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Abstract

We define a general framework for a large
class of combinatorial multi-armed bandit
(CMAB) problems, where simple arms with
unknown distributions form super arms. In
each round, a super arm is played and the
outcomes of its related simple arms are ob-
served, which helps the selection of super
arms in future rounds. The reward of the su-
per arm depends on the outcomes of played
arms, and it only needs to satisfy two mild
assumptions, which allow a large class of
nonlinear reward instances. We assume the
availability of an (α, β)-approximation ora-
cle that takes the means of the distributions
of arms and outputs a super arm that with
probability β generates an α fraction of the
optimal expected reward. The objective of
a CMAB algorithm is to minimize (α, β)-
approximation regret, which is the difference
in total expected reward between the αβ frac-
tion of expected reward when always playing
the optimal super arm, and the expected re-
ward of playing super arms according to the
algorithm. We provide CUCB algorithm that
achieves O(log n) regret, where n is the num-
ber of rounds played, and we further provide
distribution-independent bounds for a large
class of reward functions. Our regret analysis
is tight in that it matches the bound for clas-
sical MAB problem up to a constant factor,
and it significantly improves the regret bound
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in a recent paper on combinatorial bandits
with linear rewards. We apply our CMAB
framework to two new applications, proba-
bilistic maximum coverage (PMC) for online
advertising and social influence maximization
for viral marketing, both having nonlinear re-
ward structures.

1. Introduction

Multi-armed bandit (MAB) is a problem extensively
studied in statistics and machine learning. The classi-
cal version of the problem is formulated as a system of
m arms (or machines), each having an unknown distri-
bution of the reward with an unknown mean. The task
is to repeatedly play these arms in multiple rounds so
that the total expected reward is as close to the re-
ward of the optimal arm as possible. An MAB algo-
rithm needs to decide which arm to play in the next
round given the outcomes of the arms played in the
previous rounds. The metric for measuring the effec-
tiveness of an MAB algorithm is its regret, which is the
difference in the total expected reward between always
playing the optimal arm and playing arms according
to the algorithm. The MAB problem and its solutions
reflect the fundamental tradeoff between exploration
and exploitation: whether one should try some arms
that have not been played much (exploration) or one
should stick to the arms that provide good reward so
far (exploitation). Existing results show that one can
achieve a regret of O(log n) when playing arms in n
rounds, and this is asymptotically the best.

In many real-world applications, the setting is not
the simple MAB one, but has a combinatorial nature
among multiple arms and possibly non-linear reward
functions. For example, consider the following online
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advertising scenario. A web site contains a set of web
pages and has a set of users visiting the web site. An
advertiser wants to place an advertisement on a set of
selected web pages on the site, and due to his budget
constraint, he can select at most k web pages. Each
user visits a certain set of pages, and on each visited
page has a certain click-through probability of clicking
the advertisement on the page, but the advertiser does
not know these probabilities. The advertiser wants to
repeatedly select sets of k web pages, observe the click-
through data collected to learn the click-through prob-
abilities, and maximize the number of users clicking his
advertisement. Another example is viral marketing in
online social networks, where a marketer repeatedly
selects seed nodes in a social network, observes the
cascading behavior of the viral information to learn
influence probabilities between individuals in the so-
cial network, with the goal of maximizing the overall
effectiveness of all viral cascades.

In the above examples, page-user pairs or pairs of
nodes in the social network can be viewed as arms,
but they are not played one by one. Instead, these
arms form certain combinatorial structures (e.g. bi-
partite graphs in the online advertising scenario and
directed graphs in the viral marketing scenario), and
in each round, a set of arms (called a super arm) are
played together. Moreover, the reward structure is not
a simple linear function of the outcomes of all played
arms but takes a more complicated form. For exam-
ple, in the online advertising scenario, for all page-user
pairs with the same user, the collective reward of these
arms is either 1 if the user clicks the advertisement on
at least one of the pages and 0 if the user does not
click the advertisement on any page.

It is possible to treat every super arm as an arm and
simply apply the classical MAB framework to solve the
above combinatorial problems. However, such naive
treatment has two issues. First, the number of su-
per arms may be exponential to the problem instance
size due to combinatorial explosion, and thus classi-
cal MAB algorithms may need exponential number of
steps just to go through all the super arms. Second,
after one super arm is played, in many cases, we can
observe some information regarding the outcomes of
the underlying arms, which may be shared by other
super arms. However, this information is discarded in
the classical MAB framework, making it less effective.

In this paper, we define a general framework for the
combinatorial multi-armed bandit (CMAB) problem to
address the above issues and cover a large class of com-
binatorial online learning problems (Section 2). In the
CMAB framework, a super arm is a set of underlying

arms, whose outcomes follow unknown distributions.
In each round one super arm is played and the out-
comes of all arms in the super arm (and possibly some
other triggered arms) are revealed. A CMAB algo-
rithm needs these information from the past rounds to
decide the super arm to play in the next round.

The framework allows an arbitrary combination of
arms into super arms. The reward function only needs
to satisfy two mild assumptions, and thus covering a
large class of nonlinear reward functions. We do not
assume the direct knowledge on how super arms are
formed from underlying arms or how the reward is
computed. Instead, we assume the availability of an
offline computation oracle that takes such knowledge
as well as the expectations of outcomes of all arms as
input and computes the optimal super arm with re-
spect to the input. Since many combinatorial problems
are computationally hard, we further allow approxima-
tion oracles with failure probabilities. In particular, we
relax the oracle to be an (α, β)-approximation oracle
for some α, β ≤ 1, that is, with success probability β,
the oracle could output a super arm whose expected
reward is at least α fraction of the optimal expected
reward. As a result, our regret metric is not comparing
against the expected reward of playing the optimal su-
per arm each time, but against the αβ fraction of the
optimal expected reward, since the offline oracle can
only guarantee this fraction in expectation. We refer
to this as the (α, β)-approximation regret.

For the general framework, we provide the CUCB
(combinatorial upper confidence bound) algorithm
(Section 3), an extension to the UCB1 algorithm for
the classical MAB problem (Auer et al., 2002a). We
prove that the regret of CUCB is bounded by O(log n).
Our regret analysis is tight in that when applying it to
the classical MAB problem we obtain a regret bound
that matches the bound of the classical MAB up to a
constant factor. Our tight analysis further allows us to
provide a distribution-independent regret bound that
works for arbitrary distributions of underlying arms,
for a large class of CMAB instances.

We then apply our general framework and provide
solutions to two new bandit applications, the proba-
bilistic maximum coverage problem for advertisement
placement and social influence maximization for vi-
ral marketing (Section 4). The offline version of both
problems are NP-hard, with constant approximation
algorithms available. Both problems have nonlinear
reward structures that cannot be handled by any exist-
ing work. The social influence maximization problem
provides an interesting instance in which playing one
super arm not only reveals the outcomes of the under-
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lying arms it contains, but may stochastically trigger
more arms to reveal their outcomes, and the reward
depends on the outcomes of all revealed arms.

We also apply our result to combinatorial bandits with
linear rewards, recently studied in (Gai et al., 2012)
(Section 4.3). We show that we significantly improve
their regret bound, even though we are covering a
much larger class of combinatorial bandit instances.

In the supplementary material, besides providing the
full proof of our main theorems, we further provide
(a) an εt-greedy algorithm for CMAB, and (b) an im-
proved regret analysis for CMAB where arms are clus-
tered and played together, which can be applied to the
two new applications studied in this paper.

In summary, our contributions include: (a) defin-
ing a general CMAB framework that encompasses a
large class of nonlinear reward functions, (b) provid-
ing CUCB algorithm with a tight regret analysis as
a general solution to this CMAB framework, and (c)
demonstrating that our general framework can be ef-
fectively applied to a number of practical combina-
torial bandit problems, including ones with nonlinear
rewards. Moreover, our framework provides a clean
separation of the online learning task and the offline
computation task: the oracle takes care of the offline
computation task, which uses the domain knowledge
of the problem instance, while our CMAB algorithm
takes care of the online learning task, and is oblivious
to the domain knowledge of the problem instance.

Related work. Multi-armed bandit problem has
been well studied in the literature, in particular in
statistics and reinforcement learning (cf. (Berry &
Fristedt, 1985; Sutton & Barto, 1998)). Our work
follows the line of research on stochastic MAB prob-
lems, which is initiated by Lai and Robbins (Lai &
Robbins, 1985), who show that under certain condi-
tions on reward distributions, one can achieve a tight
asymptotic regret of Θ(log n), where n is the number
of rounds played. Later, Auer et al. demonstrate that
O(log n) regret can be achieved uniformly over time
rather than only asymptotically (Auer et al., 2002a).
They propose several MAB algorithms, including the
UCB1 algorithm, which has been widely followed and
adapted in MAB research.

For combinatorial multi-armed bandits, a few specific
instances of the problem has been studied in the litera-
ture. A number of studies consider simultaneous plays
of k arms among m arms (e.g. (Anantharam et al.,
1987a; Caro & Gallien, 2007; Liu et al., 2011)). Other
instances include the matching bandit (Gai et al.,
2010) and the online shortest path problem (Liu &

Zhao, 2012).

The work closest to ours is a recent work by Gai et
al. (Gai et al., 2012), which also considers a combi-
natorial bandit framework with an approximation or-
acle. However, our work differs from theirs in sev-
eral important aspects. Most importantly, their work
only considers linear rewards while our CMAB frame-
work includes a much larger class of linear and non-
linear rewards. Secondly, our regret analysis is much
tighter, and as the result we significantly improve their
regret bound when applying our result to the linear
reward case, and we are able to derive a distribution-
independent regret bound while their results cannot
lead to distribution-independent bounds. Moreover,
we allow the approximation oracle to have a failure
probability (i.e., β < 1), which they do not consider.

In terms of types of feedbacks in combinatorial ban-
dits (Audibert et al., 2011), our work belongs to the
semi-bandit type, in which the player observes only the
outcomes of played arms in one round of play. Other
types include (a) full information, in which the player
observes the outcomes of all arms, and (b) bandit, in
which the player only observes the final reward but
no outcome of any individual arm. More complicated
feedback dependences are also considered in (Mannor
& Shamir, 2011).

A different line of research considers adversarial multi-
armed bandit, initiated by the work in (Auer et al.,
2002b), in which an adversary controls the arms and
tries to defeat the learning process. In the context of
adversarial bandits, several studies also consider com-
binatorial bandits (Cesa-Bianchi & Lugosi, 2009; Au-
dibert et al., 2011; Bubeck et al., 2012). For linear re-
wards, Kakade et al. (Kakade et al., 2009) have shown
how to convert an approximation oracle into an on-
line algorithm with sublinear regret both in the full
information setting and the bandit setting. For non-
linear rewards, various online submodular optimiza-
tion problems with bandit feedback are studied in the
adversarial setting (Streeter & Golovin, 2008; Radlin-
ski et al., 2008; Streeter et al., 2009; Hazan & Kale,
2009). Notice that our framework deals with stochas-
tic instances and we can handle reward functions more
general than the submodular ones.

2. General CMAB Framework

A CMAB problem consists of m arms associated with
a set of random variables Xi,t for 1 ≤ i ≤ m and t ≥ 1,
with bounded support on [0, 1]. Variable Xi,t indicates
the random outcome of the i-th arm in its t-th trial.
The set of random variables {Xi,t | t ≥ 1} associ-
ated with arm i are independent and identically dis-
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tributed according to some unknown distribution with
unknown expectation µi. Let µ = (µ1, µ2, . . . , µm) be
the vector of expectations of all arms. Random vari-
ables of different arms may be dependent.

The CMAB problem contains a constraint S ⊆ 2[m],
where 2[m] is the set of all possible subsets of arms.
We refer to every set of arms S ∈ S as a super arm
of the CMAB problem. In each round, one super arm
S ∈ S is played and the outcomes of arms in S are
revealed. More precisely, for each arm i ∈ [m], let Ti,t
denote the number of times the outcome of arm i is
revealed after the first t rounds in which t super arms
are played. If S ∈ S is the super arm played in round
t, the outcomes of random variables Xi,Ti,t

for all i ∈ S
are revealed. For some problem instances (e.g. social
influence maximization in Section 4.2), the outcomes
of other arms may also be revealed depending on the
outcomes of arms in S.

Let Rt(S) be a non-negative random variable denot-
ing the reward of round t when super arm S is played.
The reward depends on the actual problem instance
definition, the super arm S played, and the outcomes
of the revealed arms in round t. The reward Rt(S)
might be as simple as a summation of the outcomes of
the arms in S: Rt(S) =

∑
i∈S Xi,Ti(t), but our frame-

work allows more sophisticated nonlinear rewards, as
explained below.

In this paper, we consider CMAB problems in which
the expected reward of playing any super arm S in
any round t, E[Rt(S)], is a function of only the set
of arms S and the expectation vector µ of all arms.
For the linear reward case as given above, this is true
because linear addition is commutative with the ex-
pectation operator. For non-linear reward functions
not commutative with the expectation operator, it is
still true if we know the type of distributions and only
the expectations of arm outcomes are unknown, and
outcomes of different arms are independent. For ex-
ample, the distribution of Xi,t’s are known to be 0-1
Bernoulli random variables with unknown mean µi.
Henceforth, we denote the expected reward of playing
S as rµ(S) = E[Rt(S)]. To carry out our analysis,
we make the following two mild assumptions on the
expected reward rµ(S):

• Monotonicity. The expected reward of playing
any super arm S ∈ S is monotonically nondecreas-
ing with respect to the expectation vector, i.e., if
for all i ∈ [m], µi ≤ µ′i, we have rµ(S) ≤ rµ′(S)
for all S ∈ S.

• Bounded smoothness. There exists a strictly
increasing (and thus invertible) function f(·),
called bounded smoothness function, such that for

any two expectation vectors µ and µ′, we have
|rµ(S)− rµ′(S)| ≤ f(Λ) if maxi∈S |µi − µ′i| ≤ Λ.

Both assumptions are natural. In particular, they hold
true for all the applications we considered.

A CMAB algorithm A is one that selects the super arm
of round t to play based on the outcomes of revealed
arms of previous rounds, without knowing the expec-
tation vector µ. Let SAt be the super arm selected by
A in round t. Note that SAt is a random super arm that
depends on the outcomes of arms in previous rounds
and potential randomness in the algorithm A itself.
The objective of algorithm A is to maximize the ex-
pected reward of all rounds up to a round n, that is,
ES,R[

∑n
t=1Rt(S

A
t )] = ES [

∑n
t=1 rµ(SAt )], where ES,R

denotes taking expectation among all random events
generating the super arms SAt ’s and generating re-
wards Rt(S

A
t )’s, and ES denotes taking expectation

only among all random events generating the super
arms SAt ’s.

We do not assume that the learning algorithm has the
direct knowledge about the problem instance, e.g. how
super arms are formed from the underlying arms and
how reward is defined. Instead, the algorithm has ac-
cess to a computation oracle that takes the expectation
vector µ as the input, and together with the knowledge
of the problem instance, computes the optimal or near-
optimal super arm S. Let optµ = maxS∈S rµ(S) and
S∗µ = argmaxS∈S rµ(S). We consider the case that ex-
act computation of S∗µ may be computationally hard,
and the algorithm may be randomized with a small
failure probability. Thus, we resolve to the following
(α, β)-approximation oracle:
• (α, β)-Approximation oracle. There is an

(α, β)-approximation oracle for some α, β ≤ 1
that takes an expectation vector µ as input, and
outputs a super arm S ∈ S, such that Pr[rµ(S) ≥
α · optµ] ≥ β. Here β is the success probability of
the oracle.

A lot of computationally hard problems do admit effi-
cient approximation oracles (Vazirani , 2004). With an
(α, β)-approximation oracle, it is no longer fair to com-
pare the performance of a CMAB algorithm against
the optimal reward optµ as the regret of the algo-
rithm. Instead, we compare against the α · β fraction
of the optimal reward, because only a β fraction of
oracle computations are successful, and when success-
ful the reward is only α-approximate of the optimal
value. Formally, we define (α, β)-approximation regret
of a CMAB algorithm A after n rounds of play using
an (α, β)-approximation oracle under the expectation
vector µ as

RegAµ,α,β(n) = n · α · β · optµ − ES

[
n∑
t=1

rµ(SAt )

]
.
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1: For each arm i, maintain: (1) variable Ti as the
total number of times arm i is played so far; (2)
variable µ̂i as the mean of all outcomes Xi,∗’s of
arm i observed so far.

2: For each arm i, play an arbitrary super arm S ∈ S
such that i ∈ S and update variables Ti and µ̂i.

3: t← m.
4: while true do
5: t← t+ 1.

6: For each arm i, set µ̄i = µ̂i +
√

3 ln t
2Ti

.

7: S = Oracle(µ̄1, µ̄2, . . . , µ̄m).
8: Play S and update all Ti’s and µ̂i’s.
9: end while

Algorithm 1: CUCB with computation oracle

Note that the classical MAB problem is a special case
of our general CMAB problem, in which (a) the con-
straint S = [m] so that each super arm is just a simple
arm; (b) the reward of a super arm S = i in its t’s trial
is its outcome Xi,t; (c) the monotonicity and bounded
smoothness hold trivially with function f(·) being the
identity function; and (d) the (α, β)-approximation or-
acle is simply the argmax function among all expecta-
tion vectors, with α = β = 1.

3. CUCB Algorithm for CMAB

We present our CUCB algorithm in Algorithm 1. After
m initialization rounds, based on previous information,
we maintain an empirical mean µ̂i for each arm i. More
precisely, if arm i has been played s times by the end of
round n, then the value of µ̂i at the end of round n is
(
∑s
j=1Xi,j)/s. The actual expectation vector µ̄ given

to the oracle contains an adjustment term for each µ̂i,
which depends on the round number t and the number
of times arm i has been played (stored in variable Ti).
Then we simply play the super arm returned by the
oracle and update variables Ti’s and µ̂i’s accordingly.
Note that in our model all arms have bounded support
on [0, 1], but with the adjustment µ̄i may exceed 1. If
such µ̄i is illegal to the oracle, we simply replace it with
1. Since replacing any value larger than 1 with 1 does
not violate monotonicity and bounded smoothness of
the reward function, our analysis below is not affected
by this artifact and we directly use the original µ̄i.

A super arm S is bad if rµ(S) < α · optµ. We define
SB = {S | rµ(S) < α · optµ} as the set of bad super
arms. For a given underlying arm i ∈ [m], we define

∆i
min = α · optµ −max{rµ(S) | S ∈ SB, i ∈ S}, (1)

∆i
max = α · optµ −min{rµ(S) | S ∈ SB, i ∈ S}. (2)

Furthermore, define ∆max = maxi∈[m] ∆i
max and

∆min = mini∈[m] ∆i
min. Our main theorem below pro-

vides the regret bound of the CUCB algorithm.

Theorem 1. The (α, β)-approximation regret of
the CUCB algorithm in n rounds using an (α, β)-
approximation oracle is at most

∑
i∈[m],∆i

min>0

(
6 lnn ·∆i

min

(f−1(∆i
min))2

+

∫ ∆i
max

∆i
min

6 lnn

(f−1(x))2
dx

)

+

(
π2

3
+ 1

)
·m ·∆max. (3)

where f(·) is the bounded smoothness function.

Due to the space constraint, we prove the following
regret bound simplified from Eq.(3).(

6 lnn

(f−1 (∆min))
2 +

π2

3
+ 1

)
·m ·∆max. (4)

Proof of regret bound in Eq.(4). We use I{·} to denote
the indicator function, and I{E} = 1 if event E is true,
and 0 if E is false.

For variable Ti, let Ti,t be the value of Ti at the end
of round t, that is, Ti,t is the number of times arm i
is played in the first t rounds. For variable µ̂i, let µ̂i,s
be the value of µ̂i after arm i is played s times, that
is, µ̂i,s = (

∑s
j=1Xi,j)/s. Then, the value of variable

µ̂i at the end of round t is µ̂i,Ti,t . For variable µ̄i,
let µ̄i,t be the value of µ̄i at the end of round t. Let
µ̄t = (µ̄1,t, . . . , µ̄m,t) be the random vector fed to the
oracle as the input in line 7 of Algorithm 1 at round t.

In the t-th round, let Ft be the event that the oracle
fails to produce an α-approximate answer with respect
to the input vector µ̄t = (µ̄1,t, . . . , µ̄m,t). We have
Pr[Ft] = E[I{Ft}] ≤ 1− β.

We maintain counter Ni for each arm i after the m
initialization rounds. Let Ni,t be the value of Ni after
the t-th round and Ni,m = 1. Note that

∑
iNi,m = m.

Counters {Ni}mi=1 are updated as follows.

For a round t > m, let St be the super arm selected in
round t by the oracle (line 7 of Algorithm 1). Round
t is bad if the oracle selects a bad super arm St ∈
SB. If round t is bad, let i = argminj∈St

Nj,t−1. We
increment Ni by one, i.e., Ni,t = Ni,t−1 + 1. That is,
we find the arm i with the smallest counter in St and
increment its counter. If i is not unique, we pick an
arbitrary arm with the smallest counter in St. On the
other hand, if St /∈ SB , no counter will be incremented.

By definition Ni,t ≤ Ti,t. Notice that in every bad
round, exactly one counter in {Ni}mi=1 is incremented,
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so the total number of bad rounds in the first n rounds
is less than or equal to

∑
iNi,n.

Define `t = 6 ln t
(f−1(∆min))2

. Consider a bad round t, St ∈
SB is selected and counter Ni of some arm i ∈ St is
updated. We have

m∑
i=1

Ni,n −m · (`n + 1) =

n∑
t=m+1

I{St ∈ SB} −m`n

≤
n∑

t=m+1

∑
i∈[m]

I{St ∈ SB, Ni,t > Ni,t−1, Ni,t−1 > `n}

≤
n∑

t=m+1

∑
i∈[m]

I {St ∈ SB, Ni,t > Ni,t−1, Ni,t−1 > `t}

=

n∑
t=m+1

I {St ∈ SB,∀i ∈ St, Ni,t−1 > `t} (5)

≤
n∑

t=m+1

(I{Ft}+ I {¬Ft, St ∈ SB,∀i ∈ St, Ni,t−1 > `t})

≤
n∑

t=m+1

(I{Ft}+ I {¬Ft, St ∈ SB,∀i ∈ St, Ti,t−1 > `t}) .

Eq.(5) holds by our rule of updat-
ing the counters. We first claim that
Pr[{¬Ft, St ∈ SB,∀i ∈ St, Ti,t−1 > `t}] ≤ 2 ·m · t−2.

In fact, for any i ∈ [m],

Pr

[
| µ̂i,Ti,t−1

− µi |≥
√

3 ln t/(2Ti,t−1)

]
=

t−1∑
s=1

Pr
[
{| µ̂i,s − µi |≥

√
3 ln t/(2s), Ti,t−1 = s}

]
≤
t−1∑
s=1

Pr
[
| µ̂i,s − µi |≥

√
3 ln t/(2s)

]
≤t · 2e−3 ln t = 2t−2, (6)

where the last inequality is due to the Chernoff-

Hoeffding bound. Define Λi,t =
√

3 ln t
2Ti,t−1

(a random

variable since Ti,t−1 is a random variable), and event
Et = {∀i ∈ [m], |µ̂i,Ti,t−1 − µi| ≤ Λi,t}. By union
bound on Eq.(6), Pr[¬Et] ≤ 2 ·m · t−2. According to
line 6 of Algorithm 1, we have µ̄i,t − µ̂i,Ti,t−1

= Λi,t.
Thus |µ̂i,Ti,t−1

− µi| ≤ Λi,t implies that µ̄i,t ≥ µi.

Let Λ =
√

3 ln t
2`t

, which is not a random variable. De-

fine random variable Λt = max{Λi,t | i ∈ St}. Then

Et ⇒ ∀i ∈ St, |µ̄i,t − µi| ≤ 2Λt (7)

{St ∈ SB,∀i ∈ St, Ti,t−1 > `t} ⇒ Λ > Λt (8)

Let µ̄t = (µ̄1,t, . . . , µ̄m,t) be the vector representing
the adjusted expectation vector at round t. Then,

Et ⇒ µ̄t ≥ µ. (9)

If {Et,¬Ft, St ∈ SB,∀i ∈ St, Ti,t−1 > `t} holds at time
t, we have the following important derivation:

rµ(St) + f(2Λ) > rµ(St) + f(2Λt) ≥ rµ̄t
(St)

≥α · optµ̄t
≥ α · rµ̄t

(S∗µ) ≥ α · rµ(S∗µ) = α · optµ.

The first inequality above is due to the strict mono-
tonicity of f(·) and Eq.(8); the second is due to the
bounded smoothness property and Eq.(7); the third
is because ¬Ft implies that St is an α approximation
w.r.t µ̄t; the fourth is by the definition of optµ̄t

, and
the last inequality is due to the monotonicity of rµ(S)
and Eq.(9). So we have

rµ(St) + f(2Λ) > α · optµ. (10)

Since `t = 6 ln t
(f−1(∆min))2 , we have f(2Λ) = ∆min. There-

fore, Eq. (10) contradicts the definition of ∆min and
the fact that St ∈ SB. In other words,

Pr [{Et,¬Ft, St ∈ SB,∀i ∈ St, Ti,t−1 > `t}] = 0⇒
Pr [{¬Ft, St ∈ SB,∀i ∈ St, Ti,t−1 > `t}]
≤ Pr[¬Et] ≤ 2 ·m · t−2.

The claim thus holds. We have,

E

[
m∑
i=1

Ni,n

]
≤ m(`n + 1) + (1− β)(n−m) +

n∑
t=1

2m

t2

≤ 6m · lnn
(f−1 (∆min))

2 + (
π2

3
+ 1) ·m+ (1− β)(n−m).

Notice that each time we hit a bad super arm at time
t, we incur a regret at most ∆max ≥ α · optµ − rµ(St).
Then we obtain the regret bound of Eq.(4) as follows.

RegAµ,α,β(n)

≤nαβ · optµ −

(
nα · optµ − E

[
m∑
i=1

Ni,n

]
·∆max

)

≤

(
6m lnn

(f−1 (∆min))
2 + (

π2

3
+ 1)m+ (1− β)(n−m)

)
·∆max − (1− β)n · α · optµ

≤

(
6 lnn

(f−1 (∆min))
2 +

π2

3
+ 1

)
·m ·∆max.

We now briefly discuss the idea to prove Theorem 1.
In the proof of Eq.(4), we essentially show that if all
arms are sufficiently sampled with respect to ∆min, the
probability that we hit a bad super arm is small. On
the other hand, in a bad round, if the underlying arms
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are not sufficiently sampled with respect to ∆min, we
incur a regret of ∆max. Notice that there is a discrep-
ancy in the analysis, i.e., the sufficiency of sampling is
defined on ∆min while the regret is counted as ∆max.
Theorem 1 is based on a more refined analysis that de-
fines the sufficiency of the sampling of arm i separately
for each bad super arm containing i, which avoids the
over charge above.

Comparing to classical MAB. The classical MAB
is a special instance of our CMAB framework in which
each super arm is a simple arm, function f(x) = x,
and α = β = 1. Notice that ∆i

max = ∆i
min. Thus, by

Theorem 1, the regret bound of the classical MAB is∑
i∈[m],∆i>0

6 lnn

∆i
+

(
π2

3
+ 1

)
·m ·∆max, (11)

where ∆i = maxj∈[m] µj − µi. Comparing with the
regret bound in Theorem 1 of (Auer et al., 2002a),
we have a better coefficient

∑
i∈[m],∆i>0 6/∆i in the

leading lnn term than the original
∑
i∈[m],∆i>0 8/∆i.1

The improvement is due to a tighter analysis, and is
the reason that we obtained improved regret bound
over (Gai et al., 2012) for the linear reward CMAB.

Our tight analysis implies a distribution-independent
regret for arbitrary distributions with support in [0, 1]
on all arms, for a large class of problem instances with
a polynomial bounded smoothness function f(x) =
γxω for γ > 0 and 0 < ω ≤ 1, as shown below.

Theorem 2. Consider a CMAB problem with an
(α, β)-approximation oracle. If the bounded smooth-
ness function f(x) = γ · xω for some γ > 0 and
ω ∈ (0, 1], the regret of CUCB is at most:

2γ

2− ω
· (6m lnn)ω/2 · n1−ω/2 +

(
π2

3
+ 1

)
·m ·∆max.

Note that when ω = 1, which covers all applica-
tions discussed in Section 4, in the simple arm set-
ting, we obtain a distribution-independent bound of
O(
√
mn lnn), which matches the original UCB1 algo-

rithm (Audibert & Bubeck, 2009) (up to a logarithmic
factor). In the linear combinatorial bandit setting, i.e.,
semi-bandit with L∞ assumption in (Audibert et al.,

2011), our regret is O(
√
m3n log n), which is a factor√

m off the optimal bound in the adversarial setting.

4. Applications

In this section, we describe three applications that fit
our CMAB framework. Notice that, the probabilistic

1We remark that the constant of UCB1 regret has been
tightened to the optimum (Garivier & Cappé, 2011).

maximum coverage bandit and social influence maxi-
mization bandit are instances of the online submodular
maximization problem, which can be addressed in the
adversarial setting by (Streeter & Golovin, 2008).

4.1. Probabilistic maximum coverage bandit

The online advertisement placement application dis-
cussed in the introduction can be modeled by the
bandit version of the probabilistic maximum coverage
(PMC) problem. PMC has as input a weighted bipar-
tite graph G = (L,R,E) where each edge (u, v) has a
probability p(u, v), and it needs to find a set S ⊆ L
of size k that maximizes the expected number of acti-
vated nodes in R, where a node v ∈ R can be activated
by a node u ∈ S with an independent probability of
p(u, v). In the advertisement placement scenario, L is
the set of web pages, R is the set of users, and p(u, v)
is the probability that user v clicks the advertisement
on page u. PMC problem is NP-hard, since when all
edge probabilities are 1, it becomes the NP-hard Max-
imum Coverage problem. Using submodular set func-
tion maximization technique (Nemhauser et al., 1978),
it can be easily shown that there exists a determinis-
tic (1 − 1/e) approximation algorithm for the PMC
problem, which means that we have a (1 − 1/e, 1)-
approximation oracle for PMC.

The PMC bandit problem is that edge probabilities are
unknown, and one repeatedly selects k targets in L in
multiple rounds, observes all edge activations and ad-
justs target selection accordingly in order to maximize
the total number of activated nodes over all rounds.
We can formulate this problem as an instance in the
CMAB framework. Each edge (u, v) ∈ E represents
an arm, and each play of the arm is a 0-1 Bernoulli
random variable with parameter pu,v. A super arm
is the set of edges ES adjacent to a set S ⊆ L of
size k. The reward of ES is the number of activated
nodes in R, which is the number of nodes in R that
are incident to at least one edge in ES with outcome 1.
Note that this reward is not linear to the outcomes of
arms. The monotonicity property is straightforward.
The bounded smoothness function is f(x) = |E| · x,
i.e., increasing all probabilities of all arms in a super
arm by x can increase the expected number of acti-
vated nodes in V by at most |E| · x. Since f(·) is
a linear function, the integral in Eq.(3) has a closed
form. In particular, by Theorem 1, we know that the
(1 − 1/e, 1)-approximation regret of our CUCB algo-
rithm on PMC bandit is bounded by∑
i∈E,∆i

min>0

12 · |E|2 · lnn
∆i

min

+

(
π2

3
+ 1

)
· |E| ·∆max.

Notice that all edges incident to a node u ∈ L are
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always played together. In this case, for any two
edges i, j ∈ E that are incident to the same node
u ∈ L, we have ∆i

min = ∆j
min, and we define it to be

∆u
min. The coefficient of lnn above could be written as∑
u∈L,∆u

min>0 12du|E|2/∆u
min, where du is the degree of

u. We call those arms that are always played together
as clustered arms. In the supplementary material, we
show how to exploit the arm clustering property to
remove the du above and obtain the following better
bound:∑
u∈L,∆u

min>0

12 · |E|2 · lnn
∆u

min

+

(
π2

3
+ 1

)
· |E| ·∆max.

4.2. Social influence maximization bandit

In social influence maximization (Kempe et al., 2003),
we are given a directed graph G = (V,E), where every
edge (u, v) is associated with an unknown propagation
probability pu,v. Initially, a seed set S ⊆ V are se-
lected and activated. In each iteration of the diffusion
process, each node u activated in the previous itera-
tion has one chance of activating its inactive outgoing
neighbor v with probability pu,v. The reward of S after
the diffusion process is the total number of activated
nodes in the end. Influence maximization is to find a
seed set S of at most k nodes that maximize the ex-
pected reward. Kempe et al. (Kempe et al., 2003) show
that the problem is NP-hard and provide an algorithm
with approximation ratio 1−1/e−ε with success prob-
ability (1− 1/|E|) for any ε > 0. This means that we
have a (1− 1/e− ε, 1− 1/|E|)-approximation oracle.

In the CMAB framework, we do not know the activa-
tion probabilities of edges and want to learn them dur-
ing repeated seed selections while maximizing overall
reward. Similar to PMC, we can treat each edge as an
arm, and a super arm is a set of outgoing edges from at
most k nodes. Different from PMC, when a super arm
S is played, not only arms in S reveal their outcomes,
but other arms (edges) may also reveal their outcomes
in the diffusion process, and the reward depends on the
outcomes of all these arms. As a result, our bounded
smoothness function is f(x) = |V |·|E|·x. According to
Theorem 1, the (1− 1/e− ε, 1− 1/|E|)-approximation
regret of the CUCB algorithm on influence maximiza-
tion is bounded by:∑
i∈E,∆i

min>0

12 · |V |2 · |E|2 lnn

∆i
min

+

(
π2

3
+ 1

)
· |E| ·∆max.

Similar to the PMC problem, we could exploit the arm
clustering property and improve the regret bound.

4.3. Combinatorial bandits with linear rewards

Gai et al. (Gai et al., 2012) studied the Learning with
Linear Reward policy (LLR). Their formulation is close

to ours except that their reward function must be lin-
ear. In their setting, there are m underlying arms.
Each super arm consists of a set of underlying arms S
together with a set of coefficients {wi,S | i ∈ S}. The
reward of playing super arm S is

∑
i∈S wi,S ·Xi, where

Xi is the random outcome of arm i. The formulation
can model a lot of bandit problems appeared in the lit-
erature, e.g., multiple plays, shortest path, minimum
spanning tree and maximum weighted matching.

Our framework contains such linear reward problems
as special cases.2 In particular, let L = maxS |S| and
amax = maxi,S wi,S , and we have the bounded smooth-
ness function f(x) = amax · L · x. By applying Theo-
rem 1, the regret bound is

∑
i∈[m],∆i

min>0

12 · a2
max · L2 · lnn

∆i
min

+

(
π2

3
+ 1

)
·m ·∆max.

Our result significantly improves the coefficient of the
leading lnn term comparing to Theorem 2 of (Gai
et al., 2012) in two aspects: (a) we remove a factor
of L+ 1; and (b) the coefficient

∑
i∈[m],∆i

min>0 1/∆i
min

is likely to be much smaller than m · ∆max/(∆min)2

in (Gai et al., 2012). This demonstrates that while
our framework covers a much larger class of problems,
we are still able to provide much tighter analysis than
the one for linear reward bandits.

5. Conclusion

In this paper, we propose the first general stochastic
CMAB framework that accommodates a large class
of nonlinear reward functions among combinatorial
and stochastic arms. We provide CUCB algorithm
with tight analysis on its distribution-dependent and
distribution-independent regret bounds and applica-
tions to new practical combinatorial bandit problems.

There are many possible future directions from this
work. One may study the CMAB problems with
Markovian outcome distributions on arms, or the rest-
less version of CMAB, in which the states of arms con-
tinue to evolve even if they are not played. Another
direction is to apply CMAB to contextual bandit set-
tings where arm distributions depend on the context
of the play. One may also see if any technique of this
work can be applied to the study of adversarial combi-
natorial bandits with nonlinear rewards. Of course, an
important future work is to empirically validate our al-
gorithm and demonstrate its effectiveness in practice.

2To include the linear reward case, we allow two super
arms with the same set of underlying arms to have different
sets of coefficients. This is fine as long as the oracle could
output super arms with appropriate parameters.



Combinatorial Multi-Armed Bandit: General Framework, Results and Applications

References

Anantharam, V., Varaiya, P., and Walrand, J. Asymp-
totically efficient allocation rules for the multiarmed
bandit problem with multiple plays — Part I: i.i.d.
rewards; Part II: Markovian rewards. IEEE Trans-
actions on Automatic Control, AC-32(11):968–982,
1987a.

Audibert, J.-Y., and Bubeck, S. Minimax policies for
adversarial and stochastic bandits. In COLT, 2009.

Audibert, J.-Y., Bubeck, S., and Lugosi, G. Mini-
max policies for combinatorial prediction games. In
COLT, 2011.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235–256, 2002a.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire,
R. E. The nonstochastic multiarmed bandit prob-
lem. SIAM J. Comput., 32(1):48–77, 2002b.

Berry, D. and Fristedt, B. Bandit problems. Chapman
and Hall, 1985.

Bubeck, S., Cesa-Bianchi, N., and Kakade, S. M. To-
wards Minimax Policies for Online Linear Optimiza-
tion with Bandit Feedback. In COLT, 2012.

Caro, F. and Gallien, J. Dynamic assortment with de-
mand learning for seasonal consumer goods. Man-
agement Science, 53:276–292, 2007.

Cesa-Bianchi, N. and Lugosi, G. Combinatorial ban-
dits.

Gai, Y., Krishnamachari, B., and Jain, R. Learning
multiuser channel allocations in cognitive radio net-
works: A combinatorial multi-armed bandit formu-
lation. In DySPAN, 2010.

Gai, Y., Krishnamachari, B., and Jain, R. Combina-
torial network optimization with unknown variables:
Multi-armed bandits with linear rewards and indi-
vidual observations. IEEE/ACM Transactions on
Networking, 20, 2012.
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