
Solving Continuous POMDPs: Value Iteration
with Incremental Learning of an Efficient Space Representation
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Abstract

Discrete POMDPs of medium complexity can
be approximately solved in reasonable time.
However, most applications have a continu-
ous and thus uncountably infinite state space.
We propose the novel concept of learning
a discrete representation of the continuous
state space to solve the integrals in con-
tinuous POMDPs efficiently and generalize
sparse calculations over the continuous space.
The representation is iteratively refined as
part of a novel Value Iteration step and does
not depend on prior knowledge. Consistency
for the learned generalization is asserted by a
self-correction algorithm. The presented con-
cept is implemented for continuous state and
observation spaces based on Monte Carlo ap-
proximation to allow for arbitrary POMDP
models. In an experimental comparison it
yields higher values in significantly shorter
time than state of the art algorithms and
solves higher-dimensional problems.

1. Introduction and Related Work

Solving decision problems in the real world is ag-
gravated by incomplete and noisy perception and
uncertain knowledge about how the world behaves
over time. Partially observable Markov decision pro-
cesses (POMDPs) (Sondik, 1971; Kaelbling et al.,
1998) provide a principled and powerful framework
to model sequential decision problems under these
constraints. Solving POMDPs exactly is computa-
tionally intractable. Recent developments in approxi-
mate solutions made discrete POMDPs applicable for
many tasks. Point Based Value Iteration (PBVI) ap-
proaches are efficient because they only explore a sam-
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pled subset of beliefs (Pineau et al., 2003). In combina-
tion with exploration and pruning heuristics, higher-
dimensional discrete POMDPs can be efficiently ap-
proximated (Spaan & Vlassis, 2005; Hoey & Poupart,
2005; Kurniawati et al., 2008; Poupart et al., 2011).

Most real world problems are of continuous nature,
though. In this case, the belief space is not only
high- but infinite-dimensional and known approaches
for discrete state domains are not applicable. To solve
POMDPs expected values need to be calculated. In
continuous POMDPs these are defined by integrals, for
which in general no closed form exists. For some prob-
lems it is possible to find a suited symbolic represen-
tation by hand, but this procedure is time-consuming
and error-prone. In general, a good representation is
not known a priori. To reduce the dimension of the
belief space automatically, more efficient belief repre-
sentations were proposed. In (Roy et al., 2005; Brooks
et al., 2006; van den Berg et al., 2012) sufficient statis-
tics, like the family of Gaussian distributions, were
used. These are not able to represent multiple modes
or sharp edges in the belief distribution. Both abilities
are essential, e.g., for path planning: A robot should
be able to pass a gap between the two modes of the dis-
tribution of an obstacle’s position. Also, collision bor-
ders need to be clearly represented. By reducing the
Kullback-Leibler divergence between the belief state
and its compression, more general representations can
be found (Zhou et al., 2010). Under certain conditions
beneficial properties, e.g. that the value function is
piecewise linear and convex (PWLC), can be main-
tained and exploited (Porta et al., 2006). In this case
α-functions, which are defined on the state space, can
efficiently represent the value function, which is de-
fined on the belief space.

These approaches share the idea to represent beliefs
rather than policies as precisely and efficiently as pos-
sible. However, it is not necessary to represent every
detail, if it has no influence on the optimal policy. Re-
search in MDPs showed that optimal state abstraction
is more than just an efficient description of the state
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(Munos & Moore, 2002). The same is true for belief
representations in POMDPs. According to (Poupart &
Boutilier, 2002) a representation of the state space of a
POMDP can be called lossless, if it preserves enough
information to select the optimal policy. In discrete
POMDPs, states with same value can be aggregated
without influencing the policy (Feng & Hansen, 2004).
This leads to a problem specific compression of the
belief space that is refined during the solving process.
Unfortunately, these ideas cannot be applied to infi-
nite state spaces directly. We show how they can help
to solve continuous-state POMDPs.

2. Concept and Implementation

This paper presents a method to solve continuous-state
POMDPs efficiently without constraining the reward,
process or observation models. Inspired by (Feng
& Hansen, 2004), we utilize the fact that the value
function comprises all problem relevant information
about interrelations of states, rewards and observa-
tions: States need to be distinguished iff that distinc-
tion leads to a different decision. Using α-functions to
represent the value function, these states have different
α-values. For continuous spaces we combine this idea
with a novel heuristic: In most problems, states which
are close in the state space will usually lead to similar
outcomes and thus have similar α-values. Hence, most
results can be generalized over the state space without
loss in the resulting policy. E.g., in path planning,
collisions induce discontinuities in the α-function: For
decision making a region in the state space with low
values, because these states will end in a collision in
the future, must be differentiated from the high value
region, where the obstacle can be avoided. Actually, in
path planning a robots precise position is mostly not
important until it approaches, e.g., a narrow passage.
Value functions even underly a hidden pattern in the
state space that is more complex than just proximity.

Our approach exploits these insights by automatically
learning a low-dimensional, discrete representation of
the continuous space during the process of solving.
The resulting representation is not only efficient be-
cause it is refined in accordance to the problem’s needs
during the solving process. Moreover, we create it by
applying machine learning algorithms. This enables
the solver to reveal the hidden pattern of a POMDP
and encode it in one space representation shared by all
beliefs and α-functions. This way, results of the value
calculation can be generalized even to regions which
have not been explored, yet.

The main contribution of this paper is the incorpo-
ration of this learning process into a Monte Carlo

(MC) Value Iteration Bellman backup. The results of
the continuous backup (Sec. 2.2) are α-functions rep-
resented by state-samples and their according value,
from which the learning procedure (Sec. 2.3) extracts
an efficient discrete α-representation (examples are
shown in Fig. 1). This procedure allows to back-
propagate representation refinements over time to-
gether with the value. We show that the represen-
tation implicitly defines a low-dimensional discrete
POMDP and that the solving process thus converges
under certain constraints.

The second contribution of this paper is a general con-
cept to maintain consistency for the value representa-
tion when using sparse backups (see Sec. 2.4 ). Due to
the nature of inductive learning, value results are over-
generalized. The reason for this is the absence of bet-
ter knowledge because an MC backup cannot explore
every detail of the space. We formulate a criterion to
reveal conflicting generalizations during the process of
solving and an algorithm to resolve them.

Fig. 1. 1D and 2D α-generalization and conflict resolution.

We embed the concept of value-directed representa-
tion learning and conflict correction into a continuous
PBVI algorithm. We present the theory to embed dis-
crete representations with a finite number of arbitrary
basis functions into continuous Value Iteration. In the
implementation we choose a disjunct space represen-
tation with piecewise constant beliefs and α-functions.
As we use decision trees to represent the space parti-
tioning, this choice is computationally efficient and can
be refined by splitting nodes. The implementation uses
exploration heuristics similar to ’explore’ described in
(Smith & Simmons, 2004) for discrete POMDPs to se-
lect which belief-point to backup next. Therefore ap-
proximate upper and lower bounds of the value must
be maintained for every belief.
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2.1. Preliminaries on Continuous POMDPs

A POMDP models a system with only partially ob-
servable states s ∈ S. The process model p(s′|s, a) =
p(st+1|st, a) is stochastic and depends on the taken ac-
tion a ∈ A. The knowledge about the system’s state
is represented by the belief distribution b ∈ B with
b : S → R≥0 and

∫
s∈S b(s)ds = 1. It can be updated

after observing o ∈ O using the observation model
p(o|s′) = p(o|st+1) analogously to Bayesian filtering.
In every time step the system receives a real-valued
reward r : S × A→ R . The goal of a POMDP solver
is to find a policy π : B → A which maximizes the
value V : B → R for an initial belief b0. The value
is defined as the expected total sum of rewards for a
belief b0 over time t discounted by γ ∈ [0, 1) :

Vπ(b0) = E

[ ∞∑
t=0

γtr(st, π(bt))

]
. (1)

Value Iteration is widely used to solve discrete
POMDPs. It is based on the idea of dynamic pro-
gramming (Bellman, 1957). Bellman backups prop-
agate the value function back in time and their re-
cursive application finally leads to convergence in the
optimal value. (Porta et al., 2006) formalized it for
continuous problems. Analogously to the discrete case
proven in (Sondik, 1971), they showed that the optimal
continuous-state value function is PWLC for discrete
observations and actions. Hence, the optimal n-th step
value function can be described as the supremum of a
finite set Γn of linear α-functions:

V n(b) = sup
α∈Γn

〈α, b〉 = sup
α∈Γn

∫
s∈S

b(s)α(s)ds, (2)

with S ⊆ RN and α : S → R. In the discrete case the
α-function reduces to an α-vector and the expectation
operator 〈·, ·〉 to a dot-product. As the expectation op-
erator is linear, α-function backup can be performed:

αna(s) = r(s, a)+ (3)

γ

∫
s′∈S

p(s′|s, a)

∫
o∈O

p(o|s′)αn−1
a,o (s′)do ds′,

with αn−1
a,o ∈ Γn−1 , αn−1

a,o = arg supα
〈
α, b′a,o

〉
. Only

α-functions dominating the next belief b′a,o, reached by
choosing action a in belief b and observing o, are used:

b′a,o(s
′)∼ p(o|s′)

∫
s∈S

p(s′|s, a)b(s)ds . (4)

Repeatedly applying Eq. (3) ensures convergence of
the continuous Value Iteration, if all equations are
well-defined (Porta et al., 2006). In discrete POMDPs
this is unproblematic as these equations are defined by
sums over a finite space. The reason why continuous
POMDPs are so much harder to solve is the necessity
to compute continuous integrals over the state space.

A closed form for Eq. (3) can only be found for some
special problems: E.g., if all models in the POMDP are
a linear combination of Gaussians, the α-functions can
also be represented by linear combinations of Gaus-
sians (Porta et al., 2006). Unfortunately, the number
of components grows exponentially with every Value
Iteration step. Thus, even if a closed form exists, for
the sake of computational feasibility approximations
are necessary. Notice that approximations can pre-
vent Value Iteration from converging to the optimal
result.

2.2. Monte Carlo POMDP Value Backup

In general, there is no closed form for the integrals in
the continuous-state value backup in Eq. (3) and the
underlying Bayesian filtering problem in Eq. (4). Se-
quential Monte Carlo (SMC) methods (also known as
particle filters) can be applied to numerically approx-
imate these equations. Their idea is to use a finite
set of samples to evaluate the continuous integrals.
SMC methods are a well-known technique approxi-
mating arbitrary Bayesian filtering problems (Doucet
et al., 2001). In contrast to, e.g., Kalman filtering,
SMC methods are not limited to certain distributions
(MacKay, 2003). Their capabilities come at the price
of higher computational effort and suboptimal solu-
tions, especially when dealing with very noisy den-
sity functions. For highly non-linear and multi-modal
problems though, the advantages of SMC outweigh.
An example for the need of complex, non-linear mod-
els in decision making is given in (Gindele et al., 2010;
Brechtel et al., 2011) for the domain of road traffic.

SMC methods have been incorporated into POMDP
Value Iteration in (Bai et al., 2010; Porta et al., 2006)
among others. In contrast to those approaches, we
heavily reuse once sampled particles by reweighting
them, in order to avoid the potentially high compu-
tational effort of sampling from and evaluating the
conditional density functions. Additionally, we want
to minimize the expensive discretization of continuous
beliefs and particles, which is necessary to look up val-
ues in the current bound approximations. Ideally, due
to the monotonicity of value backups, an upper and
lower bound of the value can be maintained, both con-
verging to the same optimal value. The lower bound
defines the policy result and is PWLC. Hence, the α-
backup in Eq. (10) can be used. The upper bound is
used to estimate the solver’s error and guide the ex-
ploration. As it is not convex, only the belief backup
in Eq. (6) can be applied. Our implementation ex-
plores the belief space analogously to (Smith & Sim-
mons, 2004). If a belief has been chosen, the MC value
backup is run for all actions a. The set Q of samples
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q ∈ Q is drawn proportional to the proposal joint den-
sity p(s, s′, o|b, a). Our MC backup uses it as basis for
the backup operations in the belief b for a fixed action
a. Q is recombined for different purposes.

〈sq, s′q, oq〉 ∼ p(s, s′, o|b, a) = p(o|s′)p(s′|s, a)b(s) (5)

The samples are obtained by drawing sq from b, then
drawing s′q from p(s′|sq) and finally drawing oq from
p(o|s′q). Particles of a backup which are close in the
state space are predicted and observed similarly. Thus,
recombining them is computationally beneficial, espe-
cially because a POMDP solver accounts for every pos-
sible observation, not just the one encountered, like in
Bayesian Filtering.

Belief Value Backup The sample-tuples in Eq. (5)
are first drawn proportional to b and thus the resulting
observation samples oq can be directly used to calcu-
late the next beliefs b′a,oq according to classical SMC
methods. To minimize redundant computations, a set
of distinct observations o ∈ Ob,a is used. The obser-
vation probability p(o|b, a) equals the probability of
getting to the next belief b′a,o and can be extracted
by marginalizing the samples over s and s′. The be-
lief b′a,o in Eq. (4) is approximated by the samples s′q

weighted with w∼ p(o|s′q). The n-th value backup for
the belief b results to:

V na (b) ≈

∑
q∈Q

r(sq, a)

+ γ
∑

o∈Ob,a

p(o|b, a)V n−1(b′a,o),

(6)

where V n−1(b′a,o) is obtained with the value function
of the the previous iteration step n− 1.

α-Function Backup Repeatedly applying α-func-
tion backups improves the lower bound and the policy
represented by it. An α-function expresses the value
an agent receives which is in state s, if he acts accord-
ing to the best known policy for the belief b. For the
backup in Eq. (10) thus the best α-functions for the
next beliefs b′a,o are used:

αn−1
a,o := arg sup

α∈Γn−1

〈
α, b′a,o

〉
. (7)

For recombining the samples Q, we apply importance
sampling to compensate their bias:

v
(k,i)
b,a :=

p(s′k|si, a)

p(s′k|sk, a)b(sk)
(8)

w
(j,k)
b,a :=

p(oj |s′k)

p(oj |s′j)p(s′j |sj , a)b(sj)
(9)

With these weights we calculate the α-function backup
(Eq. (3)) at every sampled point si of b. Note, that

α can also be evaluated for si : b(si) = 0. This capa-
bility is essential for the conflict resolution in Sec. 2.4.
The evaluated α-samples αnb,a(si) form a sparse repre-
sentation of the continuous α-function. Every backup
operation extends the set Γn = Γn−1 ∪ αnb,a(si):

αnb,a(si)
(3)
≈ r(si, a)+

γ
∑
k∈Q

∑
o∈Ob,a

∑
{j∈Q|oj=o}

w
(j,k)
b,a v

(k,i)
b,a αn−1

a,oj (s′k). (10)

As we evaluate the continuous expectation opera-
tor 〈·, ·〉 in Eq. (7) using the discrete representation,
every continuous sample s′q has to be discretized
only once, even if the used α-functions change (see
Sec. 2.3). Moreover, the distributions b(sk), p(s′k|si, a)
and p(oj |s′k) need to be evaluated only once. In both
cases the results can be saved and reused, if a belief is
iterated a second time. The recombination of weights
is quite expensive, but a perfect candidate for massive
parallelization, e.g., with GPUs because it is indepen-
dent of the specific POMDP.

The procedure is the same for continuous and dis-
crete observations. However, while for discrete obser-
vations it is likely to sample the same observation sev-
eral times, it is very improbable in noisy, continuous
domains. In such domains the number of different ob-
servations |Ob,a| can get very high and we apply an
idea presented in (Hoey & Poupart, 2005) for discrete
POMDPs. The linearity of the backup allows to clus-
ter all observations and with them beliefs b′ that are
dominated by the same α-function in Eq. (7) without
affecting the result.

2.3. Value Representation and Refinement

In order to converge, continuous MC Value Iteration
needs the ability to generalize the results calculated in
one belief by the MC backup to other beliefs. A naive
implementation of Eq. (2) does not work in continu-
ous state spaces: The MC backup in Eq. (10) approx-
imates the continuous α-function with a finite set of
samples and thus is undefined for most s ∈ S. In (Bai
et al., 2010) this problem is circumvented by using pol-
icy graphs as an implicit α-function description. How-
ever, this approach scales very poorly with long time
horizons and is not applicable for continuous observa-
tion spaces.

In contrast to that, we propose to find a low-
dimensional representation shared by all continuous
beliefs and α-functions. The key idea is to find a rep-
resentation suitable for the value rather than for the
(possibly high-dimensional) beliefs as in previous ap-
proaches. Note, that this line of action imposes a lossy
compression of beliefs, but lossless compression of the
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policy. We employ inductive machine learning with
the MC α-backup results as training data to obtain
the representation. Learning aims to find the patterns
generating the value functions. Thus, the discrete rep-
resentation effectively abstracts from the given sam-
ples and generalizes their result.

During the solving process, a new space Sd ⊂ N is
build and continuously refined. We describe its re-
lation to the continuous space S with a conditional
density function p(sd|s). The discretized belief bd can
then be obtained from b by marginalization:

bd(sd) =

∫
s∈S

p(sd|s)b(s)ds . (11)

We assume that the continuous α-function can be rep-
resented by the vector αd(sd) as a finite, linear com-
bination of normalized, but otherwise arbitrary, basis
functions p(sd|s):

α(s) =
∑
sd∈Sd

p(sd|s)αd(sd) . (12)

As shown in (Porta et al., 2006), the continuous opera-
tor 〈·, ·〉 is linear in the continuous belief space. Hence,
the value function V na (b) in Eq. (6) is PWLC for dis-
crete observations and actions. With above definitions
Lemma 1 holds and the discrete expectation operator
〈·, ·〉d, a simple and computationally inexpensive dot-
product, equals the continuous expectation operator:

Lemma 1. The continuous and the discrete expecta-
tion operator are equal.

Proof.

〈α, b〉 (2)
=

∫
s∈S

α(s)b(s)ds

(12)
=

∫
s∈S

∑
sd∈Sd

αd(sd)p(sd|s)b(s)ds

=
∑
sd∈Sd

αd(sd)

∫
s∈S

p(sd|s)b(s)ds

(11)
=

∑
sd∈Sd

αd(sd)b(sd)ds = 〈αd, bd〉d

Under these premises and assuming the MC α-backup
in Eq. (10) to be exact, the α-function recursion is
an isotonic contraction and converges. Further, if
Lemma 1 holds, p(sd|s) defines a discrete problem dual
to the continuous-state POMDP. Solving the discrete
POMDP in Sd, solves the original problem.

Finding a small and thus efficient set of basis func-
tions p(sd|s) that fulfill Eq. (12) for every α-function
is a difficult task. Also, the error induced by the MC
backup can only be minimized by using a a sufficient

number of particles, but not prevented. The following
subsections outline how the presented theory is im-
plemented in a computationally efficient manner and
discuss some details.

Representation Implementation For our imple-
mentation we choose Sd to represent a partitioning
of S using a mapping cm : S → Sd. While this choice
imposes limitations regarding the representation capa-
bilities, it allows for an efficient implementation and
refinement during the solving process to account for
more details. Therefore m indicates the version of
c. It is also able to represent discontinuities in the
value function and resembles the idea of differentiat-
ing states only if it is relevant to solve the problem.

pm(sd|s) :=

{
1, if cm(s) = sd
0, else

(13)

and consequently α(s)
(12)
:= αd(c

m(s)). We allow a rep-
resentation error |α(b)− αd(bd)| < eLB(b) for every
α-function to limit the number of partitions.

The solver must always be able to evaluate α-
functions created with arbitrary level of refinement.
Implementation-wise, using arbitrary basis functions,
it can be challenging to store p(sd|s) for all refinement
versions m. We use a decision tree to implement the
mapping c because it allows quick lookups and can
be refined incrementally by splitting a leaf node sd.
Further, a single decision tree can hold all versions of
p(sd|s) as former leaves remain in the tree as nodes.
The tree needs to be traversed only once for every par-
ticle in a belief to lookup all α-functions in the lower
bound and all belief-value-pairs in the upper bound
(see Sec. 2.3 ), even if they were created with different
versions m. It is sufficient to compute an overlapping
belief representation bd,overlap containing all non-zero
pm(sd|s)b(s) > 0 regardless of their version m.

Refinement Implementation A continuous
backup following Eq. (10) results in a sample-based
representation of the continuous α-function. This
backup operations often reveal new details of the
policy at new places in the state space. Thus, the
discrete representation must be constantly refined to
describe new α-functions.

Our implementation uses piecewise constant basis
functions p(sd|s) represented by a decision tree to de-
fine Eq. (12). At the beginning of the solving process
there is only the root node in the decision tree, cov-
ering the whole continuous space S. Regions are split
during the process of α-approximation, if the value of
their contained samples differs. In that case the two
subregions resulting from the split need to be distin-
guished to describe the policy of the newly generated
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continuous α-function correctly. Otherwise no approx-
imation error would be induced.

To build and refine the decision tree a greedy, recursive
procedure similar to C4.5 (Quinlan, 1993) is used. The
classical C4.5 is only formulated for discrete spaces.
We extended it with the ability to create oblique splits
in the continuous space, by sampling several candi-
dates and choosing the one that maximizes informa-
tion gain. The precise choice of the learning algorithm
is not crucial to the concept of Value Iteration pre-
sented in this paper. As the sampled α-function values
do not suffer from significant noise, overfitting can be
neglected in this context.

Algorithm 1 Value Iteration with Conflict Resolution

Require: lower bound ΓLB, space representation p
1: function Value Iteration step(b)
2: for all αC,d ∈ ΓLB do
3: if V (b) < αC,d(bd) then . check (14)
4: backup and resolve( bC )
5: end if
6: end for
7: backup and resolve( b )
8: Bexplored ← Bexplored ∪ bC
9: end function

10: function backup and resolve(bC)
11: αc ← continuous backup(bC ,ΓLB) . (10)
12: p← refine representation(αc, p). Sec. 2.3
13: αd ← discretize(αc, p)
14: for all bA ∈ Bexplored do
15: if V (bA) < αd(bA,d) then . check (14)
16: bC ← bC ∪ bA|w=0. extend bC particles
17: goto 11
18: end if
19: end for
20: ΓLB ← ΓLB \ αC,d . remove old αC,d of bC
21: ΓLB ← ΓLB ∪ αd . add new consistent αd
22: end function

Lower and Upper Bound The lower bound at
backup step n is a set ΓnLB of PWLC α-functions, rep-
resented by sparse vectors αd : Sd → R using the dis-
cretization pm(sd|s) of a potentially different version
m. If pm(sd|s) defines a partitioning cm (see Eq. (13)),
αd is non-overlapping and non-empty in S. Conse-
quently, the discretization of version m is implicitly
stored with αd. To evaluate 〈αd, bd〉d we can calcu-
late the sparse dot-product with the overlapping rep-
resentation bd,overlap of b. Zero-entries αd(sd) = 0 are
undefined and do neither affect the result nor increase
processing time.

For the upper bound we use the ’sawtooth’-
interpolation method proposed in (Hauskrecht, 2000).

The upper bound is represented by a set (bpd, Vbpd) ∈
ΓnUB of pairs of beliefs and their value. It can be
evaluated for a belief b by finding the belief-value-
pair (BVP) with the minimal interpolation VUB(b) =
minp V

p(b) in ΓnUB. Using pm(sd|s), this can be effec-
tively carried out in Sd. Ideally, both bounds converge
to the optimal value function and thus share their opti-
mal representation. They can benefit from each other
discovering ’interesting’ splits.

2.4. Correction of Value-Generalizations

It is not feasible to preserve the bound-properties in
general continuous POMDP problems exactly because
the MC Value Iteration backup cannot be calculated
for the complete state space. If not treated, this will
lead to contradictory statements from the different be-
liefs regarding the value and possibly corrupt the pol-
icy. Quantifying these errors is very difficult if not im-
possible. Instead, we give the solver the novel ability
to reflect the reasons for errors and correct them. To
maintain consistency for the lower and upper bound,
α-functions and BVPs violating the bound property
are detected. After identification, these inconsisten-
cies are resolved by extending the sample horizon of
the conflicting value approximation. This concept is
universally applicable, regardless of the representation
of bounds, the problem’s dimensionality or nature. It
can also be used for discrete POMDP solvers to realize
an efficient sparse backup.

Conflict Detection Assuming an exact MC value-
backup, the Value Iteration in Sec. 2.2 converges
monotonically to the optimal value. Hence, it can
be safely stated that the n-th step continuous belief
backup V n(bA) defined in Eq. (6), using a lower bound
Γn−1

LB as knowledge base, must be superior or equal to
any direct α-function from the same knowledge base
evaluated for bA:

∀α ∈ Γn−1
LB : V n(bA) ≥ α(bA). (14)

If this property is violated, Γn−1
LB is no lower bound

because a continuous α-function was overgeneralized.
Consequently, the violating αC must be corrected. Al-
gorithm 1 shows how this concept is embedded into
the lower bound Value Iteration for a newly explored
belief b. In the examples in Fig. 1, the α-vector gen-
eralization in a conflicting belief bC violated the con-
tinuous backup of the accusing belief bA. The beliefs
in those examples are obviously different. There are
also POMDP problems, where beliefs close to each
other in the state space can lead to significantly dif-
ferent values. Approaches which use a distance metric
to differentiate beliefs or approximate beliefs directly
with parametric models or kernel densities fail for such
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problems. The conflict mechanism in our approach en-
sures that the representation gets refined to differenti-
ate even such close beliefs.

For the upper bound approximation applies similar:
The BVPs in the sawtooth approximation described in
Sec. 2.3 must create a higher or equal value for every
b than their continuous backup of the upper bound.

We assert these properties continuously by checking
every new α-vector or BVP for conflicts with any of
the so far explored beliefs. Additionally, we check, if a
newly explored belief reveals a conflict with an exist-
ing α-function or BVP. If that is the case, we resolve
the conflict as described in the next section. As both
bounds are formulated sparsely in the discrete space,
the conflict detection is not as time-consuming as it
might appear at first glance. All beliefs are already
given in a discrete representation, which must at worst
be updated to the most recent version.
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Fig. 2. Convergence comparison of state of the art solvers
with the presented GENC-POMDP for the 1D corridor
problem and analysis of the 2D problem.

Conflict Resolution The reason for the conflicts
induced by an α-vector is that the continuous space is
only incompletely covered by sampling. Assumptions
about the undefined regions had to be made, which bA
falsified during conflict detection. Extending the sam-
pling base for the approximation with samples from
bA invalidates the reason for the conflict. Therefore
we compute the α-backup for every sample siA of bA
acting according to the policy of bC with Eq. (10). As

can be seen in the 1D example in Fig. 1, a new ap-
proximation then automatically learns the lower value
of those additional α(s)-samples combined with the
old samples.

The correction procedure for the upper bound approx-
imations is not covered in detail. It is based on the fact
that using a more refined representation for bpd speci-
fies the meaning of the BVP and increases the value
V pd (bd) for any bd. It is possible and probably benefi-
cial to introduce splits in this process, but the current
implementation only uses splits from the lower bound.

2.5. Evaluation

The presented solver is evaluated on three problems.
The first one is the continuous corridor problem de-
scribed by (Porta et al., 2005). While it is only 1D it
comprises an infinite amount of states and can there-
fore not be solved discretely. The second problem is
a 2D extension of the first and shows the capability
of the presented algorithm to find a low dimensional
discrete representation. At last, we introduce a new
higher-dimensional 8D intersection problem to analyze
the solver in a more realistic scenario.

1D Corridor Problem The first problem models a
robot moving in a one-dimensional corridor limited by
walls. The aim of the robot is to open the right door,
while perceiving its own position only uncertainly by
a discrete number of Gaussians. In the upper graph
of Fig. 2 the evaluation results of the policies after
different solving times of the presented solver is com-
pared to MCVI (Release 0.2, 17 May 2012) from (Bai
et al., 2010) and C-POMDP (PERSEUS) from (Porta
et al., 2006) using their open source implementations
and parameters. Therefore we ran 10, 000 trials simu-
lating 100 consecutive time steps. It shows that pre-
vious solvers only reach suboptimal average rewards
after reasonable solving time. After 12 h MCVI did
not exceed an average reward of 1.8. In 16 min our
algorithm found a much better policy with an aver-
age reward of about 2.55, although the smooth na-
ture of the Gaussians is close to a worst case for the
proposed piecewise-constant representation. Because
of the reuse of samples in the presented MC backup
and the particle extension by the conflict mechanism,
300 particles are sufficient to solve this problem. Af-
ter about 33 min both bounds converged and the algo-
rithm stopped.

2D Corridor Problem The second problem is a
2D extension of the corridor problem. The robot can
additionally go up and down. The 12 observations are
product densities of N (−3, 2), N (3, 2) and N (0, 100)
in x1 with the 4 original 1D observations in x0.
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The reward only depends on x0. Basically x1 only
distracts the solver, but still the combinatorial com-
plexity of this problem is much higher due to the
increased number of observations. Additionally, the
backup steps are slower because 500 particles were
used. The second plot in Fig. 1 shows that the splits
are mainly parallel to x1. The solver generalizes the
values by recognizing the meaninglessness of x1 and
thus converges after reasonable time, as shown in the
lower graph of Fig. 2. Interestingly, the value bounds
are not monotonic. The upper bound often drops
quickly at the beginning and corrects itself when a
conflict detecting belief is explored.
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Fig. 3. Sketch of the 8D intersection problem.

8D Intersection Problem In the intersection sce-
nario in Fig. 3 a robot agent and an obstacle move
on a 2D plane following a constant velocity model
with small white noise. The positions and velocities
of both objects result in an 8D joint state space. The
observations are continuous 8D measurements of the
state with additive white noise. The objects have
a circular shape with a radius of 1 m. Their po-
sitions are loosely bounded by roads. Starting at
(x, y, vx, vy) = (0 m, 0 m, 1 m/s, 0 m/s) the agent has
to cross the intersection without hitting the moving
obstacle by accelerating and decelerating. The agent
receives a reward of +10 for reaching the goal and
−10 in case of a collision. The discount is γ = 0.95.
If the obstacle moves past y = 8 m it is respawned
at y = −8 m so that the obstacle remains a constant
threat. The difficulty of the problem is that the y-
position of the obstacle is not known in advance and
the agent’s viewing distance is limited to 4 m. The pol-
icy found by the solver after 543 s achieves an average
score of 5.0 in simulation using 400 particles to repre-
sent the beliefs. The final representation of the space
uses a total of 487 states. A fixed discretization of an
8D space with just two regions per dimension would
already yield 256 states. The iterative refinement dis-
covered an efficient representation. The final policy
is encoded by 41 α-functions describing the following

behavior: The agent slowly approaches the intersec-
tion to be able to stop in a safe distance where he can
perceive the y-position of the obstacle with a small
standard deviation of σy = 0.32 (see Fig. 4 ). Then
it accelerates instantly or moves back first to pass the
obstacle.

Fig. 4. 8D problem: Dominating α-functions for successive
beliefs. Arrows indicate the velocity and color the α-value.
Choosing adecelerate in bt the agent reaches bt+1.

3. Conclusion and Future Work

The idea of combining planning with the gener-
alization capabilities of inductive learning shows
very promising results that bring the application of
POMDPs in real world tasks one step closer to real-
ity. The presented algorithm finds a better solution
to the continuous corridor problem in about 30 s than
previous approaches can obtain in hours. The novel
concept worked even in this noise dominated domain
and a higher-dimensional 8D obstacle avoidance prob-
lem. The presented algorithm is particularly suited for
POMDPs with sparse, multi-modal models.

In future work, a pruning of α-functions as well as
beliefs analogously to discrete solvers needs to be in-
corporated. Non-linear splitting functions, refinement
according to the upper bound and more sophisticated
error heuristics to control the adaptation would further
increase the efficiency of the representation. Finally,
finding a better exploration heuristic for continuous
belief spaces is still an unsolved problem.
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