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Abstract

Causality discovery without manipulation is
considered a crucial problem to a variety of
applications, such as genetic therapy. The
state-of-the-art solutions, e.g. LiNGAM, re-
turn accurate results when the number of la-
beled samples is larger than the number of
variables. These approaches are thus appli-
cable only when large numbers of samples
are available or the problem domain is suf-
ficiently small. Motivated by the observa-
tions of the local sparsity properties on causal
structures, we propose a general Split-and-
Merge strategy, named SADA, to enhance
the scalability of a wide class of causality
discovery algorithms. SADA is able to ac-
curately identify the causal variables, even
when the sample size is significantly smaller
than the number of variables. In SADA,
the variables are partitioned into subsets,
by finding cuts on the sparse probabilistic
graphical model over the variables. By run-
ning mainstream causation discovery algo-
rithms, e.g. LiNGAM, on the subproblems,
complete causality can be reconstructed by
combining all the partial results. SADA ben-
efits from the recursive division technique,
since each small subproblem generates more
accurate result under the same number of
samples. We theoretically prove that SADA
always reduces the scale of problems with-
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out significant sacrifice on result accuracy,
depending only on the local sparsity condi-
tion over the variables. Experiments on real-
world datasets verify the improvements on
scalability and accuracy by applying SADA
on top of existing causation algorithms.

1. Introduction

Causality discovery plays an important role on a va-
riety of scientific domains. Different from the main-
stream statistical learning approaches, causality learn-
ing tries to understand the data generation procedure,
rather than characterizing the joint distribution of the
observed variables only. It turns out that understand-
ing causality in such procedures is essential to predict
the consequences of interventions, which is the key to a
large number of applications, such as genetic therapy,
advertising campaign design, etc.

From computational perspective, causation discovery
is usually formulated with a graphical probabilistic
model on the variables (Pearl, 2009), such that di-
rected edges between variables indicate causation rela-
tionships. When it is unlikely to manipulate the sam-
ples in experiments, conditional independence test-
ing is commonly employed to detect local causalities
among the variables (Pearl, 2009; Spirtes et al., 2001).
Despite of the successes of these approaches on small
problem domains and large sample bases, they usu-
ally fail to find true causalities, when huge equivalent
classes over the graphical probabilistic models render
exactly the same conditional independence.

To tackle the difficulties in the problem of causal
structure learning under non-experimental setting, re-
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searchers are recently resorting to asymmetrical rela-
tionship between the cause and effect variables un-
der assumptions on the generation process. The dis-
covery ability is dramatically improved, by exploit-
ing linear assumption (Zscheischler et al., 2012), linear
non-Gaussian assumption (Shimizu et al., 2006; 2011),
nonlinear non-Gaussian assumption (Hoyer et al.,
2008), discrete property (Peters et al., 2010), and so
on. When the variables are correlated under linear re-
lationships and the noises follow non-Gaussian distri-
butions, for example, LiNGAM (Shimizu et al., 2006)
and its variants (Shimizu et al., 2011) are known as
the best causality inference algorithms. However, the
scalability of LiNGAM and its variants is still ques-
tionable, since they heavily depend on the independent
component analysis (ICA) during the computation. To
return robust results from ICA, it is necessary to feed
a large bulk of samples, which are expected to be no
smaller than the number of variables.

Motivated by the common observations on the spar-
sity of causal structures, i.e. each variable usually only
depends on a small number of parent variables, we de-
rive a new general framework in this paper. The new
framework helps the existing causation algorithms to
get rid of difficulties on small sample cardinality in
practice. Well designed conditional independence test-
ings are conducted first, to partition the problem do-
main into small subproblems. With the same number
of samples, existing causation algorithms could gener-
ate more robust and accurate results on these small
subproblems. Partial results from all subproblems are
finally merged together, to return a complete picture
of causalities among all the variables. This framework
is theoretically solid, as it always returns correct and
complete result under the optimal setting. Our exper-
iments on synthetic and real datasets verify the supe-
rior scalability and effectiveness of our proposal, when
applied together with two mainstream causation anal-
ysis algorithms.

2. Related Work

Causality Bayesian network (CBN) is part of the theo-
retical background of this work. CBN is a special case
of Bayesian network, whose edge direction presents
the causality relations among the nodes (Pearl, 2009).
CBN has been used to model the causal structure in
many real-world applications, for example, the gene
regulatory network (Friedman et al., 2000; Kim et al.,
2004), causal feature selection (Cai et al., 2011).

Most of existing work try to explore the struc-
ture learning approach to learning the CBN, e.g.
the well known PC algorithm (Spirtes et al., 2001;

Kalisch & Bühlmann, 2007), Markov Blanket discov-
ery methods (Zhu et al., 2007). These methods pro-
vide the skeleton of causal structures, i.e. parent-child
pairs and Markov Blanket. However, these methods
usually cannot distinguish causes from consequences,
thus unable to output exact causalities.

Pearl is the pioneer of the causality analysis the-
ory (Pearl, 2009). Since Pearl’s Inductive Causality
(Pearl & Verma, 1991), a large number of extensions
are proposed. Most causality inference algorithms as-
sume the acquisition of a sufficiently large sample base
(Aliferis et al., 2010). Though there are studies aiming
at the inference problem under small sample cardinal-
ity (Bromberg & Margaritis, 2009), the actual number
of the samples used in their empirical evaluations re-
mains significantly larger than the number of variables.
Cai’s study (Cai et al., 2013) is another attempt under
this category to extend the method to the high dimen-
sional gene expression data by exploring the local sub-
structures. However, all these approaches, based on
independence conditional testings, cannot distinguish
two causality structures if they come from a so-called
Markov equivalence class (Pearl, 2009), in which ex-
pensive intervention experiments were previously con-
sidered essential (He & Geng, 2008).

Recently, Additive Noise Model is proposed to break
the limitation of the class of method purely under
conditional independence testings, by exploiting the
asymmetric property of the noises in the generative
progress, which brings a gleam of dawn to resolve
the causal equivalence problem. The Additive Noise
Model highly depends on the type of noise and the
form of causality. Existing studies on this line can be
categorized based on the adopted assumption on the
noise type and data generation mechanism. LiNGAM
and its variants (Shimizu et al., 2006; 2011), for ex-
ample, assume that the data generating process is lin-
ear and the noise distributions are non-Gaussian. The
nonlinear non-Gaussian method (Hoyer et al., 2008)
works when the data generating process is nonlin-
ear. And discrete model (Peters et al., 2010) is pro-
posed for the causal inference on domains with only
discrete variables. There are other research stud-
ies on this topic, such as explaining the underly-
ing theoretical foundation behind additive noise mode
(Janzing et al., 2012), regression-based model infer-
ence (Mooij et al., 2009) and kernel independence test
(Zhang et al., 2012). To the best of our knowledge,
there is no existing work to address the problem of
sample cardinality under Additive Noise Model.
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3. SADA Framework

3.1. Preliminaries

Assume that all samples from the problem domain
contain information on m different variable, i.e. V =
{v1, v2 . . . , vm}. Let D = {x1, x2, · · · , xn} denote an
observation sample set. Each sample xi is denoted
by a vector xi = (xi1, xi2, . . . , xim, yi), where xij in-
dicates the value of the sample xi on variable vj and
yi is the target variable under investigation. If P is
a distribution over the domain of variables in V , we
assume that there exists a causal Bayesian network
N faithful to the distribution P . The network N in-
cludes a directed acyclic graph G, each edge in which
indicates a conditional (in)dependent relationship be-
tween two variable nodes. Each edge is also associated
with a conditional probability function which simu-
lates conditional probability distribution of each vari-
able given the values of the parent variables. Following
the common assumption of existing studies, we only
consider problem domain with the Faithfulness Con-
dition(Koller & Friedman, 2009). Specifically, P and
N are faithful to each other, iff every conditional inde-
pendence entailed by N corresponds to some Markov
condition present in P .

Due to the probabilistic nature, it is likely to find a
huge number of equivalent Bayesian networks. Two
different Bayesian Networks, N1 and N2, are indepen-
dence (or Markov) equivalent, if N1 and N2 entail
exactly the same conditional independence relations
among the variables. In all these Bayesian networks,
Causal Bayesian network (CBN) is a special one in
which each edge is interpreted as a direct causal re-
lationship between a parent variable node and a child
variable node.

Generally speaking, it is difficult to distinguish CBN
from independence equivalent Bayesian networks, un-
less additional assumptions are made. When the vari-
ables are correlated under linear relationships and
the noises follow non-Gaussian distributions, LiNGAM
and its variants (Shimizu et al., 2006; 2011) are known
to return more accurate causations from the uncontrol-
lable samples. In particular, such assumption can be
formulated by an equation, such that every variable
vi =

∑
vj∈P (vi)

Aij · vj + ei, where P (vi) contains all
the parent variables of vi, Aij is the linear dependence
weight w.r.t. vi and its parent vj , and ei is an non-
Gaussian noise over vi. Assume that the variables in
V are organized based on a topological order in the
causal graph. The generation procedure of a sample
could be written as V = A · V +E. LiNGAM aims to
find such a topological order and reconstructs the ma-
trix A by exploiting independence component analysis

v1

v9v8v7v6

v5v4v3

v2

C
C'

Figure 1. An example probabilistic graphical model over 9
variables and two causal cuts deduced by C and C′.

(ICA) over the sample.

When assuming non-linear generation procedure
(Hoyer et al., 2008) and discrete data domain
(Peters et al., 2010), additive noise model provides an-
other approach to utilize the asymmetric relation be-
tween causal variables and consequence variables. A
regression model vi = f(vj)+ei is trained for each pair
of variables vi and vj . If the noise variable ei is inde-
pendent of vj , variable vj is returned as the cause of
variable vi. Note that algorithms under discrete addi-
tive noise model are usually run over pairs of variables
independently.

A common observation on the CBNs in real-world
domains is the sparsity on the causal relationships.
Specifically, a variable usually only has a small num-
ber of parental causal variables in the CBN, regard-
less of the underlying true generative procedure. This
property, however, is not fully exploited by the existing
causation algorithms.

3.2. Framework

Let G = (V,E) denote a directed graph on the variable
set V . A variable set C ⊂ V forms a causal cut set
over G, iff C deduces three non-overlapping variable
subsets V1 ,V2 and C of V such that (1) V1 ∪ V2 ∪
C = V ; (2) there is no edge between V1 and V2 in E.
Intuitively, variables in C block all paths between the
variables in V1 and V2. For each directed edge u → v
in E, one of the two following cases must hold: (1)
intra-causality: u, v ∈ V1, u, v ∈ V2 or u, v ∈ C; and
(2) inter-causality: (u ∈ V1∪V2 and v ∈ C), or (u ∈ C
and v ∈ V1 ∪ V2).

In Figure 1, for example, C = {v4} is a valid
causal cut, which separates the variables into V1 =
{v1, v3, v6, v7}, V2 = {v2, v5, v8, v9}. Given a directed
graph G, there could be different valid cuts satis-
fying the above conditions. In the example graph,
C′ = {v3, v4, v5} is another valid causal cut with
V1 = {v1, v2}, V2 = {v6, v7, v8, v9}. Note that causal
cut may not lead to d-separation, e.g. C′ in the exam-
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Algorithm 1 SADA

Input: sample set D, variable set V , variable threshold
θ and a causation algorithm A
Output: G: directed causal graph of the CBN
if |V | ≤ θ then

Return the result G by running algorithm A on D and
V .

Find a causal cut (C, V1, V2) on V .
G1 =SADA(D,V1 ∪ C, θ,A).
G2 =SADA(D,V2 ∪ C, θ,A).
Return G by merging G1 and G2.

ple does not d-separate the other variables.

Given a causal cut (C, V1, V2) on variable set V , we
are able to transfer the causation inference problem
on V into two smaller causation inference problems
over variables V1 ∪ C and V2 ∪ C respectively. This
partitioning operation could be recursively called, un-
til the number of variables involved in the subproblem
is below a specified threshold T . The complete pseu-
docodes are available in Algorithm 1. The inputs of
SADA include the sample set D, the variables V , a
threshold θ and an underlying causation algorithm A.
Here, θ is used to terminate the recursive partitioning
when the variable set is sufficiently small, and A is an
arbitrary causation algorithm invoked to find the ac-
tual causal graph on the subset of variables. In the rest
of the section, we will discuss how to effectively and
efficiently find causal cuts on a variable set V . We will
also present the details of the merging operator, which
tackles the problem of inconsistency and redundancy
on the partial results from the subproblems.

3.3. Finding Causal Cuts

The searching of the causal cuts is crucial to the par-
titioning operation in SADA. To identify potential
causal cuts, our algorithm resorts to conditional in-
dependence relation between variables in the Bayesian
network. The following lemma formalizes the connec-
tion.

Lemma 1 (C, V1, V2) is a valid causal cut over V , iff
(1) V1 ∪ V2 ∪ C = V ; and (2) ∀u ∈ V1 and ∀v ∈ V2,
there exists a variable set Cuv ∈ C such that u⊥v|Cuv.

Proof: “⇒” Based on the definition of causal cut, con-
dition (1) always holds. Since there is no directed edge
between V1 and V2, for any u ∈ V1and v ∈ V2, u and
v are d -separated by C, implying the validity of con-
dition (2).

“⇐” For all pairs of variables (u, v) that u ∈ V1 and
v ∈ V2 are d -separated by C, there is no directed edge
between V1 and V2. Therefore, V1, V2 and C must

Algorithm 2 Finding Causal Cut

Input: sample set D, variable set V
Output: a causal cut (C, V1, V2)
for j = 1 to k do

Randomly pick up two variables u and v such that
u⊥v|V − {u, v}.

Find the smallest V̂ ⊆ V − u, v to make u⊥v|V̂ .

Initialize V1 = {u}, V2 = {v} and C = V̂ .
Remove variables in V1, V2 and C from V .
for each variable w ∈ V do

if ∀u ∈ V1, ∃C
′ ⊆ C that w⊥u|C′ then

Add w into V2.
else if ∀v ∈ V2, ∃C

′ ⊆ C that w⊥v|C′ then
Add w into V1.

else
Add w into C.

for each variable s ∈ C do
if ∀u ∈ V1, ∃C

′ ⊆ C − {s} that s⊥u|C′ then
Move s from C to V2.

else if ∀v ∈ V2, ∃C
′ ⊆ C −{s} that s⊥v|C′ then

Move s from C to V1.
Let Φj = (C, V1, V2)

Return Φj with the largest min{|V1|, |V2|}.

satisfy the definition of causal cut. �

The details of the algorithms are listed in Algorithm
2. The algorithm runs with k different initial variable
pairs. For each pair of {u, v} conditional independent
of each other in term of other variables, the algorithm
greedily adds other variables into C, V1 and V2. After
completing all assignment, the algorithm also tries to
move the variables from C to V1 or V2 to maximize
the partitioning effect. Finally, the causal cut with
largest min{|V1|, |V2|} are returned as final result. We
leave the discussion on the parameters k and θ to next
section. Please note that the sample size needed in
the cut algorithm highly depends on the local connec-
tivity of the causal structure but not on the number
of variables. This is an important advantage of the
algorithm to applications in large scale sparse causal
inference problems.

3.4. Merging Partial Results

As is shown in Algorithm 1, two partial results G1

and G2 are combined as a single casual graph as on
variables in V . Since G1 and G2 are calculated inde-
pendently, the merging operation is carefully designed
to handle conflicts and redundancies.

The general form of a conflict is a cycle of directed
edges among a group of variables. Given two nodes
v1 and v2, there are two paths co-existing, such as
v1 → · · · → v2 and v1 ← v2. To resolve such conflicts,
we simply remove the least significant edge, whenever
a cycle is found.

Redundancy incurs under the following observation:
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given two variables v1 and v2, if both v1 → · · · → v2
and v1 → v2 are discovered, v1 → v2 may be redun-
dant. Since the dependency relation v1 → v2 could
be blocked by certain variables in the variable set
Path(v1 → v2), where Path(v1 → v2) includes all
variables involved in v1 → · · · → v2. Such redun-
dancy raises when the following two conditions are
satisfied: 1) the source and destination variables are
both in the causal cut, i.e. v1, v2 ∈ C, 2) there is an-
other variable v3 ∈ V1, such that v1 → v3 → v2. If
the above two conditions are met, one path v1 → v2
will be returned from the subproblem with V1 ∪ C,
while another path v1 → v2 turns up from the other
subproblem with V2 ∪ C. To tackle this problem, our
merging algorithm runs the following conditional inde-
pendence test to verify if ∃V ′ ⊂ Path(v1 → v2) that
v1⊥v2|Path(v1 → v2).

To summarize, the merging operation works as follows.
Firstly, all directed edges from both solutions are sim-
ply added into a single edge set. Secondly, Edges are
ranked according to the associated significance mea-
sure, calculated by the underlying causation algorithm
A used by SADA. Thirdly, a sequential check on the
edges are run based on the order of the significance.
An edge is removed if it is conflicted with any of the
previous edge. Finally, the redundancy edges are dis-
covered and removed based on results of the condi-
tional independence testings. A complete description
is available in Algorithm 3.

Algorithm 3 Merge Results

Input: G1, G1: solutions to V1 ∪ C and V2 ∪ C
Output:G: solution for V1 ∪ V2 ∪ C
G = G1 ∪G2;
Sort edges in G in descending order of significance;
Mark all variable pairs as unreachable;
for each (v1 → v2) ∈ G do

if (v1, v2) is reachable then
G = G − {v1 → v2};

else
Mark (v1, v2) as reachable;

for each v1 → v2 ∈ G do
if v1 → · · · → v2 is in G then

Let Path(v1 → v2) includes all variables involved
in v1 → · · · → v2;
if ∃V ′ ⊂ Path(v1 → v2) satisfies v1⊥v2|V

′ then
G = G − {v1 → v2};

return G;

4. Theoretical Analysis

In this section, we study the theoretical properties of
SADA, especially on the effectiveness on problem scale
reduction, consistency on causal results and interpre-
tation with independent component analysis.

4.1. Effectiveness

In this part of the section, we aim to verify the effec-
tiveness of the causal cut search algorithm. In partic-
ular, we try to prove that the scale of the subproblem
is significantly reduced when applying the randomized
search algorithm.

Theorem 1 If every variable has no more than c
parental variables in CBN, by setting k = (2c + 2)2,
Algorithm 2 returns a causal cut (C, V1, V2) with prob-
ability at least 0.5, such that

min{|V1|, |V2|} ≥
|V |

2c+ 2

Proof Sketch: Since the causal graph in CBN must be
a DAG, there is at least one topological order on the
variables, i.e. V = {v1, v2, . . . , v|V |}, such that vi’s
parental variables are ahead of vi in the order. When
randomly picking up variable pairs in V , i.e. u and
v from V , we will first show that u and v generate a

causal cut with min{|V1|, |V2|} ≥
|v|

2c+2 with probability

at least 1/(2c+ 2)2.

With out loss of generality, we assume n = |V | and
the variable u is behind v in the topological order
over V . With probability α, u is one of the vari-
ables between v0.5n and v(0.5+α)n. Consider all the
αn variables between v0.5n and v(0.5+α)n. We sim-
ply put all these variables in V1, and put all parental
variables of V1, denoted by P (V1). and all variables
behind v(0.5+α)n into C. The rest of the variables are
inserted into V2. It is easy to prove that these con-
figuration {C, V1, V2} is a valid causal cut. Moreover,
|V1| = αn and |V2| ≥

n
2 − αcn. By picking α = 1

2c+2 ,
min{|V1|, |V2|} ≥

n
2c+2 . When v is selected in V2, Al-

gorithm 2 must converge to a solution better than the
artificial configuration above. This happens with prob-
ability at least 1

(2c+2)2 when α = 1
2c+2 .

By running the randomized search algorithm k =
(2c + 2)2 times, since (1 − e−α)α ≈ e−1 when α is
sufficiently large, the probability of finding a causal
cut with min{|V1|, |V2|} ≥

n
2c+2 is at least 1/2. �

The last theorem implies that the causal cut is effective
on reducing the scale of the subproblems. Another
implication is on the selection of the parameter θ. To
guarantee there is a reduction on problem size, the
parameter θ should be no smaller than 2c + 2, since
such theta ensuring that θ

2c+2 ≥ 1.

4.2. Correctness and Completeness

The effectiveness of SADA is guaranteed based on the
conclusion of the following theorem.
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Theorem 2 Assume D is a set of data samples gen-
erated from the causal structure G defined on the vari-
ables in V . If the causation algorithm A and condi-
tional independence test used in SADA are both reli-
able, SADA always finds the true causal structure G.

Proof: Assume G′ is the causal structure discovered
by SADA. We only need to prove the correctness and
completeness of G′. The correctness and completeness
are equivalent to ∀(v1 → v2) ∈ G′, (v1 → v2) ∈ G, and
∀(v1 → v2) ∈ G, (v1 → v2) ∈ G′, respectively. The
details of the proof are given as follows:

Completeness: Assume (v1 → v2) ∈ G, firstly, ac-
cording to the causal cut step, both v1 and v2 must be
in one subproblem, V1 ∪ C or V2 ∪ C, but not acrose
the two subproblems. Otherwise, v1 and v2 is condi-
tional independent of each other given some subset of
C, conflicts with the condition v1 → v2 ∈ G and the
assumption that the conditional independence test is
reliable. Secondly, according to the following two con-
ditions: ”v1 and v2 are in the same subproblem” and
”basic causal solver is reliable”, v1 → v2 ∈ G′ will be
discovered in one of the subproblems. Finally, the edge
v1 → v2 won’t be removed in the merge step, because
if the edge is removed by either conflict or redundancy
reason, it will conflict with the condition v1 → v2 ∈ G
and the assumption that the condition independence
test is reliable. Thus, v1 → v2 must be contained in
the result of SADA, in anther word, v1 → v2 ∈ G′.

Correctness: Assume (v1 → v2) ∈ G′, firstly we will
show v1 → v2 is the correct result of the subproblems.
According to the framework of SADA, v1 and v2 must
be discovered in one of the subproblem V1 ∪ C and
V2 ∪ C. Without loss of generality, assume v1 → v2
is discovered in the subproblem V1 ∪ C by the basic
causal solver. According to the condition that the ba-
sic causal solver is reliable, v1 → v2 must be the cor-
rect result for the subproblem V1 ∪ C. Secondly, we
will show (v1 → v2) ∈ G. If v1 → v2 is the correct re-
sult of V1∪C but not contained in G, then there must
appears some variable set V ′ ⊂ V satisfies v1⊥v2|V

′.
Thus, there must be a path v1 → · · · → v2 which con-
tains V ′ as intermediate nodes. If such path exists,
according to the Merge step, v1 → v2 will be removed
from the result set G′, and conflict with the condition
that v1 → v2 ∈ G′. Thus, v1 → v2 ∈ G. �

The previous theorem is based on an optimal setting
on the reliability of the causation algorithms and con-
ditional independence testings. In practice, such reli-
ability may not be achieved, due to the noises on the
samples and limited accuracy of the statistical num-
bers. In the experiments, we show that our approach
remains effective, even when the condition of reliability

is not fully satisfied.

4.3. Connection between SADA and ICA

In this part of the section, we discuss the connection
between SADA and ICA, under the assumption of lin-
ear correlation between variables and non-Gaussian
noises. By running SADA, the variables are parti-
tioned into (possibly) overlapping subsets, such that
each two subsets are independent of each other, in the
sense that there is no causal edge across them. On
the other hand, running ICA on the samples could be
interpreted based on the causal graph represented in
matrix form.

In Figure 2, we present a simple example with four
variables, {v1, v2, v3, v4}, with a generative process as
v3 = v1 + e3 and v4 = v2 + e4. An entry in the ma-
trix indicates if there is an causal edge between two
variables. Due to the sample generation rule, there
are only two 1s in the matrix, i.e. (v1, v3) and (v2, v4).
The ICA approach tries to find a permutation over the
complete variable set, such that triangle sub-matrices
with zeros on all top right entries are identified, as is
shown in Figure 2. Similarly, SADA returns two sub-
problems based on the causal cut C = ∅, V1 = {v1, v3}
and V2 = {v2, v4}, by spending a much smaller com-
putation cost.

v1 v2 v3 v4

v1

v2

v3

v4

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

v1 v3 v2 v4

v1

v3

v2

v4

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

Figure 2. SADA and ICA on a simple example

In a more complicated case with the causal structure in
Figure 1, the causal relationships are modeled in Fig-
ure 3. Since it’s impossible to find a permutation as in
Figure 2 to perfectly divide the variables into triangle
sub-matrices, a duplicate variable on v4 must be intro-
duced to satisfy the requirements of ICA. Our SADA
framework easily finds the causal cut with C = {v4},
V1 = {v1, v3, v6, v7} and V2 = {v2, v5, v8, v9}, which
generates subproblems consistent with ICA’s results.
However, the computational cost of SADA is signifi-
cantly smaller than that of running ICA on the com-
plete variable set. This is the main advantage of
SADA, since much less samples are needed to find a
robust causal cut and each subproblem is much easier
to solve.
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v1 v3 v4 v6

v1

v3

v4

v6

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

v2

v4

v5

v8

v9

v2 v4 v5 v8 v9

0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0

0

0

0

0

0

0

0

0

0

v7

v7

0 0 0 0 0 0 0 1 0 0

Figure 3. SADA and ICA on the example in Figure 1.

5. Experiments

We evaluate our proposal on datasets generated by
different real-world Bayesian network structures1, un-
der linear non-Gaussian model and discrete additive
noise model. It generally covers a variety of applica-
tions, including, medicine (Alarm dataset), weather
forecasting (Hailfinder dataset), printer troubleshoot-
ing(Win95pts dataset), pedigree of breeding pigs (Pigs
dataset) and linkage among genes (Link dataset). The
structural statistics of these Bayesian networks are
summarized in Table 1. In all the Bayesian networks,
the maximal degrees, i.e. the maximal number of
parental variables in the networks, are no larger than 6,
regardless of the total number of variables. This ver-
ifies the correctness of our sparsity assumption. On
all datasets, SADA stops the partitioning when the
subproblem reaches the size θ = 10. The recursive
partitioning is also terminated when Algorithm 2 fails
to find any valid causal cut.

Table 1. Statistics on the datasets
Dataset Variable # Avg degree Max degree
Alarm 37 1.2432 4

Hailfinder 56 1.1786 4
Win95pts 76 0.9211 6

Pigs 441 1.3424 2
Link 724 1.5539 3

In all the experiments, we report results on Causal
Cut Error. We use N to denote the number of causal
variable pairs in the specific Bayesian network, and
use Ne to denote the number of causal variable pairs
wrongly divided into subproblems after running divi-
sion operations in SADA. The causal cut error is the
ratio Ne/N . We also report the recall, precision and
F1 score on the result causal relationships returned by
SADA and baseline approaches. Specifically, F1 score
is calculated as 2P×R

P+R
, which R and P are recall and

1www.cs.huji.ac.il/site/labs/compbio/Repository/
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Figure 4. Causal cut errors on linear non-Gaussian models

precision respectively. The experiments are compiled
and run with Matlab 2009a on a windows PC equipped
with a dual-core 2.93GHz CPU and 2GB RAM.

5.1. On Linear Non-Gaussian Model

Under the assumption of linear non-Gaussian model,
the samples are generated based on linear functions as
vi =

∑
vj∈P (vi)

wijvj + ei. When randomly generating

these linear functions, we restrict that
∑

P (vi)
wij = 1

and the the variance V ar(ei) = 1 for every variable vi.
We employ the conditional independence test follow-
ing the method proposed in (Baba et al., 2004), with
threshold at 95%. LiNGAM (Shimizu et al., 2006) is
appointed as the basic causation algorithm A after
SADA reaches the minimal scale threshold θ at sub-
problems. LiNGAM without applying any division is
also used as the baseline approach, denoted by BL,
when reporting recall, precision and F1 score.

The causal cut errors are reported in Figure 4, on vary-
ing the number of samples generated by the Bayesian
networks. Even when the samples size is 2|V |, the
highest causal cut error is within 0.12. Moreover, the
causal cut error consistently decreases with the growth
of sample size. These results reveal the fundamental
advantage of SADA, such that the sufficient number
of samples only depends on the sparsity of the causal
structure but not the number of variables. Note that
the baseline approach LiNGAM does not work when
the number of samples are as small as 2|V |.

In the following experiments, we compare SADA
against the baseline approach by fixing the sample size
at 2|V |. As shown in Table 2, SADA achieves signifi-
cantly better F1 score on all of the five datasets. SADA
is particularly doing well on precision, i.e. returning
more accurate causality relationships. SADA’s divi-
sion strategy is the main reason behind the improve-
ment of precision on SADA. Specifically, the division
on variables allows SADA to remove a large number
of candidate variable pairs if they are assigned to V1

www.cs.huji.ac.il/site/labs/compbio/Repository/
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Figure 5. Causal cut errors on discrete models

and V2. The basic causality sovler, LiNGAM in this
case, is run on subproblem of much smaller scale, thus
generating more reliable results. The Recall of SADA
is comparable to the baseline approach on four of the
datasets, and slightly worse on the other one. This
shows that the unavoidable causal cut error does not
affect the recall under linear non-Guassian models.

Table 2. Results on Linear Non-Gaussian Model

Dataset
Recall Precision F1 Score

SADA BL SADA BL SADA BL

Alarm 0.41 0.24 0.36 0.30 0.38 0.27
Hailfinder 0.52 0.24 0.46 0.13 0.49 0.17
Win95pts 0.57 0.41 0.42 0.23 0.48 0.30

Pigs 0.56 0.57 0.23 0.12 0.33 0.19
Link 0.62 0.53 0.25 0.07 0.36 0.13

5.2. On Discrete Additive Noise Model

The generation process of the discrete data follows
the method used in (Peters et al., 2011) under Addi-
tive Noise Model(ANM) for causal inference on dis-
crete data. Each variable is restricted to 3 different
value and values are randomly generated based on
conditional probability tables. The implementation of
SADA for discrete domain is slightly different from
that for continuous domain. G2 test (Spirtes et al.,
2001) is employed as the conditional independence
test, with the threshold at 95%. The causation algo-
rithm A called by SADA is a brute force method to find
all causalities on problems of small scaled. Again, the
brute-force method without variable division is also
employed as a baseline approach, denoted by (BL) in
these results. In particular, the algorithm checks ev-
ery possible pair of variables following the method pro-
posed in (Peters et al., 2011).

The causal cut error of SADA on the discrete data is
presented in Figure 5, which shows similar property of
the result on linear non-Gaussian models. This fur-
ther verifies the generality of SADA on different data
domains.

In this group of experiments, we fix the sample size at
2000, and report recall, precision and F1 score in Table
3. Note that the baseline approach is only applicable
to domain with small number of variables. This leads
to difficulties for baseline to finish the computation on
Pigs and Link in one week. This proves the improve-
ment of SADA on scalability in terms of the variables.
Generally speaking, the results in the table also veri-
fies the effectiveness of SADA, especially on dramatic
enhancement on precision and F1 score.

Table 3. Results on Discrete Model

Dataset
Recall Precision F1 Score

SADA BL SADA BL SADA BL

Alarm 0.67 0.65 0.72 0.60 0.70 0.63
Hailfinder 0.71 0.76 0.57 0.45 0.63 0.56
Win95pts 0.68 0.71 0.41 0.38 0.51 0.49

Pigs 0.68 N.A. 0.50 N.A. 0.58 N.A.
Link 0.69 N.A. 0.46 N.A. 0.56 N.A.

As a conclusion, SADA shows excellent performance
on 5 different domains with real-world Bayesian net-
works. SADA returns accurate causal relations when
combined with two well known causal inference algo-
rithms. The causal cut used to partition the problem
does incur certain error on incorrect partitioning. De-
spite of the errors, SADA still outperforms the baseline
algorithms without partitioning on almost all settings.

6. Conclusion

In this paper, we present a general and scalable frame-
work, called SADA, to support causal structure in-
ference, using a split-and-merge strategy. In SADA,
causal inference problem on a large variable set is
partitioned into subproblems with overlapping sub-
sets of variables, utilizing the concept of causal cut.
Our proposal facilitates existing causation algorithms
to handle problem domains with more variables and
less samples, which are considered impossible in the
past. Strong theoretical analysis proves the effective-
ness, correctness and completeness guarantee of SADA
under a general setting. Experimental results fur-
ther verifies the usefulness of the new framework with
two mainstream causation algorithms on linear non-
Gaussian model and discrete additive noise model.
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