
Near-optimal Batch Mode Active Learning
and Adaptive Submodular Optimization

Yuxin Chen yuxin.chen@inf.ethz.ch
Andreas Krause krausea@ethz.ch

ETH Zurich, Universitätstrasse 6, 8092 Zürich, Switzerland

Abstract

Active learning can lead to a dramatic
reduction in labeling effort. However, in
many practical implementations (such as
crowdsourcing, surveys, high-throughput
experimental design), it is preferable to query
labels for batches of examples to be labelled
in parallel. While several heuristics have been
proposed for batch-mode active learning, little
is known about their theoretical performance.

We consider batch mode active learning and
more general information-parallel stochastic
optimization problems that exhibit adaptive
submodularity, a natural diminishing returns
condition. We prove that for such problems,
a simple greedy strategy is competitive
with the optimal batch-mode policy. In
some cases, surprisingly, the use of batches
incurs competitively low cost, even when
compared to a fully sequential strategy. We
demonstrate the effectiveness of our approach
on batch-mode active learning tasks, where
it outperforms the state of the art, as well
as the novel problem of multi-stage influence
maximization in social networks.

1. Introduction

Active learning, i.e., sequential selection of unlabeled
examples for labeling, can lead to dramatic (potentially
exponential) reduction in labeling effort as compared to
passive learning. In many practical settings, however,
fully sequential selection, where the choice of the next
example depends on all previous labels, is infeasible.
For example, when recruiting workers on Amazon
Mechanical Turk for crowdsourcing annotation, one

Proceedings of the 30 th International Conference on
Machine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

usually generates tasks comprising several unlabeled
examples. Similarly, in high-throughput experimental
design, it is often more cost-effective to perform several
experiments in parallel. Such problems have been stud-
ied from the perspective of batch-mode active learning.
While several heuristics have been proposed, little
is known about their theoretical performance. More
generally, in many sequential decision problems, we
would like to choose multiple actions to be performed
in parallel, and receive feedback only after all actions
have been carried out. This feedback then informs the
next batch of actions. For example, consider a viral
marketing problem (Kempe et al., 2003), where we
wish to spur demand for a new product by influencing
a set of nodes in a social network. In such a setting it is
natural to conduct a multi-stage marketing campaign,
where each stage is informed by the observed effec-
tiveness of the previous stage. Similar problems arise
in resource allocation in computational sustainability
(Golovin et al., 2011), and vaccination problems in
epidemiology (Anshelevich et al., 2009).

In this paper, we study information-parallel learning
and decision making. In particular, we tackle batch-
mode active learning and more general stochastic
optimization problems, such as influence maximization
in social networks, that exhibit adaptive submodularity
(Golovin & Krause, 2011), a natural diminishing
returns condition. We prove that, for such problems,
a simple BatchGreedy approach, which greedily
selects examples within a batch, and assembles batches
in a greedy manner, is competitive with the optimal
batch-mode policy. Furthermore, we prove that
surprisingly, in some natural settings, the price of
parallelism is bounded: the use of batches incurs
competitively low cost irrespective of the batch size,
even when compared to a fully sequential policy. We
demonstrate the effectiveness of our approach on
active learning tasks, as well as adaptive influence
maximization in social networks. Our approach is the
first to provide both strong guarantees and compelling

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

empirical performance for the important practical
problem of batch mode active learning, where Batch-
Greedy improves on random selection by≈ 48% more
than the state of the art does on our test sets.

In summary, our main contributions are:

• We consider a general approach for information
parallel learning and decision making,

• prove strong performance guarantees for a simple
BatchGreedy algorithm,

• provide practical algorithms for batch-mode active
learning and influence maximization, and

• demonstrate the empirical effectiveness of the
algorithms for both applications.

2. Problem Statement and Applications

We first describe two different applications that moti-
vate our research. Then, in Section 2.2 we introduce a
formalism that captures both of them, and then prove
results for this more general model in Section 3.

2.1. Motivating applications

Pool-based batch mode active learning Con-
sider a simple model of pool-based Bayesian active
learning. We are given a pool V of unlabeled examples
x1, . . . ,xn. We use y1, . . . , yn ∈ {+1,−1}, where yi is
the (initially unknown) label1 of example xi. Our goal
is to learn a classifier h : V → {+1,−1} out of a finite
set H of hypotheses, each corresponding to distinct la-
belings of the pool V, and containing the true labeling,
i.e., a hypothesis h such that h(xi) = yi for 1 ≤ i ≤ n.
For now let us assume that we have a uniform prior
P (h) = 1

|H| over the hypotheses. We later show that

our results also hold for more general priors, as well as
for the prior-free (non-Bayesian) setting.

Suppose we have already observed the labels yA
for a subset A ⊆ V of the pool. In this case,
some of the hypotheses h ∈ H will be inconsistent
with the observations yA, and we use the notation
H(yA) = {h ∈ H : i ∈ A ⇒ yi = h(xi)} to refer to the
version space (set of hypotheses) consistent with the
observation yA. We wish to actively select a minimum
number of unlabeled examples and obtain their labels
yA, such that these allow us to uniquely identify h
(i.e., infer the labels of all unlabeled examples), so that
|H(yA)| = 1. An optimal active learning strategy is
one that minimizes the expected number of labels re-
quested, in expectation over our prior P (h). Similarly,
we can consider strategies for batch-mode active learn-
ing, which pick batches of k unlabeled examples at a

1Note that our approach naturally extends to≥ 2 labels.

time, then request all labels for the selected batch in par-
allel, and then proceed to pick the next batch given the
labels obtained so far. See Figure 1 for an illustration.

Finding such an optimal policy is a formidable task.
In fact, even representing an optimal batch policy may
require exponential space. In the following, we will
describe a general class of batch mode optimization
problems, and present a simple greedy algorithm that
is provably competitive with the optimal batch policy.

Multi-stage influence maximization in social
networks Suppose we would like to stimulate
demand for a novel product. The idea behind viral
marketing is to utilize the social network structure con-
necting the potential customers: By giving the product
to a subset of target people for free, these may influence
their friends, potentially creating a cascade of influence
motivating many more consumers to adopt the product.

This problem was formalized by Kempe et al. (2003),
who show that many natural models of influence
(such as the independent cascade, or linear threshold
models) can be modeled stochastically. Formally,
let V = {1, . . . , n} be the set of nodes in the social
network, and let Ys ⊆ V be the (random) set of nodes
eventually influenced if s is initially targeted. If a set
A of nodes is initially targeted, the eventual influence

is
∣∣∣⋃s∈A Ys∣∣∣ with probability2 P (YA) =

∏
s∈A P (Ys).

Instead of committing to all target nodes in advance,
it is natural to consider conducting a multi-stage
advertising campaign: In each stage certain nodes are
targeted, then the effect of the campaign is observed,
then the next target nodes are chosen, and so on.
Implementing such a procedure may be much more
practical if many nodes can be selected in each stage, to
be influenced in parallel. In the following, we propose
a simple greedy approach that is competitive not only
with the optimal multi-stage strategy but even with an
optimal fully sequential strategy.

2.2. General Problem Statement

We now formalize a class of interactive optimization
problems generalizing the two examples of Section 2.1.

Adaptive Submodular Optimization We wish
to adaptively select items A out of a finite set of n
items V = {1, . . . , n} (unlabeled examples; target
nodes). Each item s ∈ V is associated with a random
variable Ys, taking values in a (finite) setO of outcomes
(labels; sets of nodes eventually influenced). We use
YV = [Y1, . . . , Yn], to refer to the collection of all

2Here we focus on factorial priors. Dependencies can be
modeled as well (Golovin & Krause, 2011).

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

x2 x3 x4 x5 x6 x7 x8x1

--
x9 x10 x11 x12

x2 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12

+

x2 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12

(a) 1-dimensional data

{x3, x6, x9}

{x1, x2} {x7, x8}{x4, x5} {x10, x11, x12}

{+, +, +}
{�,�, +}{�, +, +}

{�,�,�}

(b) The policy tree

Figure 1. Illustration of batch mode (k = 3) active learning, in the simple case of one-dimensional data and binary
threshold hypotheses. Figure 1(a) shows the unlabeled data (top row), first batch selected for labeling (middle row), and
received labels, as well as second selected batch (bottom row). Figure 1(b) illustrates the decision tree representing the
BatchGreedy policy, with the branch taken for the example of Figure 1(a).

variables, and assume that YV is distributed according
to a joint distribution P (YV). Whenever an item s is
selected, the corresponding variable Ys = ys is revealed.
This information can be used to select subsequent items.
We model the value associated with a set of items A,
and corresponding observations yA ⊆ V ×O by means
of an objective function3 f : 2V×O → N. In our active
learning example, we can use f(yA) = |H| − |H(yA)|,
i.e., the number of the hypotheses eliminated through
the labeled examples yA. In our viral marketing
example, we choose f(yA) = |⋃s∈A ys|, i.e., the
number of nodes eventually influenced. Furthermore,
let S ⊆ V ×O be a set of observations. Note that while
technically yA and S do not denote the same objects
(S denotes a set of item/observation pairs, yA denotes
the observations corresponding the item setA), we will
sometimes use these notations interchangeably to refer
to observations. In both applications, f satisfies the
following natural four properties4:

1. Normalized: f(∅) = 0, i.e., we derive no utility
from knowing nothing.

2. Monotonic: Whenever S ⊆ S ′ ⊆ V × O, then
f(S) ≤ f(S ′) – adding labels never hurts.

3. Submodular : whenever S ⊆ S ′ ⊆ V × O and
(j, y) ∈ V ×O \ S ′, it holds that f(S ∪ {(j, y)})−
f(S) ≥ f(S ′ ∪ {(j, y)}) − f(S ′). Thus, adding a
label helps more if we have observed few labels so
far, and less if we have obtained many labels.

4. Adaptive submodular: Consider the conditional
expected marginal gain of item j w.r.t. to
observations S ⊆ V ×O,

∆f (j |S)=
∑
y

P (Yj=y |S)
[
f(S∪{(j, y)})−f(S)

]
.

(2.1)

3Note that if f takes rational values, we can normalize
it to take integer values.

4As a discrete analog of convexity, in many ways
(adaptive) submodularity is a minimal assumption needed
to ensure (approximate) tractability.

Function f together with distribution P (YV)
is called adaptive submodular, if, whenever
S ⊆ S ′ ⊆ V × O and P (S ′) > 0 we have
∆f (j | S) ≥ ∆f (j | S ′). Thus, the gain of item j,
in expectation over its unknown label, can never
increase as we gather more information.

Our goal will be to find a policy π for selecting items
(and associated observations) yA, such that we achieve
a certain quota of value Q ≥ 0, i.e., f(yA) ≥ Q, while
at the same time minimizing the number of items A
used. In the active learning example, Q = |H| − 1:
achieving this quota is a necessary and sufficient con-
dition for identifying the true hypothesis. In influence
maximization, Q may be a certain fraction of the size
of the social network. In the following, w.l.o.g.5, we
assume f(yV) = Q for all yV ∈ supp(P).

Formally, a policy π : 2V×O → V is a partial mapping
from observations yA ⊆ V × O to the next item to
be picked (or to stop, if yA /∈ dom(π)). Therefore,
if the variables YV are in state YV = yV , the policy
obtains a set of observations, which is denoted as
S(π,yV) ⊆ V × O. We define the expected and
worst-case cost of policy π as

costac(π)=EyV [|S(π,yV)|] ; costwc(π)=max
yV
|S(π,yV)|

Our goal, is to find, out of a set Π of candidate policies
a feasible policy π∗ with minimum cost,

min
π∈Π

cost(π) s.t. f(S(π,yV))≥Q for all yV w. P (yV)>0.

Batch selection Based on this notation, we can
study how different classes of policies compare in
terms of their cost. On the one extreme, we have
fully sequential policies Πseq, where the choice of each
item may depend on the labels of all previous items
selected. On the other extreme, we have constant, or

5If f(yV) > Q, we replace f with the – still submodular
– function fQ(yA) = min(f(yA), Q).

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

non-adaptive policies Πconst which commit to items
picked in advance, before making any observations.
However, fully sequential and constant policies are only
two extremes on a spectrum. We are interested in poli-
cies Π[k] that sequentially pick batches of size k. Any
policy π ∈ Π[k] starts selecting a fixed set A1 ⊆ V of k
items. It then obtains all labels yA1

. If f(yA1
) ≥ Q, it

stops. Otherwise, if batches A1, . . . ,A`−1 have already
been selected, it picks batch A` ⊆ V of k items, obtains
the labels, and stops if f(yA1∪···∪A`

) ≥ Q.

Obtaining an optimal batch policy is a formidable task:
There are

(
n
k

)
batches of size k, and an optimal batch

policy assembles such batches into a decision tree of
possibly exponentially large branching factor. In the
following, we describe a simple greedy algorithm, and
prove that it implements a batch policy with cost com-
petitive to that of the optimal batch policy. Moreover,
we prove that under some additional conditions on
the distribution P (YV), the greedy algorithm is even
competitive with the optimal fully sequential policy.

3. Near-optimal Batch Selection:
Greedy Algorithms and Guarantees

We consider a simple, greedy approach towards con-
structing batch policies. This policy, BatchGreedy,
selects items within a batch in a greedy manner, then
receives observations for all items in the batch, then
selects the next batch in a greedy manner, conditional
on all observations made so far, and so on. An
important challenge in batch selection is the fact that
the value of items (e.g., unlabeled examples) selected
depends on observations (e.g., labels) obtained only
after the entire batch is selected. In active learning
for example, one wishes to select examples within a
batch that are likely to be informative individually, but
also diverse (minimize redundancy). BatchGreedy
addresses this challenge by using a suitable notion of
marginal benefit of an item, that takes into account
all observations made so far, as well as items that have
already been selected within the batch (but no obser-
vation has been obtained yet). Formally, we generalize
the conditional marginal benefit (2.1) of item s by

∆f (s | A,yB) = EyV

[
f(y{s}∪A∪B)− f(yA∪B) | yB

]
.

(3.1)
Thus, ∆f (s | A,yB) reflects the expected marginal
gain of item s, when items B have been selected and
the corresponding observations yB have been made,
and items A have already been selected, but no obser-
vations have yet been made about them. Therefore,
(3.1) captures possible redundancy (diminishing gains)
of candidate item s w.r.t. to labels already obtained,
as well as labels that will likely be obtained within the

Algorithm 1 The BatchGreedy algorithm.

Input: Quota Q. Objective f and prior P (yV)
yB ← ∅
repeat
A ← ∅
for i = 1 to k do
s← arg maxs′ ∆f (s′ | A,yB); A ← A∪ {s}

end for
Observe yA and set yB ← yB ∪ yA

until f(yB) ≥ Q

batch. Hence it encourages diversity among the items
selected in the batch.

Using this notation, the BatchGreedy policy will
greedily select the i-th element in the j-th batch

si,j = arg max
s∈V

∆f (s | {s1,j , . . . , si−1,j},yB),

where yB is the set of observations (labeled examples)
from batches up to j − 1. After a batch is completed,
all labels are requested and added to the observations
yB. Pseudocode is presented in Algorithm 1.

If we set the batch size k to 1, BatchGreedy reverts
back to a fully sequential, greedy active learning
scheme. In particular, for the active learning example
from Section 2.1, this algorithm is known as General-
ized Binary Search, studied extensively in the literature
(see e.g., Dasgupta (2004)). In fact, it is known that
this simple greedy algorithm is near-optimal: its cost is
upper-bounded by O(log |H|) times that of the optimal
sequential policy. More generally, Golovin & Krause
(2011) prove that this result can be generalized to
any adaptive optimization problems that are adaptive
submodular. As our first main theoretical contribution,
we generalize their results, which only hold for fully
sequential policies, to the batch setting.

We first show that BatchGreedy is near-optimal as
compared to the optimal batch selection policy.

Theorem 1. Let OPTac,k be the expected cost
and OPTwc,k be the worst-case cost of an opti-
mal policy selecting batches of size k. Further let
δ = minyV∈supp(P) P (yV). Then for the cost of the
policy πG implementing BatchGreedy it holds that

costac(πG) ≤ OPTac,k
(e

e− 1

)(
lnQ+ 1

)
, and

costwc(πG) ≤ OPTwc,k
(e

e− 1

)(
ln
Q

δ
+ 1
)
.

Note that the guarantee of Theorem 1 matches (up
to a small constant factor) hardness results known for
the fully sequential (k = 1) setting, which it general-
izes, therefore BatchGreedy is near-optimal under

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

computational constraints. Further note that for the
active learning application, Theorem 1 guarantees that
in the non-Bayesian setting (i.e., without any prior6),
BatchGreedy requires at most a factor of O(ln |H|)
more batches than the optimal batch-mode policy.

As our second main theoretical result, we also prove
that, perhaps surprisingly, under certain conditions
BatchGreedy is not just competitive with the
optimal policy that is restricted to selecting batches of
examples: It is competitive with respect to an optimal
fully sequential policy, which is not required to obey
such a restriction. The additional condition needed
is that the variables Y1, . . . , Yn are independent. This
assumption is satisfied in the influence maximization
application, but not in the active learning problem.

Theorem 2. Fix β > 0. Let OPTwc be the worst-case
cost of an optimal sequential policy π∗, constrained
to picking a number of items which is a multiple
of k. Further suppose that the variables Y1, . . . , Yn
are independent. Then for the cost of the policy πG
implementing BatchGreedy, run until it achieves
f(πG) ≥ Q− β it holds that

costwc(πG) ≤ OPTwc
(
e/(e− 1)

)2(
ln
Q

β
+ 1
)
.

Moreover, it holds that P
(
f(S(πG,yV)) ≥ Q

)
≥ 1− β.

The proofs are given in the supplementary material.
The key technical insight behind the proof is that a
bound on the adaptivity gap for stochastic submodular
maximization of Asadpour et al. (2008), adapted and
generalized to our setting, allows us to interpret the
BatchGreedy policy as an approximate implemen-
tation of the fully sequential greedy policy. Note that
Theorem 2, for technical reasons, is of a slightly dif-
ferent flavor than Theorem 1: it compares the optimal
policy π∗ always achieving quota Q with one achieving
the quota Q only with probability 1 − β. By choosing
β < minyV∈supp(P) P (yV), it can be guaranteed that
in fact f(S(πG,yV)) = Q for all yV with nonzero prob-
ability. In this case, the bound on the worst-case cost
of Theorem 2 is only a factor of e/(e− 1) ≈ 1.58 larger
than that of Theorem 1, irrespective of the batch size.

4. Implementation Details

As is, BatchGreedy is not immediately practical
for the applications from Section 2.1: Computing the
marginal gains (3.1) requires computing expectations

6In the special case of uniform prior, δ = 1
|H| . For

general priors (with small δ), BatchGreedy can be proved
to yield anO(log |H|) approximation, following analogously
from Theorem 9.1 in Golovin & Krause (2011)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) ε = 0

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b) ε = 0.2

Figure 2. Illustration of Algorithm 2 in 2-d space. Figure
2(a) shows the sampling result in noise-free case (red arrows
are constraints); Figure 2(b) shows sampling result when
20% of the observations are noisy: hypotheses that violate
more constraints induce lower confidence.

Algorithm 2 Hit-and-run hypothesis sampler for lin-
ear separators and noisy observations

Input: Labeled examples yB ∈ Rd, N , number of
mixing iterations T , noise level ε ∈ [0, 0.5).
Output: Hypotheses set Ĥ.
w0 ← a random point on d-dim. unit sphere Sd

for i = 1 to N do
θ ← a random direction (unit vector) in Sd

Set L ← Sd ∩ {w | w = wi−1 + θρ, ρ ∈R}, and
select wi from sector L with ρ ∼ p(ρ) ∝ (ε

1−ε)m,

where m = |{x : x ∈ B, (x, sign(wT
i x)) /∈ yB}|

Add every T -th sample hi(x) = sign(wT
i x) to Ĥ

end for

that may be intractable. In the influence maximization
application, it is possible to perform Monte-Carlo
sampling of the influence process to evaluate (3.1) up
to arbitrarily small multiplicative error (1 + ε) (Kempe
et al., 2003). Furthermore, with a slight generalization
of the arguments of Golovin & Krause (2011), using
such an approximation of (3.1) increases the cost by at
most the same factor (1 + ε).

To obtain a practical algorithm for batch mode active
learning, further challenges arise: BatchGreedy as is
requires that H is finite, and its running time depends
polynomially on |H|. Furthermore, it requires that
observations are noise free. As a practical implemen-
tation, we focus on active learning of linear separators,
i.e., h(x) = sign(wTx). In our experiments we use
a Markov-Chain Monte Carlo sampler in order to
generate samples from the posterior distribution over
hypotheses P (w | yS). In particular, we build on the
hit-and-run sampler (Smith, 1984; Lovasz, 1998), which
is known to lead to a provably efficient near-optimal es-
timation for the fully sequential active learning problem
(Gonen et al., 2011). To handle noise, at each iteration,
we generalize the hit-and-run sampler by sampling the

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Algorithm 3 Approximate implementation ofBatch-
Greedy for batch-mode active learning.

Input: Hypotheses H, batch size k, noise level ε
Sample Ĥ = {h1, . . . , hN} from H using Algo. 2

Define P̂ (H) = 1
N

∑N
`=1 δh`

; set yB ← ∅
repeat
A ← ∅
for i = 1 to k do

s←arg min
s′

N∑̀
=1

[
P̂ (H({(x, h`(x)) :x∈A∪{s′}}))

]
A ← A∪ {s}

end for
Observe yA and set yB ← yB ∪ yA
Sample Ĥ = {h1, . . . , hN} (Algo. 2) using yB
Update approximation P̂ (H) = 1

N

∑N
`=1 δh`

.

until (1 − ε) of all hypotheses in the support of P̂
induce same labeling on the unlabeled pool

entire version space, while varying the sample density
according to a likelihood function. In the case of sym-
metric binary channel (i.e., labels are flipped with prob-
ability ε), we sample hypotheses with probability re-
lated to the number of mistakes. This way, our method
can handle data that are not linearly separable. Algo-
rithm 2 presents details of our sampler, and our final
batch-mode active learning algorithm is formalized in
Algorithm 3. The time complexity of random sampling
(Algorithm 2) isO(TN), where T is the number of mix-
ing iterations. Once we discretized the hypothesis space
withN samples, it takesO(knN) steps for Algorithm 3
to select a batch of k items. Hence the time complexity
of Algorithm 3 selecting one batch is O(N(T + kn)).

Furthermore, in both applications, we can use lazy
evaluations to speed up the BatchGreedy algorithm
(as used in Golovin & Krause (2011) for the fully
sequential setting). Lazy evaluations utilize the fact
that the marginal gains ∆f (s | A,yB) are monoton-
ically decreasing in both A and yB. This insight can
be exploited by utilizing priority queues to accelerate
selection of the next greedy choice.

5. Experimental Results

We empirically evaluate BatchGreedy on several
data sets and on both applications discussed in Sec-
tion 2.1. Our emphasis is on comparingBatchGreedy
with baselines, as well as empirically quantifying the
price of parallelism.

Batch mode active learning of linear separators
One natural way to perform batch mode active learn-
ing is to select batches comprising the k most uncertain
examples. As one baseline, we use “batch mode margin-

based active learning” (k-batch SVM) to greedily select
batches of examples, as considered in Jain et al. (2010)
for large-scale active learning. In this method, we ran-
domly chose examples until there are two distinct la-
bels, and we train SVM classifiers based on the labeled
examples at the end of each batch. The next k un-
labeled examples with the smallest distances from the
decision boundary wTx + b = 0 are selected for label-
ing. Another baseline approach we employ is the state
of the art batch mode active learning algorithm (KLR-
BMAL) of Hoi et al. (2006) that selects batches of k
examples that are informative w.r.t. the Fisher informa-
tion matrix. To see how well the parallelization of the se-
lection process approximates the sequential algorithm,
we compare with the fully sequential active learning
algorithm, where only one example is selected and ob-
served at each iteration, as well as a “passive learning”
approach, where we make no observations during the
learning process (corresponding to infinite batch size).
We also compareBatchGreedy against the sequential
active learning algorithm with purely random selection.

For fair comparison, we use SVM as classifier for all
competing algorithms, so the methods only differ by
the set of examples chosen for labeling. We implement
the KLR-BMAL algorithm using class membership
probabilities inferred from the hypothesis sampler, and
set the smoothing parameter δ to be 0.1 (Hoi et al.,
2006). As for our sampler, we set ε to be 0.1. We
normalize the data so that each feature has mean 0 and
standard deviation 0.5, and place independent normal
priors on each dimension. The results for all the batch
mode active learning experiments are obtained from
150 random starts.

We run our the first set of experiments on two UCI
data sets7, WDBC (569 instances, 32-d) and Australian

(690 instances, 16-d), using a fixed number of 5000
sampled hypotheses in each random trial. Figure 3(a)
and Figure 3(b) depict the 150-trial average percentage
of mistakes made by each algorithm when predicting
the labels of the corresponding data set, for a batch
size of k = 10. Figure 3(b) shows an improvement of
BatchGreedy over both KLR-BMAL and the 10-
batch SVM algorithm. On both datasets, surprisingly,
BatchGreedy is competitive with the fully sequential
greedy algorithm, with only minor differences. We
also evaluate BatchGreedy on the MNIST data
set. For each of the 14780 instances, we reduced the
dimensionality down to 10 via PCA, and compare
BatchGreedy with the sequential, KLR-BMAL,
10-bacth SVM, passive and random algorithms through
150 random trials. We observe that, even using 5000

7http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

10 20 30 40 50
0

2

4

6

8

10

12

14

Number of labels requested

%
 M

is
ta

ke
s

10−batch SVM

passive

10−batch greedy

random
KLR−BMAL

sequential

sequential svm

(a) [A] WDBC

10 20 30 40 50

14

16

18

20

22

24

26

28

30

Number of labels requested

%
 M

is
ta

ke
s

10−batch SVM

passive

random

10−batch greedy

KLR−BMAL

sequential
sequential svm

(b) [A] Australian

10 20 30 40 50
0

1

2

3

4

5

6

7

8

Number of labels requested

%
 M

is
ta

ke
s

passive
KLR−BMAL

sequential

sequential svm

10−batch greedy

10−batch SVM

random

(c) [A] MNIST

20 30 40 50 60 70

2

3

4

Number of labels requested

%
 M

is
ta

ke
s

3000 s.

5000 s.

500 s.

1000 s.

2000 s.

300 s.

(d) [A] WDBC Samples

0 200 400 600 800
0

5

10

15

20

25

30

35

%
 N

od
es

 n
ot

 c
ov

er
ed

Number of nodes selected

Non−adaptive

10−batch

100−batch

sequential

(e) [I] Epinions

0 200 400 600 800
0

10

20

30

40

50

%
 N

od
es

 n
ot

 c
ov

er
ed

Number of nodes selected

Non−adaptive

10−batch

100−batch
sequential

(f) [I] Slashdot

Figure 3. Results on the [A] active learning and [I] influence maximization problems. For [A], BatchGreedy outperforms
the state of the art by ∼ 48% on average across the three datasets w.r.t the improvement over random selection. Note the
low “price of parallelism” of BatchGreedy: Batch selection performs almost as well as fully sequential selection.

sample hypotheses for each iteration, BatchGreedy
is significantly faster than KLR-BMAL, as the cost of
BatchGreedy grows linearly w.r.t. the number of hy-
potheses and number of examples, while KLR-BMAL
costs quadratically w.r.t. the number of examples.
In fact, for the same settings, it takes KLR-BMAL
approx. 50 seconds to select one example, compared to
approx. 10 seconds for BatchGreedy.

We also study the impact of the discretization param-
eter M (i.e., number of hypotheses used to sample the
version space), varying it from 300 to 5000, and we
plot the results for each setting in Figure 3(d). For the
WDBC data set, we can observe a statistically significant
performance improvement across the 150 trials when
increasing the number of sampled hypotheses used
from 300 to 2000. Starting from 3000 samples, however,
the advantage of introducing more samples begins to
decrease dramatically. As there is a linear increase in
running time as we employ more samples, we suggest to
pick a moderate M to balance efficiency and accuracy.

Multi-stage influence maximization in Social
Networks We also apply BatchGreedy to the
multi-stage influence maximization problem described
in Section 2.1. We use two data sets from the SNAP
repository8: the Epinions social network (with 75879

8http://snap.stanford.edu/

nodes and 508837 directed edges, where members of
the site can decide whether to “trust” each other) and
the Slashdot social network (with 82168 nodes and
948464 directed edges, where users are allowed to tag
each other as friends or foes). For each network, we
take the subgraph induced by the top 1000 nodes with
largest outdegree. We use the independent cascade
model (Kempe et al., 2003). In our simulations, we
assume that each person has a certain, fixed probability
to influence its neighbors. We choose this probability
t according to the edge density of the target network,
in our case to 0.05 and 0.03, respectively.

We evaluate the performance of BatchGreedy while
varying the size of batches picked at each stage. We
repeat the experiments 100 times for all batch sizes
(the non-adaptive method corresponds to infinite batch
size). In each experiment, we initialize 100 random
realizations of the target network based on the edge
activation probability, and greedily select the best
node in expectation. The results are summarized in
Figure 3(e) and Figure 3(f). We observe that for the
Epinions network, the sequential greedy policy covers
99% of the target network by selecting 244 nodes, while
the 10-batch greedy policy, 100-batch greedy policy
and non-adaptive greedy policy cost 241, 284, and
584 nodes respectively, to achieve the same coverage.

http://snap.stanford.edu/

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Similarly, for the Slashdot network those numbers are
330, 319, 343, 765. After incorporation of the first batch
of labels, BatchGreedy performs surprisingly well,
even competitively with the fully sequential policy.

6. Related Work

Active Learning Fully sequential active learning,
where one single unlabeled example is selected to
be labeled at a time, has received much attention in
the machine learning community. Several heuristic
approaches have been proposed that perform well
in some applications (e.g., MacKay (1992); Settles
(2010)), and theoretical investigations (e.g., Balcan
et al. (2006); Dasgupta (2006)) prove bounds on the
label complexity. While in some cases exponential
reduction is possible, in other settings little reduction
over passive learning can be achieved (Dasgupta,
2006). Therefore, it is interesting to study active
learning as an optimization problem with the goal to
efficiently identify a sufficient yet near-minimal number
of informative labels. For both noise-free (Dasgupta,
2004) and noisy (Golovin et al., 2010) active leaning
problems, simple greedy policies have been shown to
be provably competitive with the optimal (intractable)
policy. This paper builds on these approaches, and
generalizes the results to batch mode active learning.

Batch mode active learning and submodularity
Due to its practical importance, several approaches for
batch mode active learning have been proposed. How-
ever, previous work has focused on efficiently selecting
a single batch comprising examples that are both
diverse and informative. Interestingly, the classical
notion of submodular set functions has proven useful
(Hoi et al., 2006; Guillory & Bilmes, 2011). In Hoi et al.
(2006), both individual diversity and informativeness
are evaluated w.r.t. the Fisher information matrix of
the estimated linear separator. Cesa-Bianchi et al.
(2010) and Guillory & Bilmes (2011) investigate the
problem of active learning on graph structured data,
and provide near-optimal solutions for such problems.
In contrast to the prior work, this paper focuses
on analyzing batch-mode policies, i.e., sequential
construction of batches with the goal to minimize the
overall number of labels needed across batches. A
work closely related in spirit is that of Desautels et al.
(2012), who consider batch mode bandit problems,
where the goal is to trade exploration and exploitation,
and performance is measured w.r.t. the cumulative
regret. In spite of a different context and formalism, a
greedy algorithm works provably well in that setting.

Adaptive and interactive submodular opti-
mization For a general introduction to adaptive

submodular optimization, see Golovin & Krause
(2011). Asadpour et al. (2008) study a special case of
the adaptive submodular maximization problem where
the random variables must be independent (which is
not the case in active learning). Guillory & Bilmes
(2010) consider a different formalism for interactive
submodular maximization and its applications, ana-
lyzing the worst-case cost of fully sequential policies.
In contrast to these previous approaches, which
focus on the fully sequential case, in this paper we
analyze the batch-mode setting, for which we provide
approximation bounds as well as practical algorithms.

Influence maximization This problem was first
introduced by Domingos & Richardson (2001), and
Kempe et al. (2003) prove that the problem of (non-
adaptively) finding the optimal k individuals in the
network to target requires submodular maximization.
Recently, by using adaptive submodularity, Golovin
& Krause (2011) generalize the problem to the fully
sequential setting where observations are made after
each selection. Our results generalize theirs and ad-
dress the multi-stage setting, which, to our knowledge,
is the first attempt to address this natural variant of
the influence maximization problem.

7. Conclusions

We presented a general framework for batch mode
active learning and stochastic optimization. We
analyzed BatchGreedy, an intuitive adaptive greedy
approach, and proved its competitiveness with the op-
timal batch-mode policy. For some problem instances
(e.g., multi-stage influence maximization) we proved
that, perhaps surprisingly, using batches only incurs a
bounded increase of cost as compared to allowing fully
sequential selection. In addition to new theoretical
results, we empirically demonstrate the effectiveness
of BatchGreedy on two real-world applications:
Batch mode active learning of linear separators (where
BatchGreedy outperforms the state of the art), and
multi-stage influence maximization (where we observe a
surprisingly small increase in cost compared to the fully
sequential strategy). A natural question for future work
is to understand more generally for which problems
the price of parallelism, i.e., the increase in cost by re-
stricting to information-parallel decisions, is bounded.
We believe that our results provide an important step
in characterizing the (approximate) tractability of
practical active learning and optimization problems.

Acknowledgments. We would like to thank Gábor

Bartók for helpful comments. This research was supported

in part by SNSF grant 200021 137971, NSF IIS-0953413,

DARPA MSEE FA8650-11-1-7156 and ERC StG 307036.

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

References

Ageev, Alexander A. and Sviridenko, Maxim. Pipage
rounding: A new method of constructing algorithms
with proven performance guarantee. J. Comb.
Optim., 8(3):307–328, 2004.

Anshelevich, Elliot, Chakrabarty, Deeparnab, Hate,
Ameya, and Swamy, Chaitanya. Approximation al-
gorithms for the firefighter problem: Cuts over time
and submodularity. In Algorithms and Computation.
Springer Berlin / Heidelberg, 2009.

Asadpour, Arash, Nazerzadeh, Hamid, and Saberi,
Amin. Stochastic submodular maximization. In
WINE, pp. 477–489, Berlin, Heidelberg, 2008.
Springer-Verlag.

Balcan, Maria Florina, Beygelzimer, Alina, and Lang-
ford, John. Agnostic active learning. In ICML, pp.
65–72, 2006.

Cesa-Bianchi, Nicolò, Gentile, Claudio, Vitale, Fabio,
and Zappella, Giovanni. Active learning on trees
and graphs. In COLT, pp. 320–332, 2010.

Dasgupta, Sanjoy. Analysis of a greedy active learning
strategy. In NIPS, 2004.

Dasgupta, Sanjoy. Coarse sample complexity bounds
for active learning. In Weiss, Y., Schölkopf, B., and
Platt, J. (eds.), Advances in Neural Information
Processing Systems 18, pp. 235–242. MIT Press,
Cambridge, MA, 2006.

Desautels, Thomas, Krause, Andreas, and Burdick,
Joel. Parallelizing exploration-exploitation tradeoffs
with gaussian process bandit optimization. In ICML,
2012.

Domingos, Pedro and Richardson, Matt. Mining the
network value of customers. In KDD, pp. 57–66, 2001.

Golovin, Daniel and Krause, Andreas. Adaptive sub-
modularity: Theory and applications in active learn-
ing and stochastic optimization. Journal of Artificial
Intelligence Research (JAIR), 42:427–486, 2011.

Golovin, Daniel, Krause, Andreas, and Ray, Debajyoti.
Near-optimal bayesian active learning with noisy
observations. In NIPS, December 2010.

Golovin, Daniel, Krause, Andreas, Gardner, Beth, Con-
verse, Sarah, and Morey, Steve. Dynamic resource
allocation in conservation planning. In AAAI, 2011.

Gonen, Alon, Sabato, Sivan, and Shalev-Shwartz,
Shai. Active learning halfspaces under margin
assumptions. CoRR, abs/1112.1556v3, 2011.

Guillory, Andrew and Bilmes, Jeff. Interactive
submodular set cover. In ICML, 2010.

Guillory, Andrew and Bilmes, Jeff. Active semi-
supervised learning using submodular functions. In
UAI, 2011.

Hoi, Steven C. H., Jin, Rong, Zhu, Jianke, and Lyu,
Michael R. Batch mode active learning and its appli-
cation to medical image classification. In ICML, 2006.

Jain, Prateek, Vijayanarasimhan, Sudheendra, and
Grauman, Kristen. Hashing hyperplane queries
to near points with applications to large-scale
active learning. In Advances in Neural Information
Processing Systems 23, pp. 928–936. 2010.

Kempe, David, Kleinberg, Jon, and Tardos, Éva.
Maximizing the spread of influence through a social
network. In KDD, pp. 137–146, 2003.

Lovasz, Laszlo. Hit-and-run mixes fast. Math. Prog,
86:443–461, 1998.

MacKay, David J.C. Information-based objective func-
tions for active data selection. Neural Computation,
4(4):590–604, 1992.

Nemhauser, George L., Wolsey, Laurence A., and
Fisher, Marshall L. An analysis of approxima-
tions for maximizing submodular set functions - I.
Mathematical Programming, 14(1):265–294, 1978.

Settles, Burr. Active learning literature survey. Tech-
nical Report 1648, University of Wisconsin-Madison,
2010.

Smith, Robert L. Efficient monte carlo procedures
for generating points uniformly distributed over
bounded regions. Operations Research, 1984.

Vondrak, Jan. Submodularity in Combinatorial
Optimization. PhD thesis, 2007.

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

A. Proof of Theorem 1

Theorem 1 rests on the following Lemma, which allows to view the selection of batches as items in a modified
problem instance.

Lemma 3. Let V = {1, . . . , n}, O be finite sets; f : 2V×O → N monotonic and submodular, and P (YV) such
that (f, P) is adaptive submodular. Let A1, . . . , Am ⊆ V, and define, for i ∈ {1, . . . ,m}, Zi = [Yj1,...,j`] where
Ai = {j1, . . . , j`}, and ` is a fixed integer. Let W = {1, . . . ,m} and Q(ZW) be the distribution over Z1, . . . , Zm
induced by P . Let O′ =

⋃
i∈W range(Zi). Define the function

γ : 2W×O
′ → 2V×O, γ({(a1, z1), . . . , (at, zt)}) =

t⋃
j=1

{(i, o) : i ∈ Aj , o = [zj]i}

and define g : 2W×O
′ → N by g(S) = f(γ(S)). Then g is submodular, and (g,Q) is adaptive submodular.

Proof. Submodularity of g is immediate (see, e.g., Nemhauser et al. (1978)). In order to prove adaptive submod-
ularity, fix element i ∈ W, corresponding to Ai = {j1, . . . , j`}, and let B ⊆ W ×O′. Since Q(B) > 0, γ(B) cannot
contain two elements (i, o1) and (i, o2) with o1 6= o2.

Consider the marginal gain,

∆g(i | B) =
∑
z

Q(zi | B)
[
f(γ(B ∪ (i, zi))− f(γ(B)))

]
,

and letC = γ(B∪(i, zi))\γ(B) = {(i1, o1), . . . , (i`, o`)}. Further letCj = {(i1, o1), . . . , (ij , oj)}. It then holds that

∆g(i | B) =
∑̀
j=1

ECj−1
[∆f (ij | γ(B) ∪ Cj−1) | γ(B)] .

Adaptive submodularity of (g,Q) now follows from the adaptive submodularity of f , since ∆f (ij | γ(B) ∪ Cj−1)
is monotonically decreasing in B, and the set C is monotonically decreasing in B.

Proof of Theorem 1. Suppose V,O, f and P are given satisfying the requirements of Lemma 3. Let A1, . . . , Am
be the collection of all m =

(
n
k

)
subsets of V. Let g,W,O′ and Q denote the problem instance induced by sets

A1, . . . , Am, as in Lemma 3. Note that there is a 1-1 correspondence between batch mode policies for (f, P) and
fully sequential policies for (g,Q). Due to the adaptive submodularity of (g,Q), and observing that by assumption
(g,Q) is self-certifying (e.g., (g(S), Q) depends only on the state of items in S) and strongly adaptively monotone
(i.e., selecting more (batches of) items never hurts) , it follows from Theorem 5.8 of Golovin & Krause (2011) that
the greedy policy π (w.r.t. (g,Q)) satisfies

costac(π) ≤ OPTac,k
(

lnQ+ 1
)
.

Policy π greedily assembles batches; however, each batch is chosen optimally, which is itself a combinatorially hard
problem. Consider the function h : 2V × 2V×O → N, where, for A ⊆ V and yB ⊆ V ×O,

h(A,yB) =
∑
yV

P (yV | yB)
[
f(yA ∪ yB)− f(yB)

]
.

Note that implementing the greedy policy w.r.t. (g,Q) requires in every step, assuming observations yB have
already been made, identifying an optimal batch i ∈ W s.t.

Ai ∈ arg max
|A|≤k

h(A,yB).

However, it can be seen that h(A,yB) is monotonic submodular inA for any yB, and therefore the greedy algorithm
(applied to h(·,yB)) produces a near-optimal batch j ∈ W such that ∆g(j | yB) ≥ (1 − 1

e)∆g(i | yB). Theorem
5.8 of Golovin & Krause (2011) thus proves that

costac(π) ≤ OPTac,k
(e

e− 1

)(
lnQ+ 1

)
.

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Note that BatchGreedy implements exactly this greedy algorithm. The stated result about worst-case cost
follows analogously from Theorem A.12 of Golovin & Krause (2011).

B. Proof of Theorem 2

We now proceed to proving Theorem 2. An important component is a bound of Asadpour et al. (2008) (slightly
adapted to our setting) on the adaptivity gap that holds for factorial prior distributions, which we prove in Section C.

Theorem 4 (Adapted from Asadpour et al. (2008)). Let f : 2V×O → N be monotone and submodular, and P (YV)
such that (f, P) is adaptive submodular. Define the expected utility of a policy π as favg(π) := EyV [f(S(π,yV))],
where the expectation is taken with respect to P . Assume the set of variables {Y1, . . . , Yn} ⊆ O are independent.
For any k, there exists a non-adaptive policy π∗const of length k (i.e., running the policy till selecting k items) that
approximates the optimal (sequential) adaptive policy π∗seq of length k within a factor of 1− 1/e, i.e.,

favg(π
∗
const) >

(
1− 1

e

)
favg(π

∗
seq).

Furthermore, we extend the definition of the conditional expected marginal benefit of an item at Equation 2.1 to
a policy:

Definition 5. Suppose we have selected and observed items B ⊆ V × O, the conditional expected marginal
benefit of a policy π, denoted ∆f (π | B), is ∆f (π | B) := E [f(B ∪ S(π,yV))− f(B) | B] , where the expectation
is computed w.r.t. P (YV | B).

We now state a Lemma which slightly generalizes Lemma A.9 of Golovin & Krause (2011).

Lemma 6. Let π∗ be any policy, which only picks a number of items divisible by k, and B ⊆ V ×O.

∆f (π∗ | B) ≤ costac(π
∗ | B)

k
max

π:costac(π)≤k
∆f (π | B)

Proof. Let π be the policy that attempts to select B, terminating if observing inconsistent observations, and then
executes π∗. Now consider any policy of cost exactly k, and let w(π′) denote the probability that the subtree π′

is contained in π. By adaptive submodularity, it holds that the total contribution of π′ to ∆f (π∗ | B) is bounded
by w(π′)∆f (π′ | B), and therefore

∆f (π∗ | B) ≤
∑

π′:costac(π′)≤k

w(π′)∆f (π′ | B).

Note that each policy π′ contributes cost w(π′)k to costac(π
∗ | B). Therefore,∑

π′:costac(π′)≤k

w(π′)k ≤ costac(π
∗ | B).

Therefore,

∆f (π∗ | B) ≤
∑

π′:costac(π′)≤k

w(π′)∆f (π′ | B) ≤ costac(π
∗ | B) max

π′′

∆f (π′′ | B)

k
.

Theorem 7. Fix any α ≥ 1 and let γ = (e/(e − 1))2. If f is adaptive monotone and adaptive submodular with
respect to the distribution P (YV) , and π is the BatchGreedy policy, then for all policies π∗ selecting a number
of items divisible by k, and positive integers ` and m

favg(π[`k]) >
(

1− e−`/αγm
)
favg(π

∗
[mk]).

where π[k] denotes the level-k-truncation of π obtained by running until it terminates or until it selects k items.

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

Proof. The proof goes along the lines of the performance analysis of the greedy algorithm for maximizing a
submodular function subject to a cardinality constraint of Nemhauser et al. (1978), and its extension to the
adaptive setting by Golovin & Krause (2011).

We consider breaking the optimal policy into phases of length k. Without loss of generality we assume π∗ = π∗[mk].
We derive a sequence of inequalities:

favg(π
∗) ≤ favg(π[ik]) + αγm

(
favg(π[(i+1)k])− favg(π[ik])

)
. (B.1)

These inequalities follow from adaptive monotonicity and Lemma 6, by observing that the maximization over
policies π of length k can be approximately carried out non adaptively, utilizing Theorem 4 which guarantees
adaptivity gap e/(e− 1). Applying the greedy algorithm to construct the nonadaptive policy contributes a further
factor e/(e− 1) to γ.

Using an argument as in the proof of Theorem A.10 from Golovin & Krause (2011), we then have

favg(π[(i+1)k])− favg(π[ik]) ≥ favg(π[ik]@π
∗)−favg(π[ik])

αγm

where @ denotes policy concatenation 9.

Now define ∆i := favg(π
∗)− favg(π[ik]), so that (B.1) implies ∆i ≤ αγm(∆i−∆i+1), from which we infer ∆i+1 ≤(

1− 1
αγm

)
∆i and hence ∆` ≤

(
1− 1

αγm

)`
∆0 < e−`/αγm∆0, where for this last inequality we have used the fact

that 1− x < e−x for all x > 0. Thus favg(π
∗)− favg(π[`k]) < e−`/αγm

(
favg(π

∗)− favg(π[0])
)
≤ e−`/αγmfavg(π∗)

so favg(π) > (1− e−`/αγm)favg(π
∗).

Proof of Theorem 2. Theorem 2 follows as an immediate corollary to Theorem 7.

Let β > 0. Let m be smallest number, so that there exists a fully sequential policy π∗ of length mk with value
favg(π

∗) ≥ Q. Then running BatchGreedy πG for ` batches of size k, where

` = dγ lnQ/βem,

is sufficient so that favg(πG) ≥ Q− β. Now suppose P (f(S(πG,yV)) ≤ Q− 1) > β. Then

favg(πG) < β(Q− 1) + (1− β)Q = Q− β,

a contradiction.

C. Proof of Theorem 4

For completeness, we now prove Theorem 4, which (in a slightly different form) is due to Asadpour et al. (2008).
The analysis closely follows the approach of Asadpour et al. (2008) who consider a slightly different formalism
for stochastic submodular maximization. As in Asadpour et al. (2008), we take a similar approach as what has
been developed in Section 3.5 of Vondrak (2007) for (nonadaptive) submodular maximization. First, we establish
a lower bound F of the expected utility of the optimal non-adaptive policy π∗const. Then, we introduce a function
f∗ : [0, 1]n → R≥0 that provides an upper bound of the optimal sequential-adaptive policy, and also lies within a
factor of at most e/(e− 1) of the maximum value of F . Such bounds imply that for every adaptive policy π there
exists a non-adaptive policy that achieves at least a fraction of 1− 1/e of the expected gain of π.

We start from some basic properties of adaptive policies. An adaptive policy π can be represented as a decision
tree, where each branch S(π,yV) (from root to leaf) represents the outcomes of π under a sequence of realizations
yV . Let yi ∈ [0, 1] be the probability that item i is selected under policy π. For any vector ~y := {y1, ..., yn}, we

9According to Definition A.6 in Golovin & Krause (2011), the concatenation of π1@π2 is defined as the policy obtained
by running policy π1 to completion, and then running policy π2 as if from a fresh start, ignoring the information gathered
during the running of π1.

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

define F : [0, 1]n → R to be the multilinear extension of f , i.e., the expected utility of picking (a constant) set
R ⊆ V ×O when i is included in R with probability yi. Formally,

F (~y) = ER[f(R)] =
∑
R⊆V

∏
i∈R

yi
∏
i 6∈R

(1− yi)f(R).

Let Pk be the cardinality constrained polytope {v : 1 · v ≤ k, v ≥ 0}. Each of the extreme points in the base
polytope of Pk corresponds to a non-adaptive policy. Let ~w∗ := arg max~w F (~w) be the optimal vector. Lemma 8
(Vondrak, 2007) shows that by Pipage rounding (Ageev & Sviridenko, 2004) we can use F (~y) as a lower bound on
the utility of the optimal non-adaptive policy favg(π

∗
const), as π∗const corresponds to the policy which constantly

picks the optimal set, such that for all ~w in Pk, favg(π
∗
const) = F (~w∗) ≥ F (~w).

Lemma 8. (Vondrak, 2007) There exists a 0/1 vector ~w in Pk such that ∀y : F (~w) ≥ F (~y).

Next, we are going to upper-bound the utility of any adaptive policy. We start with some basic facts:

Lemma 9. Suppose g : 2V×O → R≥0 is adaptive submodular with respect to factorial P (YV). Then for all
B ⊆ V ×O, hB(A) := g(A ∪ B)− g(B) is also adaptive submodular with respect to p(yV).

Proof. Suppose C ⊆ C′ ⊆ V ×O. For all j ∈ V, we have

∆h(j | C) = Ey [g({(j, y)} ∪ C ∪ B)− g(C ∪ B) | C]
≥ Ey

[
g({(j, y)} ∪ C′ ∪ B)− g(C′ ∪ B)

∣∣ C′]
= ∆h(j | C′),

Hereby, the inequality follows from the submodularity of g, as well as the independence of p. Therefore hB(A) is
adaptive submodular with respect to P (YV).

We show in Lemma 10 the upper bound of the average utility of an adaptive policy.

Lemma 10 (Bound for adaptive policy). For any adaptive policy π and its corresponding frequency vector ~y, the
expected utility favg(π) is upper bounded by f∗, where f∗ : [0, 1]n → R is defined as

f∗(~y) = min
R⊆V

f(R) +
∑
j∈V

yj

[
f(R∪ {j})− f(R)

] .

Proof. For any policy π and any set of item-realization pairs B ⊆ V ×O, we have the following inequalities:

favg(π) =
∑
yV

p(yV)g(S(π,yV))

≤
∑
yV

p(yV)g(S(π,yV) ∪ B)

=
∑
yV

p(yV)
[
g(B) + g(S(π,yV) ∪ B)− g(B)

]
= g(B) +

∑
yV

p(yV)
[
g(S(π,yV) ∪ B)− g(B)

]
(C.1)

Let h(S(π,yV)) = g(S(π,yV) ∪ B) − g(B). Given C ⊆ V × O, we define the conditional marginal gain (in h) of
an item-observation pair (j, y), as

∆h((j, y) | C) := h({(j, y)} ∪ C)− h(C).

Furthermore, the expected conditional marginal gain (in h) of an item j, is

∆h(j | C) := Ey
[
h({(j, y)} ∪ C)− h(C)

∣∣ C],

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

We use Si(π,yV) to denote the set of item-realization pairs seen by π after it has picked i items, i.e,
Si(π,yV) = {(j, y) : j ∈ V(π[i],yV), y = yV [j]}. And we use Q(π,yV , j) to denote the set of item-realization pairs
seen by π just before it selects item j under yV . Formally,

Q(π,yV , j) := max
0≤i≤n,j 6∈V(π[i],yV)

Si(π,yV).

Based on the previous definitions, we have∑
yV

p(yV)h(S(π,yV)) =
∑
yV

p(yV)
∑

(j,y)∈S(π,yV)

∆h((j, y) | Q(π,yV , j))

=
∑

(j,y)∈V×O

 ∑
yV :(j,y)∈S(π,yV)

p(yV)∆h((j, y) | Q(π,yV , j))

=
∑
j∈V

 ∑
yV :j∈V(π,yV)

p(yV\{j})p(y | yV\{j})∆h((j, y) | Q(π,yV , j))

=
∑
j∈V

 ∑
yV\{j}:j∈V(π,yV)

p(yV\{j})
∑
y

p(y | yV\{j})∆h((j, y) | Q(π,yV , j))

 (C.2)

By definition ∆h(j | Q(π,yV , j)) =
∑
y p(y|yV\{j})∆h((j, y) | Q(π,yV , j)), and yi =

∑
yV\{j}:j∈V(π,yV) p(yV\{j}).

Therefore, according to Lemma 9, since ∆h(j | Q(π,yV , j)) ≤ ∆h(j | ∅) = Ey[g(B ∪ {(j, y)})− g(B))], the R.H.S.
of Equation C.2 is upper bounded by∑

j∈V
yj∆h(j | ∅) =

∑
j∈V

yjEy[g(B ∪ {(j, y)})− g(B))]. (C.3)

Combining inequality C.1, C.2 and C.3, we know that the following inequality

favg(π) ≤ g(B) +
∑
j∈V

yjEy[g(B ∪ {(j, y)})− g(B))] (C.4)

holds for arbitrary B ⊆ V ×O. By taking the minimum on the R.H.S. of C.4, we obtain

favg(π) ≤ min
B⊆V×O

g(B) +
∑
j∈V

yjEy[g(B ∪ {(j, y)})− g(B))]

≤ min
R⊆V

EB∼R

g(B) +
∑
j∈V

yjEy[g(B ∪ {(j, y)})− g(B))

= min
R⊆V

favg(R) +
∑
j∈V

yj [favg(R∪ {j})− favg(R)]

 , (C.5)

which completes the proof.

Next, we show that for any vector ~y ∈ [0, 1]n, F (~y) achieves at least a constant fraction of f∗(~y).

Lemma 11. If F and f∗ are defined as before, then for any vector ~y ∈ [0, 1]n, it holds that

F (~y) ≥ (1− e−1)f∗(~y).

Proof. Similar with Vondrak (2007), we model each event j ∈ {1, 2, ..., n} with a Poisson process of rate parameter
yj . We start with an empty set R(0) = ∅ at time 0. Once event j occurs, we include item j in R, which increase
its value by f(R ∪ {j}) − f(R). If we denote the current set R at time t by R(t), by the definition of Poisson

Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization

process, R(1) contains item j independently with probability
∫ 1

0
yie
−yitdt = 1 − e−yi < yi. Therefore, we have

E[f(R(1))] ≤ F (~y) by monotonicity.

On the other hand, consider how f(R(t)) changes in an infinitesimal interval [t, dt]. The expected increase of
f(R(t)) is

E[f(R(t+ dt))− f(R(t))] =
∑
j∈V

yjdt [f(R(t) ∪ {j})− f(R(t))]

≥ dt [f∗(~y)− f(R(t))] (C.6)

where step C.6 follows the definition of f∗. Let φ(t) = E[f(R(t))], inequality C.6 can be written as

dφ(t)

dt
≥ f∗(~y)− φ(t) (C.7)

Solving the differential equation above, it shows that E[f(R(t))] ≥ (1 − e−t)f∗(~y). Plugging t = 1 in the above
inequality completes the proof.

Now, we are ready to prove Theorem 4 (the adaptivity gap):

Proof of Theorem 4. Lemma 10 shows that f∗(~y) is an upper bound on the performance of the best adap-
tive policy. From lemma 11 we know that for all vector ~y it holds F (~y) ≥ (1 − 1/e)f∗(~y). On the
other hand, lemma 8 shows that there exists a 0/1 vector ~w ∈ Pk such that F (~w) ≥ F (~y), and hence
favg(π

∗
const) ≥ F (~w) ≥ (1− 1/e)f∗(~y) ≥ (1− 1/e)favg(π

∗
seq).

