature
functions are automatically constructed via searching
in a functional space during the process of learning.
The learning task is effectively and efficiently carried
out with the gradient boosting algorithm. The con-
tribution of the paper is as follows. (1) We propose

General Functional Matrix Factorization Using Gradient Boosting

U (i,x)3

U (i,x)2

U (i,x)1 f (i,x)1,1

f (i,x)2,1

f (i,x)3,1

f (i,x)1,2

f (i,x)2,2

f (i,x)3,2

f (i,x)1,s

f (i,x)2,s

f (i,x)3,s

f (i,x)1,s+1

Latent
Factor

Dimensions

Feature Functions Learned
Time dependent feature

Demographic feature

Training loss Function complexity

Model formalization

Section 2 Section 3
Training Procedure Specific Feature Functions

f (i,x)2,s+1

Constructing the new
feature function from

t2
t

User’s interest

t1

Topic: IT news

Age>15?

Major=CS?

Y N

Y N

1 0.3

-1

Split Time

Figure 1. Outline of Our Methods

a general formalization of functional matrix factoriza-
tion. (2) We introduce an efficient algorithm to solve
the optimization problem using gradient boosting. (3)
We give two specific feature construction algorithms
using time and demographic information. (4) We em-
pirically demonstrate the effectiveness of the proposed
method on three real-world datasets.

The rest of the paper is organized as follows. Section
2 gives the general description of our model. Section
3 describes two specific algorithms for feature func-
tion construction. Experimental result is provided in
Section 4. Related work is introduced in Section 5.
Finally, the paper is concluded in Section 6.

2. General Functional Matrix
Factorization

2.1. Model

Matrix factorization with auxiliary information can be
represented by the following equation, where the aux-
iliary information is denoted as x.

Ŷ(i, j,x) = UT (i,x)V(j,x) (1)

Note that for simplicity we always assume that there
is an extra constant column in both U and V to model
the bias effect. Further generalization can be consid-
ered, which involves the sum of multiple factorizations.
To simplify the discussion, we restrict our model to a
single factorization. The latent factor model in Equa-
tion (1) assumes that prediction Ŷ is a function of
user i, item j and auxiliary information x in the cur-
rent context. The matrix U is constructed by linear
combination of features. The kth dimension of U is
calculated by the following equation1

Uk(i,x) =
∑
s

αk,sfk,s(i,x), fk,s ∈ F (2)

1The indicator function can be used to encode user/item
index in the model.

The matrix V can be formalized similarly, while in
many applications it seems to be sufficient to define
one of them in a functional form (either U or V).
F is the set of candidate feature functions (space of
functions) which is closed under scaling and can be
infinite. The novelty of our model lies in that it in-
troduces functions as model parameters, which allows
us to construct “good” feature functions fk,s ∈ F in
learning of the latent factor model. To simplify the
notations, we will also use Ŷij for Ŷ(i, j,x), Uki for
Uk(i,x), and Vkj for Vk(j,x).

One very important factor in our method is the defi-
nition of the functional space F . As shown in Fig. 1,
we will give two examples of feature functions. The
first one is a user-specific k-piece step function that
captures users’ interest change over time; the second
one is a user-independent decision tree to model users
with their properties. The details will be introduced
in Section 3.

Relationship with Existing Models

General functional matrix factorization contains ex-
isting models as its special cases in which certain con-
straints are imposed on the model. The model degen-
erates to the conventional factorization models using
auxiliary information, when the feature functions fk,s
are predefined and fixed. The model becomes that of
functional matrix factorization in (Zhou et al., 2011),
when the feature functions in all the latent dimensions
are assumed to be the same decision tree.

2.2. Training

The objective function of our method is defined in the
following equation

L =
∑
i,j

l(Yij , Ŷij) +
∑
k,s

Ω(fk,s) (3)

where l is a differentiable convex loss function that
measures the difference between the prediction Ŷ and

General Functional Matrix Factorization Using Gradient Boosting

Algorithm 1 GFMF Training

repeat
update U :
for k = 1 to d do

collect statistics for L̃(f) in Equation (5)
construct function f∗ to optimize L̃(f) + Ω(f)
Uk(i,x)← Uk(i,x) + εf∗(i,x)

end for
update V :
for k = 1 to d do

update each Vk in the same way for U
end for

until converge

the target Y, and the summation is over all the ob-
served entries. The second term Ω measures the com-
plexity of the model (i.e., the feature functions) to
avoid over-fitting. With the objective function, a mod-
el employing simple and useful feature functions will be
selected as the best model. Because the model includes
functions as parameters, we cannot directly use tra-
ditional methods such as stochastic gradient descent
to find the solution. We propose exploiting gradien-
t boosting to tackle the challenge. More specifically,
we construct the latent dimensions additively: in each
step, we pick a latent dimension k and try to add a
new feature function f to the dimension. During the
step, search over the functional space F is performed
to find the feature function f that optimizes the ob-
jective function.

For a general convex loss function l, the search of f can
be hard. We approximate it by using the quadratic loss
function to simplify the search objective. We define

gij =
∂

∂Ŷij

l(Yij , Ŷij), hij =
∂2

∂2Ŷij

l(Yij , Ŷij) (4)

Suppose that we add a new feature f(i,x) to Uk(i,x)
while fixing the rest of parameters. The first part of
the objective function can be approximated by Taylor
expansion as:

L(f) =
∑
i,j

l(Yij , Ŷij + f(i,x)Vkj)

=
∑
i,j

l(Yij , Ŷij) +
∑
i,j

(gijVkj)f(i,x)

+
1

2

∑
i,j

(hijV
2
kj)f

2(i,x) + o(f2(i,x))

=L̃(f) + o(f2(i,x))

(5)

We use L̃(f)+Ω(f) to find the best feature function f .

The general procedure is shown in Algorithm 1, where
ε is a shrinkage parameter to avoid over-fitting.

Convergence of the Training

The choice of hij does not necessarily require that the
second order gradient is utilized to approximate the
loss function. The algorithm converges as long as the
following inequality holds

l(Yij , Ŷij+∆y) ≤ l(Yij , Ŷij)+gij∆y+
1

2
hij∆y

2+o(∆y2)

(6)

Proof. Denoting the upper bound as L̃(f), we have
L(εf∗) + Ω(εf∗) ≤ L̃(εf∗) + Ω(εf∗) ≤ L̃(0) + Ω(0) =
L(0). Here we assume 0 ∈ F and Ω(0) = 0. Thus the
objective function decreases at each step. 2

Time Complexity

The time complexity for calculating the sufficient s-
tatistics in the general algorithm is O(kN), if we buffer
the predictions of observed pairs in the training data,
where N represents the number of observed pairs in
the matrix. Furthermore, the time complexity of the
training algorithm depends on the specific setting of
feature function learning. We will provide the time
complexity of the specific learning algorithms in Sec-
tion 3, which is of log-linear order.

Integration with Existing Methods

The training algorithm is an iterative optimization
procedure like coordinate descent. This allows us to
easily integrate our approach with existing methods
for learning a latent factor model: to use our update
algorithm for the feature function construction and to
use stochastic gradient descent or coordinate descent
to optimize the other parts of the model.

2.3. Segmentation Function Learning

An important part of the training algorithm is to learn
the feature function f in each step. In this section, we
consider a general method for learning a class of fea-
ture functions. It first segments the data into several
parts using auxiliary information, and then learns an
independent parameter in each segment

f(i,x) = βp(i,x) (7)

The function p(i,x) defines the cluster index of an in-
stance, and a weight β is assigned to each cluster. As-

2This proof holds up to o(∆y2). To make the loss strict-
ly decrease, we can set hij to be a uniform upper bound of
the second order gradient to remove this error term.

General Functional Matrix Factorization Using Gradient Boosting

sume that there are |C| clusters and the instance set
of each cluster is defined as Ic = {(i, j,x)|p(i,x) = c}.
The complexity of feature function is defined as

Ω(f) = γ|C|+ 1

2
λ

|C|∑
c=1

β2
c (8)

The first term represents the number of segments; the
second term represents the norm of weights in each
cluster. For this problem, the optimal β can be found
analytically for a given segmentation as follows

β∗c = −
∑
i,j,x∈Ic gijVkj∑

i,j,x∈Ic hijV
2
kj + λ

(9)

the value will be mainly determined by λ when the
second order term is small. Putting β∗ back to L̃(f),
we obtain the objective function as

L̃(f)+Ω(f) = L̃(0)−1

2

|C|∑
c=1

(∑
i,j,x∈Ic gijVkj

)2
∑
i,j,x∈Ic hijV

2
kj + λ

+γ|C|

(10)
We can use Equation (10) to guide the search for a
segmentation function. The basic motivation of the
segmentation function is to make the latent dimensions
of data in the same segments as similar as possible.
One of the most widely used segmentation functions
is decision tree (Friedman et al., 2001). However, for
specific types of segmentation functions, we can use
specific algorithms rather than decision tree. We will
use the general methodology in this section to guide
the feature function constructions in Section 3.

3. Specific Feature Functions

3.1. Time dependent Feature Function

Time is very important auxiliary information in col-
laborative filtering. One important reason is that the
users’ preferences change over time. To model users’
local preferences, following the methodology in (Ko-
ren, 2009), we can define an indicator function for each
localized time bin as feature function; the model can
be written as

Ŷ(i, j, t) = UT
i,binid(t)Vj (11)

The idea is to learn a localized latent factor in each
time bin to capture the time dependent preference of
the user. The time bin size is fixed and needs to be
predefined. In real world scenarios, different users may
have different patterns of preference evolution. Some
users may change their interest frequently, while oth-
ers may like to stick to their interest. The patterns

U (i,t)3

U (i,t)2

U (i,t)1

Latent
Factor

Dimensions

Feature Functions Learned

Split Time

User i’s Preference on Topic 3
against time t

t

Feature function learned in
the second iteration, user i

Figure 2. Illustration of Time-dependent Feature Function

of changes for different topics may also differ; a us-
er might have constant favor on classical music for a
long time while changing her preference on pop music
very often. These patterns may be hard to capture
with a fixed size of time bins. We can utilize our mod-
el to learn more flexible feature functions over time.
Specifically, we define the user latent factor as

Uk(i, t) =
∑
s

fk,s,i(t) (12)

where each fk,s,i(t) is a user-specific |C|-piece step
function in t defined by segmentations on time. Fig.
2 gives an illustration of the model. Note that time
bin indicator function can also be viewed as a spe-
cial type of our time feature function. The difference
is that our method decides the number of segments,
changing points, and function values based on train-
ing data, which offers more flexibility. Using the result
in Section 2.3, the objective for discovering time seg-
mentation can be written as follows

argmin
t1,···t|C|−1

− 1

2

|C|∑
c=1

(∑
i,j,t∈Ic gijVkj

)2
∑
i,j,t∈Ic hijV

2
kj + λ

+ γ|C|

where Ic = {(i, j, t)|tc−1 ≤ t < tc}
t0 = −∞, t|C| = +∞

(13)

The optimal solution of the objective can be found
using a dynamic programming algorithm in quadratic
time complexity. We use a faster greedy algorithm;
it starts from all instances as independent segments,
then greedily combines segments together when an im-
provement of objective function can be made, until a
local minimum is reached.

General Functional Matrix Factorization Using Gradient Boosting

Algorithm 2 Tree Split Finding with Missing Value

Require: I: instance set, np: number of properties
gain← 0
Gall ←

∑
i,j∈I gijVkj ,Hall ←

∑
i,j∈I hijV

2
kj

for p = 1 to np do
Ip ← {(i, j, x) ∈ I|xp 6= missing}
{enumerate default goto right}
Gleft ← 0, Hleft ← 0
for (i, j, x) in sorted(Ip, ascent order) do
Gleft ← Gleft + gijVkj

Hleft ← Hleft + hijV
2
kj

Gright ← Gall −Gleft, Hright ← Hall −Hleft

gain← max(gain,
G2

left

Hleft+λ
+

G2
right

Hright+λ
− G2

all

Hall+λ
)

end for
{enumerate default goto left}
Gright ← 0, Hright ← 0
for (i, j, x) in sorted(Ip, descent order) do
Gright ← Gright + gijVkj

Hright ← Hright + hijV
2
kj

Gleft ← Gall −Gright, Hleft ← Hall −Hright

gain← max(gain,
G2

left

Hleft+λ
+

G2
right

Hright+λ
− G2

all

Hall+λ
)

end for
end for
output split and default direction with max gain

Time Complexity

Let mi to be the number of observed entries in the i-
th row. The time complexity of the greedy algorithm
for user i is O(mi logmi), where the log-scale factor
comes from the cost for maintenance of the priority
queue. The overall training complexity for one itera-
tion over the dataset is O(kN logm). As for the space
complexity, addition of two step functions can be com-
bined into a single step function, which allows us to
store Uk(i, t) efficiently and do not need to buffer U
for each instance.

3.2. Demographic Feature Function

Data sparsity is a major challenge for collaborative fil-
tering. The problem becomes especially severe for han-
dling new users, who may have only a few or even no
records in the system. One important type of auxiliary
information that can be used to deal with this prob-
lem is user demographic data such as age, gender and
occupation. The information can be relatively easily
obtained and has strong indication to user preferences.
For example, a young boy is more likely to favor ani-
mation, and a student of computer science may have
an interest in IT news. To learn useful feature func-
tions from the user demographic data for latent factor
model construction, we use x to represent the demo-

U (x)3

U (x)2

U (x)1

Latent
Factor

Dimensions

Feature Functions Learned

Topic: IT news source on microblog Feature function learned in
the second iteration

Age>15?

Major=CS?

Y N

Y N

1.5 0.5

-1

Figure 3. Illustration of Demographic Feature Function

graphic information, and define the latent factor to be

Uk(i,x) =
∑
s

fk,s(x) (14)

where each fk,s(x) is a user-independent feature func-
tion. We define as the feature function set F the set
of regression trees over user properties x. Fig. 3 gives
an intuitive explanation of the model. We place in the
leaf nodes example values that are used to illustrate
the structure of the trees, whereas in the real feature
trees they are calculated using Equation (9). The ad-
vantage of using trees as features is that it is possible to
select useful attributes, create high-order combination-
s of attributes, and automatically segment continuous
attributes to construct meaningful features.

Next, we describe the tree learning algorithm. The
tree construction is also guided using Equation (10) in
Section 2.3. In each round, we greedily enumerate the
attributes and choose to make a split on the attribute
that can give the maximum loss reduction. The pro-
cess is repeated until some stopping condition is met
(e.g maximum depth), and then a pruning process is
carried out to merge the nodes with less loss reduction.
One problem that we may face here is the existence
of missing values. That is, not all the attributes are
available for each user. To solve this problem, we de-
cide a default direction (either left child or right child)
for each node and adopt the default direction for clas-
sification when a missing value is encountered. The
splitting construction algorithm also enumerates de-
fault directions to find the best split; the algorithm is
shown in Algorithm 23.

3All features are assumed to be numerical here, and
categorical attributes are encoded in an indicator vector

General Functional Matrix Factorization Using Gradient Boosting

t

t1 t

Observed user’s interest on topic k
against time t

Wrong split point, is high

User’s interest

User’s interest

t1 t

User’s interest

Good balance of and

t1 t

User’s interest

t2 t3 t4 t5

Too many splits, is high

(a) Time dependent feature construction

Topic: IT news

Age>15?

Y N

-10.4

Topic: IT news

Age>15?

isStudent?

Tree Growth

High order feature: Age>15 isStudent

Y N

Y N

0.6 0.3

-1

(b) Tree construction

Figure 4. Illustration of Feature Construction

Time Complexity

The time complexity for one iteration over the dataset
is O(kDNp log(n) + kN). D is the maximum depth
of the tree and Np is the number of observed entries
in the user attribute matrix. We note that the com-
putation only depends on the size of observed entries.
We also note that the complexity for tree construction
(first part) does not depend on the number of observed
entries N . This is because we can make statistics for
each user before tree construction and thus have the
construction step only depend on the number of users.
Similarly, we only need to buffer U for each user.

3.3. Advantage of Our Method

Next, we will discuss why our method can enhance
the prediction accuracy. As previously explained, user
preference patterns are dynamic and hard to capture.
Fig. 4 illustrates our method of feature construction.
In the time dependent case, different users may have
different interest changing patterns. Our method can
effectively detect the dynamic changes in interest over
some topics along the time axis. The regularization in
our method will also lead to selection of a simple mod-
el when no change occurs in user preference. In the
user demographic case, our method can automatical-
ly create high order features and build the tree based
complex feature functions. The goal of optimization

Table 1. Statistics of Datasets

Dataset #user #item #observed

ml-1M 6,040 3,952 1 M
Yahoo! Music 1 M 624 K 252 M
Tencent Miroblog 2.3 M 6,095 73 M

is to find the feature functions which are simple and
have good fit to the data; automatically constructing
high order features and automatically detecting change
points make this possible and give our model the po-
tential of achieving better results.

4. Experiments

4.1. Dataset and Setup

We use three real-world datasets in our experiments.
The statistics of the datasets are summarized in Table
1. The first dataset is the Movielens dataset ml-1M,
which contains about 1 million ratings of 3,952 movies
by 6,040 users with timestamps. We use five-fold cross
validation to evaluate the performance of our method
and the baseline methods. The second dataset is the
Yahoo! Music Track1 dataset4, which contains 253
million ratings by 1 million users over 624 thousand
tracks from the Yahoo! Music website. The data is
split into training, validation, and test sets by time.
We use the official training and validation datasets to
train the model and the test set to make evaluation.
For the two datasets, we use RMSE (root mean square
error) as evaluation measure. The first two datasets
are utilized to evaluate the performance of our method
with time dependent feature function construction.

The third dataset we use is the Tencent Microblog5. It
is one of the largest Twitter-like social media services
in China. The dataset contains the recommendation
records of 2.3 million users over a time period of about
two months. The item set is defined as celebrities
and information sources on Tencent Microblog. The
dataset is split into training and testing data by time.
Furthermore, the test set is split into public and pri-
vate set for independent evaluations. We use the train-
ing set to train the model and use the public test set
to conduct evaluation. We also separate 1/5 data from
the training data by time for parameter selection. The
dataset is extremely sparse, with only on average two
positive records per user. Furthermore, about 70% of
users in the test set never occur in the training set.
User demographic information (age and gender) and

4http://kddcup.yahoo.com/datasets.php
5http://kddcup2012.org/c/kddcup2012-track1/data

General Functional Matrix Factorization Using Gradient Boosting

Table 2. Results on Movielen in RMSE

Method RMSE (d = 32) RMSE (d = 64)

MF 0.8519± 0.0008 0.8497± 0.0010
TimeMF 0.8474± 0.0009 0.8450± 0.0011
GFMF 0.8436± 0.0013 0.8417± 0.0011
SVD++ 0.8473± 0.0006 0.8456± 0.0005
TimeSVD++ 0.8423± 0.0007 0.8410± 0.0006
GFMF++ 0.8393± 0.0010 0.8377 ± 0.0008

social network information is available in the dataset.
For this dataset, we use MAP@k (mean average preci-
sion) as evaluation measure. The dataset is exploited
to evaluate the performance our method with demo-
graphic feature construction.

In all the experiments, the parameter λ of our model is
heuristically set to 2. We use the validation set (in ml-
1M via cross validation) to tune the meta parameters
for the baseline models and our model.

4.2. Results on Movielen

We compare six methods on the ml-1M dataset. The
compared methods are as follows:

• MF is the basic matrix factorization model that
does not utilize auxiliary information.

• TimeMF uses predefined time bins to model
users’ preference changes over time. The size of
time bins is tuned through cross validation.

• GFMF is our model that learns time dependent
feature functions.

• SVD++ is the matrix factorization model with
implicit feedback information (Koren, 2008).

• TimeSVD++ uses the same time feature func-
tion as TimeMF, and it also utilizes implicit feed-
back information.

• GFMF++ utilizes the GFMF part to train a
time dependent model and also uses implicit feed-
back information.

We train the baseline models and our model, when the
latent dimensionality d is 8, 16, 32 and 64, and find
that the results are consistent. We show the results
in two parameter settings n Table 2. Both TimeMF
and SVD++ give 0.004 reduction over MF in terms
of RMSE. GFMF is able to give a further 0.003 re-
duction of RMSE. Finally, the GFMF++ model that
combines implicit feedback information into our model

Table 3. Results on Yahoo! Music in RMSE

Method RMSE (d = 64) RMSE (d = 128)

SVD++ 23.06 23.02
TimeSVD++ 22.88 22.84
GFMF++ 22.80 22.77

achieves the best result. We can see that our model
brings more than 75% improvement compared with
TimeMF, which uses predefined time bins. This is
due to the fact that our method adapts the time bin
size and time split points for each user and can capture
users’ preference evolution more accurately.

4.3. Results on Yahoo! Music

We also investigate the performance of our method on
the Yahoo! Music dataset. We compare three methods
on this dataset, with the same model definitions as in
the previous section. For a time stamp that does not
appear in the training set, we assign a constant feature
to it, which is equal to the feature of the corresponding
last time bin in the training set. We add user and item
time bias terms to all the models to offset the bias
effect and focus on modeling of latent dimensions. We
compare the methods with different latent dimensions
(ranging in 8, 16, 32, 64, 128), and obtain consistent
results. We report the results for d = 64 and d = 128.

The experimental results are shown in Table 3. The
comparison shows GFMF++ gives 40% more RMSE
reduction than TimeSVD++ over SVD++. This in-
dicates that our method can learn good feature func-
tions in a large real-world dataset.

4.4. Results on Tencent Microblog

We compare six methods on the Tencent Microblog
dataset. We use logistic loss to train all the models.
Due to the extreme sparsity of the dataset, the per-
formance of matrix factorization is similar to the bias
model and thus is not reported. Because this is a so-
cial network dataset, it is interesting to see the impact
of social information as well, and thus we also include
social-aware models in the experiment.

• item bias is the basic model that only includes a
bias term to measure the popularity of each item.

• DemoMF is a latent factor model that utilizes
predefined feature functions on age and gender.
We segment ages into intervals in advance and use
an indicator function to represent the age feature
of each interval.

General Functional Matrix Factorization Using Gradient Boosting

Table 4. Results on Tencent Microblog in MAP

Method MAP@1 MAP@3 MAP@5

item bias 22.58% 34.65% 38.26%
DemoMF 24.07% 36.38% 40.00%
GFMF 24.48% 36.82% 40.43%
SocialMF 24.67% 37.16% 40.80%
SocialDemoMF 25.41% 37.98% 41.60%
SocialGFMF 25.70% 38.28% 41.90%

• GFMF is our model that learns demographic fea-
ture functions during the training process.

• SocialMF follows the approach of social-aware
matrix factorization (Jamali & Ester, 2010) that
utilizes social network information to construct
user latent factors.

• SocialDemoMF and SocialGFMF are inte-
grated models of two demographic-aware models
with SocialMF respectively.

We train the model, when the latent dimensionality d
is 8, 16, 32, and 64. The results for all the models are
optimal when d = 32, and thus we only report those
results here, as shown in Table 4. From the results,
we can first find that the bias effect is strong in this
dataset. However, improving the performance is stil-
l possible using social network and user demographic
information. The performances of GFMF are consis-
tently better than DemoMF. DemoMF improves up-
on the bias model in terms of MAP@1 by about 1.5%,
while GFMF is able to further improve the perfor-
mance by about 0.4%. This means GFMF can learn
good feature functions to utilize the user demographic
information. The results of SocialMF and GFMF
are similar, which means user demographic informa-
tion is as important as social information in this task.
Finally, SocialGFMF utilizing both the social and
user demographic information achieves the best per-
formance among all the methods.

5. Related Work

This work is concerned with matrix factoriza-
tion (Salakhutdinov & Mnih, 2008; Koren et al., 2009;
Lawrence & Urtasun, 2009), which is the among most
popular approaches to collaborative filtering. There
are many variants of factorization models to incor-
porate various auxiliary information, including time
information (Koren, 2009), attribute information (A-
garwal & Chen, 2009; Stern et al., 2009), context in-
formation (Rendle et al., 2011), and content informa-

tion (Weston et al., 2012). These models make use
of predefined feature functions to encode the auxil-
iary information. In (Zhou et al., 2011) a latent factor
model is proposed for a different task of guiding us-
er interview, which can be viewed as a special case of
our model. Their method cannot be applied to solve
the problems in our experiments because of its specific
model formulation (e.g., it cannot handle time depen-
dent features). Our method is unique in that it simul-
taneously learns the feature functions and the latent
factor model for CF which is, to our best knowledge,
is the first work in the literature.

From the perspective of infinite feature space, one re-
lated general framework is (Abernethy et al., 2009),
which implicitly defines features using kernel function-
s. Our method allows explicit definition and automatic
construction of features, and is scalable to deal with
a large amount of data. Our method employs gra-
dient boosting (Friedman, 2001), which is equivalent
to performing coordinate descent in the functional s-
pace. Gradient boosting has been successfully used in
classification (Friedman et al., 2000) and learning to
rank (Burges, 2010). To our knowledge, this is the first
time it is used in matrix factorization.

6. Conclusion

In this paper, we have proposed a novel method for
general functional matrix factorization using gradien-
t boosting. The proposed method can automatically
search in a functional space to construct useful fea-
ture functions based on data for accurate prediction.
We also give two specific algorithms for feature func-
tion construction on the basis of time and demographic
information. Experimental results show that the pro-
posed method outperforms the baseline methods on
three real-world datasets. As future work, we plan to
explore other feature function settings. We are also
interested in implementation of the method in a dis-
tributed environment to scale up to larger problems.
Finally, it is also interesting to apply our method to
other problems than collaborative filtering.

Acknowledgement

We thank the anonymous reviewers for their very
helpful reviews. Yong Yu is supported by grants
from NSFC-RGC joint research project 60931160445.
Qiang Yang is supported in part by Hong Kong CERG
projects 621010, 621307, 621211, and NSFC-RGC
project N HKUST624/09. We also appreciate the dis-
cussions with Wei Fan, Zhengdong Lu, Weinan Zhang,
and Fangwei Hu.

General Functional Matrix Factorization Using Gradient Boosting

References

Abernethy, J., Bach, F., Evgeniou, T., and Vert, J.P.
A new approach to collaborative filtering: Operator
estimation with spectral regularization. Journal of
Machine Learning Research, 10:803–826, 2009.

Agarwal, D. and Chen, B.C. Regression-based la-
tent factor models. In Proceedings of the 15th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’09, pp. 19–
28, New York, NY, USA, 2009. ACM.

Burges, C. From ranknet to lambdarank to lamb-
damart: An overview. Learning, 11:23–581, 2010.

Friedman, J., Hastie, T., and Tibshirani, R. Additive l-
ogistic regression: a statistical view of boosting. The
annals of statistics, 28(2):337–407, 2000.

Friedman, J., Hastie, T., and Tibshirani, R. The el-
ements of statistical learning, volume 1. Springer
Series in Statistics, 2001.

Friedman, J.H. Greedy function approximation: a gra-
dient boosting machine. Annals of Statistics, pp.
1189–1232, 2001.

Jamali, M. and Ester, M. A matrix factorization tech-
nique with trust propagation for recommendation in
social networks. In Proceedings of the fourth ACM
conference on Recommender systems, RecSys ’10, p-
p. 135–142, New York, NY, USA, 2010. ACM.

Koren, Y. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Pro-
ceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, KDD ’08, pp. 426–434, New York, NY, USA,
2008. ACM.

Koren, Y. Collaborative filtering with temporal dy-
namics. In Proceedings of the 15th ACM SIGKD-
D international conference on Knowledge discovery
and data mining, pp. 447–456, 2009.

Koren, Y., Bell, R., and Volinsky, C. Matrix factor-
ization techniques for recommender systems. Com-
puter, 42, August 2009.

Lawrence, N.D. and Urtasun, R. Non-linear matrix
factorization with gaussian processes. In Proceed-
ings of the 26th International Conference on Ma-
chine Learning, pp. 601–608, Montreal, June 2009.
Omnipress.

Rendle, S., Gantner, Z., Freudenthaler, C., and
Schmidt-Thieme, L. Fast context-aware recommen-
dations with factorization machines. In Proceedings

of the 34th ACM SIGIR Conference on Reasearch
and Development in Information Retrieval. ACM,
2011.

Salakhutdinov, R. and Mnih, A. Probabilistic matrix
factorization. In Advances in Neural Information
Processing Systems 20, pp. 1257–1264. MIT Press,
Cambridge, MA, 2008.

Stern, D.H., Herbrich, R., and Graepel, T. Match-
box: large scale online bayesian recommendations.
In Proceedings of the 18th international conference
on World wide web, WWW ’09, pp. 111–120, New
York, NY, USA, 2009. ACM.

Weston, J., Wang, C., Weiss, R., and Berenzweig, A.
Latent collaborative retrieval. In International Con-
ference on Machine Learning (ICML), Edinburgh,
Scotland, June 2012.

Zhou, K., Yang, S.H., and Zha, H. Functional ma-
trix factorizations for cold-start recommendation. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in Infor-
mation Retrieval, SIGIR ’11, pp. 315–324, New Y-
ork, NY, USA, 2011. ACM.

