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Abstract

We present and analyze a theoretical model
designed to understand and explain the ef-
fectiveness of ontologies for learning multi-
ple related tasks from primarily unlabeled
data. We present both information-theoretic
results as well as efficient algorithms.

We show in this model that an ontology,
which specifies the relationships between
multiple outputs, in some cases is sufficient
to completely learn a classification using a
large unlabeled data source.

1. Introduction

Overview In a number of modern applications of ma-
chine learning (including text understanding, medical
diagnosis, search, and vision), one would like to learn
multiple related tasks from primarily, or even solely,
unlabeled data. One approach to this task (Carlson
et al., 2010b) is to take advantage of known relation-
ships among the classes being learned, which are often
captured by an ontology; such an ontology can either
be provided by domain experts or learned from past
data. In this work, we develop and analyze a theoret-
ical model aimed at providing a mathematical under-
standing of learning methods of this type.

More specifically, we propose and analyze a model for
the following setting. Suppose we would like to solve
L different classification problems, which potentially
have very different sets of features, given only a large
supply of unlabeled data. In order to help us with
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this difficult task, we are supplied with an ontology
specifying relations among the L categories. For in-
stance, this ontology might say that an example to be
classified cannot be both a company and a product,
or that if someone is an athlete, then they are also
a person. The question our model aims to address
is how learning these multiple concepts (company,
product, person, athlete, etc.) in parallel, aided
by constraints provided by the given ontology, can be
done using unlabeled data.

Motivation A prime example motivating our work
is the NELL Never-Ending-Language-Learning sys-
tem (Carlson et al., 2010a;b) (rtw.ml.cmu.edu) which
has had substantial success in learning a wide-range
classification of objects in the world from primarily
unlabeled data. These include facts such as that am-
gen is a biotechcompany, that a porsche boxster
is a vehicle and more specifically an automobile-
model, etc. It learns propositions such as these start-
ing from only a small number of seed instances of
each category, by identifying patterns observed on the
web and bootstrapping from a large amount of un-
labeled data. This bootstrapping is aided by con-
straints provided from a given ontology: for example
that something cannot be both a person and a com-
pany, that an automobile is a special kind of vehicle,
and so on. These constraints are used to prevent over-
generalization by classifiers for each of the categories.

Other examples of this type abound. In medical diag-
nosis, we often have readily available known relation-
ships concerning the different concepts (corresponding
to different diseases) we are trying to learn to predict.
For example if a patient presents with chest pain, this
might be due to a heart attack or gastroesophageal
reflux but very unlikely both; a patient with diabetic
neuropathy must also have diabetes. Note that in this
setting, different diseases often have different sets of
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relevant tests (which would lead to different features
for the concepts we are trying to learn).

Another motivating example is machine reliability:
given a machine with multiple parts, we want to detect
which part failed. The ontology specifies which parts
(say, gear wheel) belong to a larger part (say, engine).
Again, different tests are often aimed at different parts.

Our Results We model a classifier h as an L-
tuple (h1, . . . , hL) over the L categories, with each
hi providing an up-or-down prediction on category i
and each having its own feature space. An ontology
R ⊆ {0, 1}L specifies which L-tuples of labelings are
legal and which are not. We can analyze the incom-
patibility between a classifier and a given ontology by
examining the probability the classifier assigns a label-
ing that violates the ontology; we call this its unlabeled
error rate. Clearly, this is also a lower bound on its
true error rate. Our first result shows that for the
ontology in which each example belongs to exactly one
category, if L ≥ 3 and no category is dominant, then
for a product distribution (given the labels), unlabeled
error is also (up to a factor of 2) an upper bound on
true error, for hypotheses that also produce no overly
dominant category. This implies that by optimizing on
unlabeled data we can find a near optimal hypothesis.

Our second result involves the ontology in which each
example belongs to at most one category. In this
case we find unlabeled error is closely related to false-
positive error. As a result, we can achieve a near opti-
mal hypothesis by optimizing on unlabeled data sub-
ject to both upper and lower bounds on prediction
rates for each category.

Next, we extend these results to the case of a general
graph-based ontology described by binary NAND and
subset relationships between categories (a NAND rela-
tion between categories i, i′ indicating that an object
cannot be both type i and i′, and a subset relation in-
dicating that an object of type i must also be of type
i′), and also relax the independence condition. We
show that the classifier of minimum unlabeled error
that maximizes a measure we call tightness (that can
be estimated from unlabeled data alone) will be a good
approximation to the target function. We further give
efficient algorithms for the case of discrete domains,
corresponding to settings where data within each view
falls into a small number of high-quality clusters. Fi-
nally, we provide finite sample guarantees, extending
VC-dimension to apply to unlabeled error.

Related Work This type of constraint-aided learning
is reminiscent of co-training (Blum & Mitchell, 1998)
and multi-view learning more generally (Sridharan &

Kakade, 2008; Chapelle et al., 2006; Zhu & Goldberg,
2009); however in those settings the multiple views
correspond to a single task, whereas in our framework
the views correspond to different tasks related by an
ontology. The use of unlabeled error is also related to
the semi-supervised learning framework of (Balcan &
Blum, 2005). (Cavallanti et al., 2010) study multi-task
learning where the tasks have different feature spaces
in the context of online supervised learning, and (He
& Lawrence, 2011) study multi-task semi-supervised
learning where the individual tasks involve multiple
views; however, these do not use an ontology among
tasks. Empirical work on using ontologies for semi-
supervised and unsupervised learning in the NELL sys-
tem appears in (Carlson et al., 2010a;b; Verma & Hr-
uschka Jr., 2012), and empirical work on learning on-
tologies from data appears in (Mohamed et al., 2011).

2. The model

Learning model: We assume there are L categories.
Let X = X1 × · · ·XL be the instance space where Xi

denotes the instance space for category i. An example
is an L-tuple ~x = (x1, . . . , xL) where xi ∈ Xi.

We have a hypothesis class C such that each classifier
is ~c = (c1, . . . , cL) ∈ CL where ci : Xi → {0, 1}. The
classification of ~c of ~x is ~c(~x) = (c1(x1), . . . , cL(xL)).
We assume that the target function c∗ ∈ CL. Given
the target function c∗, let X+

i = {xi ∈ Xi : c∗i (xi) = 1}
and X−i = {xi ∈ Xi : c∗i (xi) = 0}.

We assume a joint distribution D over X. For cate-
gory i, the distribution D induces on Xi is Di. D+

i

and D−i are the induced distributions on X+
i and X−i ,

respectively. Let pi = PrD(c∗i (xi) = 1). We will often
make the assumption that each category is meaningful
(for all i, pi ≥ α for some α > 0) and no category is
dominant (e.g., pi ≤ 1/3 for all i).

Ontology: An ontology R ⊆ {0, 1}L is the set of
legal labelings. We assume that c∗(~x) ∈ R for any
~x ∈ X. A broad class of ontologies we will focus on are
graph based ontologies, where the ontology is given by
a graph over the L categories, where each edge corre-
sponds to a binary relation between pairs of categories
indicating which relations are disallowed. We focus
specifically on two relationships: A “NAND” relation-
ship (i, i′) implies that for any z ∈ R we never have
zi = zi′ = 1. A “⊆” relationship (i, i′) implies that for
any z ∈ R if zi = 1 then zi′ = 1.

2.1. Intuition and high-level idea

The high-level idea for how the ontology R enables the
use of unlabeled data in our model is that it induces a
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natural notion of the unlabeled error rate of a proposed
classifer. Specifically, fixing R, given a classifier h =
(h1, . . . , hL), we define

errunl(h) = Prx∼D[(h1(x1), . . . , hL(xL)) 6∈ R].

In other words, the unlabeled error rate of a classifier
h is the probability mass of data for which it assigns
an illegal labeling. Since any labeling disallowed by R
must also be an incorrect vector of predictions, unla-
beled error rate is a lower bound on labeled error rate;
that is, errunl(h) ≤ err(h), where

err(h) = Prx∼D[∃i, hi(xi) 6= c∗i (x)].

What we will show is that under appropriate assump-
tions we can get bounds in the other direction as well.
This will imply that unlabeled error rate can be used
as a proxy for labeled error rate in a global optimiza-
tion procedure. It actually will be a bit more compli-
cated than this: for example, a classifier h such that
h1(x1) = 1 for every example x, and hi(xi) = 0 for all x
and all i > 1, would be perfectly consistent with an on-
tology that is the complete graph of NAND edges; yet
such an h would presumably have high labeled error
(so in this case, errunl(h) is not at all upper-bounding
err(h)). However, notice that in this case we could
discard such an h due to violating an assumption that
no category is overly dominant. What we will show is
that this, and a few other cases that can also be ad-
dressed from unlabeled data only, are the only types of
obstacles that arise, at least for the portion of err(h)
caused by overgeneralizing. This motivates algorithms
that aim to generalize as much as possible subject to
the ontology and category constraints.

Of course, the ease or difficulty of optimizing for low
unlabeled error rate depends on the form of the clas-
sifiers. After discussing general results under the as-
sumption of an optimization oracle, we then consider
a more specific cluster-based setting where we will be
able to solve this problem efficiently.

3. Optimization-based learning

In this section we analyze the relationship between un-
labeled and labeled error rates under natural condi-
tions. We begin by assuming data satisfies indepen-
dence given the labeling (IGL). In Section 3.3 we will
relax that assumption to a notion of weak dependence.

We begin by considering the ontology R1 where ev-
ery example is positive for exactly one of the L cat-
egories. For this ontology we have

∑
i pi = 1 and

under IGL we can view the generation of examples
as follows. Examples are drawn by first selecting a

label i ∼ (p1, . . . , pL), and then selecting xi′ ∼ D−i′
for each i′ 6= i and selecting xi ∼ D+

i . We will then
relax this to a complete graph of NAND edges (ev-
ery example positive for at most one category), i.e.,
R01 = {z ∈ {0, 1}L,

∑
i zi ≤ 1}. Finally we will relax

it to an arbitrary ontology of NAND and “⊆” edges,
subject only to very mild conditions such as each cate-
gory having at least one incident edge and each relation
being nontrivial (see Section 3.3).

For a hypothesis h = (h1, . . . , hL), for a, b ∈ {0, 1}, we
define pi,a|b as the probability that hi(xi) = a given
that c∗i (xi) = b.

3.1. Each example positive for exactly one
category

For ontology R1, where each example is positive
for exactly one category, we have: errunl(h) =
Prx∼D[hi(x) = 0 for all i OR ∃ i 6= i′ s.t. hi(x) =
1, hi′(x) = 1].

As a warmup we begin by analyzing the case that the
different views all look like identical copies of the same
learning problem. In particular, D1 = . . . = DL and
c∗1 = . . . = c∗L, and D satisfies independence given the
labeling. We call this the independent-identical model.
In this case we can shorten the notation pi,a|b to simply
pa|b. We will show that for ontology R1, if err(h) ≥ ε
then errunl(h) = Ω(ε). That is, all the hypotheses of
large labeled error rate have large unlabeled error rate
as well, and thus these hypotheses can be discarded by
using unlabeled examples.

To get an intuition of why this might be true note that

err(h) ≤
∑

i∈{1,...,L}

pi(pi,0|1 +
∑
i′ 6=i

pi′,1|0)

= p0|1 + (L− 1)p1|0 ≡ α.

Note that either p0|1 ≥ α/2 or p1|0 ≥ α
2(L−1) . For

simplicity assume below that α ≤ 1.1

We will consider a few cases based on p1|0 and p0|1.
The first case is p1|0 ≥ α

2(L−1) and p0|1 ≤ α/2. In this

case we will consider the probability of having at least
two positive predictions, which is,

(1− p0|1)(1− (1− p1|0)L−1) ≥ 1
2 (1− (1− α

4 )) = α
8 .

Now we consider the case that p0|1 ≥ α/2. Consider
the unlabeled accuracy, namely the probability of hav-
ing a single positive label,

1− errunl ≤ (L− 1)p0|1p1|0 + (1− p0|1)

= (α− p0|1)p0|1 + (1− p0|1).

1If α > 1 then a different argument using the fact that
L ≥ 3 can be applied.
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Since this is decreasing with p0|1, the unlabeled accu-
racy is at most 1 − (α/2) + (α/2)(α − α/2). So, the
unlabeled error rate is at least α/2 − α2/4 ≥ α/4 ≥
err(h)/4. We have derived the following theorem.

Theorem 1 In the independent-identical model with
ontology R1 and L ≥ 3, if err(h) ≥ ε then errunl(h) =
Ω(ε).

We now remove the (artificial) restriction that all the
D+
i and D−i are equal. The requirement in Theorem 2

that pi ≤ 1/3 can be viewed as requiring that we need
at least three non-trivial categories.

Theorem 2 For ontology R1, if D satisfies IGL and
we have pi ≤ 1/3 and Pr[hi = 1] ≤ 1/3 for all i, then
errunl(h) ≥ err(h)/2.

Proof: Let us write the labeled error rate as:

err(h) = 1−
∑
i

pipi,1|1
∏
i′ 6=i

pi′,0|0

The unlabeled error rate is,

errunl(h) = err(h)−
∑
i

pipi,0|1
∑
i′ 6=i

pi′,1|0
∏

j 6∈{i′,i}

pj,0|0

Intuitively, the difference between the unlabeled error
rate and the true error rate are the cases when we have
an outcome with a single one, but it is the incorrect
one. We would like to lower bound the ratio between
the unlabeled error rate and the true error rate, i.e.,

errunl(h)

err(h)
= 1−

∑
i pipi,0|1

∑
i′ 6=i pi′,1|0

∏
j 6∈{i′,i} pj,0|0

1−
∑
i pipi,1|1

∏
i′ 6=i pi′,0|0

Let xi = pi,0|1 and yi′pi′,1|0, then we like to maximize

F (x1, y1, . . . , xL, yL) =

∑
i

pixi
∑
i′ 6=i

yi′
∏

j 6∈{i′,i}

(1− yj)

1−
∑
i

pi(1− xi)
∏
i′ 6=i

(1− yi′)

For each i, the function F is increasing in xi, so it
will get its maximum value at 1 (the maximum value
of xi). This implies that we need to maximize

G(y1, . . . , yL) =
∑
i

pi
∑
i′ 6=i

yi′
∏

j 6∈{i′,i}

(1− yj).

Since each pi ≤ 1/3 and hi is 1 with probability at
most 1/3 then pi,1|0 ≤ 1/2.

We know that the maximizing solution to G out of all
yi ∈ [0, 1/2] will have a certain number, say k, of y’s
equal 1/2 and the rest are zero. Therefore,

G ≤
∑
i∈S

pik
1

2
(1− 1

2
)k−1 =

∑
i∈S

pik
1

2k
≤ 1

2
.

This implies that errunl(h)/err(h) ≥ 1
2 .

3.2. Each example positive for at most one
category

We now consider the more general ontology R01, which
allows for the all-negative labeling. We start with the
following important lemma, that relates the error of
switching 0 to 1, with some ‘observable event’.

Lemma 3 Given ontology R01, assume D satisfies
IGL and that

∑
i pi = 1 − β ≥ 3/4, and pi ≤ 1/4 for

all i. Consider a hypothesis h such that
∑
i pi,1|0 = γ.

Then, for any δ ≤ 1/4 one of the following holds: (1)
the probability of two or more positive labels is at least
γ2(1−β−δ)/6000 (2) The probability the hypothesis h
predicts all categories negative is more than β + δ, or
(3) for some category i, the probability that hi(xi) = 1
is at least 0.982(1− β − δ)

Proof: Assume that the probability that h predicts
all categories negative is at most β + δ (otherwise we
are done). Let s = arg maxi pi,1|0. We consider two
cases depending on the magnitude of ps,1|0. In the first
case, where ps,1|0 < γ/6, we show that the unlabeled
error rate is significant. In the second case, where
ps,1|0 ≥ γ/6, we show that either the unlabeled error
rate is significant or that h predicts positive in category
s with a very high probability.

Case 1: Assume ps,1|0 < γ/6. Then we can partition
the categories into three subsets S1, S2 and S3 such
that

∑
i∈Sj

pi,1|0 ≥ γ/6. Let Bj =
∑
i∈Sj

pi,1|0. For

one of the three sets we have
∑
i∈Sj

pi ≥ (1−β−δ)/3;
assume that this is S1. Then the probability that the
true label is in S1 and in each other set we have at
least one positive label (and hence at least two positive
labels overall) is at least,

(
∑
i∈S1

pi)(1−
∏
i∈S2

(1− pi,1|0))(1−
∏
i∈S3

(1− pi,1|0))

≥ (
∑
i∈S1

pi)(
∑
i∈S2

pi,1|0
e )(

∑
i∈S3

pi,1|0
e )

≥ 1−β−δ
3

γ
6e

γ
6e = (1−β−δ)γ2

108e2 > (1−β−δ)γ2

6000 ,

where the first inequality uses the fact that having k
independent events of probability qj each implies that
the probability some event occurs is at least

∑
j qj/e.

This implies that the probability of an unlabeled error
in this case is Ω(γ2(1− β − δ)).

Case 2: Assume that ps,1|0 ≥ γ/6. Then γ ≤ 6. Con-
sider the probability of observing a 1 in s and also a
label 1 in some i 6= s. Note that the probability that
c∗s(x) = 0 is at least 3/4. The only way the unlabeled
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error rate can be less than γ2(1− β − δ)/6000 is if

Pr[∃i 6= s : hi(x) = 1|c∗s(x) = 0] < γ(1−β−δ)
1000(3/4) .

Namely, given that c∗s(x) = 0, the probability of pre-
dicting 1 in any i 6= s is at most the above bound.
Since γ ≤ 6 this implies that the probability that hs =

1 is at least 1−Pr[∀ihi(x) = 0]− errunl(h)− 6(1−β−δ)
1000(3/4)

> 0.982(1− β − δ).

Unlike the case of the ontology R1, for R01 there can be
a hypothesis that has zero unlabeled error and a very
high labeled error: for example, a hypothesis that pre-
dicts negative always for every category. To overcome
this, we will focus on a set of “plausible” hypothe-
ses. Let Good(β, λ) be the set of hypotheses h ∈ C
such that Pr[∀ihi(xi) = 0] ≤ β and for any category
Pr[hi(xi) = 1] ≤ λ.

Theorem 4 Suppose
∑
i pi = 1−β ≥ 4/5 and for any

i we have pi ≤ λ = 1/5. If h ∈ Good(β+ε/20, λ+ε/20)
and err(h) ≥ ε then errunl(h) = Ω(ε2). In addition
Good(β + ε/20, λ+ ε/20) 6= ∅.

Proof: First, note that c∗ ∈ Good(β, λ). Now, consider
h ∈ Good(β + ε/20, λ + ε/20) and let

∑
i pi,1|0 = γ.

Assume that err(h) ≥ ε. We consider two cases de-
pending on the value of γ.

Case 1: Assume γ ≥ 0.25ε. By Lemma 5, with
δ = ε/20, we have three possible outcomes: (1) the
probability of two or more positive labels is γ2(1 −
β− ε/20)/6000, (2) The probability that h predicts all
categories negative is more than β + ε/20, or (3) for
some category i, the probability that hi(xi) = 1 is at
least 0.982(1− β − ε/20).

Since h ∈ Good(β + ε/20, λ + ε/20), outcome (2) is
impossible. For outcome (3), since β + ε/20 ≤ 1/5 +
1/20 = 1/4, then 0.982(1− β − ε/20) > 0.7. Since the
probability that h ∈ Good(β + ε/10, λ + ε/10) labels
any category positive is at most λ + ε/20 = 1/4 <
0.7, outcome (3) is also impossible. Therefore, the
unlabeled error rate of h is Ω(γ2(1−β−ε/20)) = Ω(ε2).

Case 2: Assume γ < 0.25ε. Since err(h) ≥ ε, this
implies that ξ =

∑
i pipi,0|1 ≥ 0.75ε. The probability

that h predicts negative in all categories is at least
β − γ + ξ > β − 0.25ε + 0.75ε = β + 0.5ε, which is a
contradiction that h ∈ Good(β + ε/20, λ+ ε/20).

3.3. General Graph-Based Ontologies

The previous analysis demonstrated an extremely
tight connection between labeled and unlabeled error,

allowing for learning from unlabeled examples only,
and moreover (see Section 4) from a number of unla-
beled examples not much larger than the sample com-
plexity of supervised learning. However, these results
required an ontology such that any example is positive
for at most one category. They also assumed full inde-
pendence given the labeling. In this section we extend
these results to show we can learn from purely unla-
beled data given an arbitrary graph based ontology of
NAND and “⊆” edges, subject only to the following
conditions on the ontology and the distribution:

(1) For some given α > 0, we have α ≤ pi ≤ 1−α for
all i. That is, each category is nontrivial.

(2) The ontology has no isolated vertices. That is, for
every category i, there exists at least one edge in
the ontology graph (either NAND or “⊆”) with i
as one of its endpoints.

(3) For some given α2 > 0, for any edge (i, i′) in the
ontology graph, each of the pairs of labels not
explicitly disallowed by the edge has probability
mass at least α2 under D.

For example, if there is an edge “athlete ⊆ per-
son”, then each of the three cases: “person-
athlete”, “person-nonathlete”, and “nonperson-
nonathlete” should have probability at least α2.
This condition is natural because if it is not sat-
isfied for some edge, then it means the two cate-
gories are effectively either synonyms (nearly al-
ways equal) or antonyms (nearly always opposite).

Finally, we replace independence given the labeling
with the following much weaker condition related to
the “weak dependence” of (Abney, 2002):

(4) For some given λ > 0, for any edge (i, i′), any
hi, hi′ ∈ C, and any ai, `i, ai′ , `i′ ∈ {0, 1}, we have

Pr[hi = ai|c∗i = `i ∧ c∗i′ = `i′ ∧ hi′ = ai′ ]

≥ λPr[hi = ai|c∗i = `i]

so long as Pr[c∗i = `i ∧ c∗i′ = `i′ ∧ hi′ = ai′ ] > 0.
(For compactness, we are using “hi = ai” to de-
note the event “hi(xi) = ai” and similarly for
hi′ , c

∗
i , c
∗
i′). Note that full (or even pairwise) inde-

pendence would correspond to λ = 1.

For additional intuition, conditions (2) and (3) above
would be satisfied if every category were contained in
a triangle of NAND edges.2

2Specifically, if the ontology graph satisfies this prop-
erty, then after deleting any edges that do not appear in
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Under the above conditions we will still be able to
learn from unlabeled data only. However, we will need
a larger sample size than for a complete graph.

In order to describe the algorithm and present its anal-
ysis, we need a few more definitions. First, if category
i has either an incident NAND edge or an incident “⊆”
edge for which it is on the subset-side, say that it is
positive-constrained (because the ontology is limiting
when it can be positive). If category i has an inci-
dent “⊆” edge for which it is on the superset-side, we
say that it is negative-constrained (because the ontol-
ogy is limiting when it can be negative). Note that
by condition (2) above, for every category at least one
applies. If both cases apply to some category i, then
for convenience we will just call it positive-constrained.
Let cat+ denote the set of positive-constrained cate-
gories and cat− denote the set of negative-constrained
categories. We now define how tightly constrained a
hypothesis h = (h1, . . . , hL) is as:

tightness(h) =∑
i∈cat+

Prx∼D[hi(xi) = 1] +
∑

i∈cat−
Prx∼D[hi(xi) = 0].

Finally, for a NAND edge (i, i′) define errunl(h, i, i
′) =

PrD[hi(xi) = 1∧hi′(xi′) = 1] and for a “⊆” edge (i, i′)
define errunl(h, i, i

′) = PrD[hi(x) = 1 ∧ hi′(xi′) = 0].

The optimization procedure for learning from unla-
beled data is now simply this: given an unlabeled sam-
ple S, find the most tightly constrained hypothesis h
possible (maximizing tightness(h)) subject to satisfy-
ing α ≤ Pr[hi(xi) = 1] ≤ 1− α for all i and h having
zero empirical unlabeled error over S. To analyze this
procedure, we begin with two key lemmas.

Lemma 5 For a NAND edge (i, i′), for any h:

errunl(h, i, i
′) ≥ α2λ

2 · pi,1|0 ·Pr[hi′(xi′) = 1].

Proof: We will expand errunl(h, i, i
′) by looking at two

specific cases for c∗i (xi) and c∗i′(xi′) and then will apply
conditions (3) and (4) of our assumptions to achieve
our desired lower bound. For compactness of notation,
let “c∗ii′ = ab” denote the event “c∗i (xi) = a∧c∗i′(xi′) =
b”, and similarly for hii′ . Then we have:

errunl(h, i, i
′)

= Pr[hi = 1 ∧ hi′ = 1]

triangles, the resulting ontology satisfies (2) and (3) with
α2 = α. That is because for any edge (i, i′) there is at least
α probability of labeling (1, 0) (when c∗i (xi) = 1), at least
α probability of labeling (0, 1) (when c∗i′(xi′) = 1) and at
least α probability of labeling (0, 0) (when c∗i′′(xi′′) = 1
where i′′ is the third category in the triangle).

≥ Pr[c∗ii′ = 01] ·Pr[hi = 1|c∗ii′ = 01] ·
Pr[hi′ = 1|c∗ii′ = 01 ∧ hi = 1] +

Pr[c∗ii′ = 00] ·Pr[hi = 1|c∗ii′ = 00] ·
Pr[hi′ = 1|c∗ii′ = 00 ∧ hi = 1]

≥ α2(λPr[hi = 1|c∗i = 0] · λPr[hi′ = 1|c∗i′ = 1]) +

α2(λPr[hi = 1|c∗i = 0] · λPr[hi′ = 1|c∗i′ = 0])

≥ α2λ
2pi,1|0Pr[hi′ = 1].

The first inequality above is from considering just
two of the three possible settings of c∗i (xi) and c∗i′(xi′),
the second comes from applying condition (3) to the
events involving c and (4) to the events involving h,
and finally the last inequality is using Pr[hi′ = 1] ≤
Pr[hi′ = 1|c∗i′ = 0] + Pr[hi′ = 1|c∗i′ = 1].

Lemma 6 For a “⊆” edge (i, i′), for any h we have:

errunl(h, i, i
′) ≥ α2λ

2 · pi,1|0 ·Pr[hi′(xi′) = 0]

errunl(h, i
′, i) ≥ α2λ

2 · pi′,0|1 ·Pr[hi(xi) = 1].

Proof: Using conditions (3) and (4) as in the proof of
Lemma 5, we can expand errunl(h, i, i

′) as:

errunl(h, i, i
′)

= Pr[hi = 1 ∧ hi′ = 0]

≥ Pr[c∗ii′ = 01] ·Pr[hi = 1|c∗ii′ = 01] ·
Pr[hi′ = 0|c∗ii′ = 01 ∧ hi = 1] +

Pr[c∗ii′ = 00] ·Pr[hi = 1|c∗ii′ = 00] ·
Pr[hi′ = 0|c∗ii′ = 00 ∧ hi = 1]

≥ Pr[c∗ii′ = 01] · λPr[hi = 1|c∗i = 0] ·
λPr[hi′ = 0|c∗i′ = 1] +

Pr[c∗ii′ = 00] · λPr[hi = 1|c∗i = 0] ·
λPr[hi′ = 0|c∗i′ = 0]

≥ α2λ
2pi,1|0Pr[hi′ = 0].

We also similarly have:

errunl(h, i, i
′)

= Pr[hi = 1 ∧ hi′ = 0]

≥ Pr[c∗ii′ = 01] · λPr[hi = 1|c∗i = 0] ·
λPr[hi′ = 0|c∗i′ = 1] +

Pr[c∗ii′ = 11] · λPr[hi = 1|c∗i = 1] ·
λPr[hi′ = 0|c∗i′ = 1]

≥ α2λ
2pi′,0|1Pr[hi(xi) = 1].

We now use these to show that for any plausible hy-
pothesis h (one such that α ≤ Pr[hi(xi) = 1] ≤ 1− α
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for all i), if h has high error then either its unlabeled
error will be high or else its tightness will be low com-
pared to the target function. This then will imply that
maximizing tightness subject to low unlabeled error
must lead to a hypothesis of low labeled error.

Theorem 7 Suppose α ≤ Pr[hi(xi) = 1] ≤ 1 − α
for all i. If err(h) ≥ ε then either errunl(h) ≥
αα2λ

2ε/(4L) or tightness(h) ≤ tightness(c)− ε/2.

Proof: Suppose err(h) ≥ ε. We have three cases.

Case 1: Suppose for some positive-constrained cate-
gory i, we have pi,1|0 ≥ ε

4L . By definition of positive-
constrained, there must be some NAND or “⊆” edge
(i, i′). So, by Lemmas 5 and 6, we have errunl(h) ≥
errunl(h, i, i

′) ≥ α2λ
2( ε

4L )α = αα2λ
2ε/(4L).

Case 2: Suppose for some negative-constrained cat-
egory i′, we have pi′,0|1 ≥ ε

4L . By definition of
negative-constrained, there must be some “⊆” edge
(i, i′). So, by Lemma 6, we again have errunl(h) ≥
errunl(h, i, i

′) ≥ α2λ
2( ε

4L )α = αα2λ
2ε/(4L).

Case 3: Suppose neither of the above two cases oc-
curs. Define pi,1,0 = Pr[hi = 1 ∧ c∗i = 0] ≤ pi,1|0 and
similarly pi,1,0 = Pr[hi = 0∧ c∗i = 1] ≤ pi,0|1. We then
have: ∑

i∈cat+ pi,1,0 +
∑
i∈cat− pi,0,1 ≤ ε/4.

Therefore, since err(h) ≥ ε,∑
i∈cat+ pi,0,1 +

∑
i∈cat− pi,1,0 ≥ 3ε/4.

Putting these together we have:

tightness(c)− tightness(h)

=
∑
i∈cat+

(pi,0,1 − pi,1,0) +
∑

i∈cat−
(pi,1,0 − pi,0,1)

≥ ε/2,

as desired.

3.4. Implications

We now show how the above results can be used to
analyze an idealized form of a natural iterative learn-
ing algorithm motivated by algorithms used in systems
such as NELL (Carlson et al., 2010a;b).

We consider here the same asumptions (1-4) used in
Section 3.3 and additionally assume each category is
incident to at least one NAND edge. Define a hy-
pothesis hi to be “safe” if hi ⊆ c∗i , i.e., pi,1|0 = 0.
Say that gi is an “α1-extension” of hi if hi ⊆ gi and
Pr[gi = 1] ≥ Pr[hi = 1] + α1. We now consider the
following idealized iterative learning procedure. Let
α0, α1 > 0 and k ∈ Z+. Suppose:

1. Given an initial set of positive labeled examples for
each category, the algorithm is able to produce
safe initial hypotheses hi that are nontrivial in
that Pr(hi(xi) = 1) ≥ α0 for each i.

2. For any category i such that pi,0|1 ≥ α1 (i.e., we
are not yet done), the algorithm is able to propose
up to k α1-extensions g1i , . . . , g

k
i of hi such that

at least one is safe and any non-safe gji satisfies
pi,1,0 = Ω(α1) (i.e., none are “just barely” safe).

3. The procedure then is just to greedily replace any
hi with any extension gji found that does not incur
unlabeled error over NAND edges until no such
extension of any hi exists.

Corollary 8 The above procedure correctly maintains
safe hypotheses and halts after at most L/α1 steps with
a hypothesis of total error at most Lα1.

Proof: Assume inductively that h1, . . . , hL are safe and
suppose gji is not a safe extension of hi. We are given
that category i is connected by a NAND edge to at
least one other category i′. Since Pr[hi′ = 1] ≥ α0, by
Lemma 5 we have errunl(h, i, i

′) ≥ α2λ
2α1α0. Thus

any unsafe extension will not be taken. On the other
hand, if gji is a safe extension, then replacing hi with gji
maintains the inductive property that h1, . . . , hL are
safe and thus no NAND edge will incur unlabeled error.
So the algorithm will not halt until no safe extension
exists, which happens only if total error ≤ Lα1.

4. Sample Complexity

In this section we derive bounds relating empirical un-
labeled error to true unlabeled error, in order to apply
the results of Section 3 to finite sample sizes. To do
so we will analyze the VC dimension of the unlabeled
error sets.

We start with the identical-independent model. Re-
call that in this setting we select only a single hypoth-
esis h ∈ C. We need to compute the VCdim(C,L)
which is the VC dimension when we have L points for
each example. Recall that a point is an L-tuple ~x =
(x1, . . . , xL). We first need to define `(h, ~x), the loss of
h on ~x. Let R be an ontology, i.e., the set of legal label-
ings. We define `(h, ~x) = 0 if (h(x1), . . . , h(xL)) ∈ R,
and otherwise it is 1.

Theorem 9 Let d = VCdim(C). For any ontology R
we have VCdim(C,L) = O(d logL).

Proof: Consider a set T = { ~x1, . . . , ~xm} that C shat-
ters. Let S = {x|∃i, x ∈ ~xi} be the set of inputs
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which appear in some category. Clearly, |S| ≤ Lm.
By Sauer’s lemma we have that the number of differ-
ent labelings of the set S is at most (mL)d. Any such
labeling can induce at most one labeling on the points
in T . Therefore, for T to be shattered we need that
2m ≤ (mL)d, which implies that m = O(d logL).

It is worth noting that there is indeed a difference be-
tween VCdim(C,L) and VCdim(C).

Claim 1 Consider the class TH1 the threshold
functions on [0, 10]. Then VCdim(TH1) =
VCdim(TH1, 1) = 1 and VCdim(TH1, 2) = 2.

Proof: We show that for L = 2, TH1 shatters 2 points.
Consider x1 = (0.5, 4) and x2 = (2, 6). For θ = 8 the
labeling is (1, 1), for θ = 1 the labeling is (1, 0), for
θ = 5 the labeling is (0, 1), and for θ = 0 the labeling
is (0, 0). Therefore TH1 shatters {x1, x2}. The fact
that no three points is shattered can be shown by case
analysis.

We can now use Theorem 9 to derive generalization
bounds based on Theorem 1. The result follows since
the observed unlabeled error rate is close to the true
unlabeled error rate, given our bound on the VC di-
mension.

Corollary 10 In the independent-identical model
with ontology R1 and L ≥ 3, a sample of mu =
O
(
1
ε

(
VCdim(C) logL ln

(
1
ε

)
+ ln

(
1
δ

)))
unlabeled ex-

amples (and no labeled examples) are sufficient to
achieve error ≤ ε. In particular, with probability 1−δ,
all h with h1 = . . . = hL ∈ C satisfying êrrunl(h) = 0
have err(h) ≤ ε.

We now need to derive a generalization bound for the
general case, that will relate the observed and the true
unlabeled error rates. The main difference is that we
consider the hypothesis class CL where each hypoth-
esis is ~h = (h1, . . . , hL) and hi ∈ C. As before, the
examples are L-tuples ~x = (x1, . . . , xL) and the loss is
` defined using the set R of legal labelings. (The the-
orem holds for any ontology R.) We need to compute
the VCdim(CL, L).

Theorem 11 Let d = VCdim(C). For any ontology
R we have VCdim(CL, L) = O(dL log dL).

Proof: Consider a set T = { ~x1, . . . , ~xm} that CL shat-
ters, where ~xi = (xi,1, . . . , xi,L). Let Tj = {xi,j : 1 ≤
j ≤ L} be the set of inputs which appear in category
i. By Sauer’s lemma we have that the number of dif-
ferent labelings by C for Tj is at most md, and hence

the total number of labelings for T using CL is at most
mdL. Therefore, for T to be shattered we need that
2m ≤ mdL, which implies that m = O(dL log dL).

We can therefore derive the following.

Corollary 12 Consider ontology R1, and assume
pi ≤ 1/3 and Pr[hi = 1] ≤ 1/3 for all i. Then,
mu = O

(
1
ε

(
dL log(dL) ln

(
1
ε

)
+ ln( 1

δ )
))

unlabeled ex-
amples (and no labeled examples) are sufficient to
achieve error ≤ ε, where d = VCdim(C). In particu-
lar, with probability 1−δ, all h ∈ CL with êrrunl(h) = 0
have err(h) ≤ ε.

We now consider the difference between the observed
tightness(h), denoted by ̂tightness(h), and the true
tightness(h). The following theorem follows by con-
sidering a generalization bound for each category, inde-
pendently, and using the union bound over categories.

Theorem 13 For an unlabeled sample size

mu = O
(
L2

ε2

(
VCdim(C) ln

(
1
ε

)
+ ln(Lδ )

))
,

we have that with probability 1 − δ, for any h ∈ C we

have |tightness(h)− ̂tightness(h)| ≤ ε.

5. Discrete domains

In this section, we assume the different domains Xi

are discrete and small: specifically, Xi = {1, . . . , N},
where N is not too large, and let class C consist of all
boolean functions over N elements. For example, this
could model data satisfying the condition that points
within each view can be easily grouped into at most N
clusters, with each cluster having a single label. Note
that even though we view N as small, the total number
of examples possible is NL and could be quite large.
Our goal here will be to learn from unlabeled data
using time and samples polynomial in N and L.

We will assume here the same conditions (1-4) used
in Section 3.3, namely (1) each category has at least
some nonnegligible probability mass α, (2) the ontol-
ogy graph has no isolated vertices, (3) for any edge
(i, i′), any pair of labels not disallowed by the ontol-
ogy has probability mass at least α2, and (4) weak
dependence. We begin with the following lemma.

Lemma 14 For any edge (i, j) of the ontology, any
pair of labels `i, `j not disallowed by this edge, and any
pair of values ai, aj s.t. c∗i (ai) = `i and c∗j (aj) = `j:

Pr[xi = ai, xj = aj |c∗i = `i, c
∗
j = `j ]

≥ λ2Pr[xi = ai|c∗i = `i] ·Pr[xj = aj |c∗j = `j ].
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Proof: Since C contains all boolean functions over
{1, . . . , N}, using condition (4) we have:

Pr[xi = ai, xj = aj |c∗i = `i, c
∗
j = `j ]

= Pr[xi = ai|c∗i = `i, c
∗
j = `j ] ·

Pr[xj = aj |c∗i = `i, c
∗
j = `j , xi = ai]

≥ λ2Pr[xi = ai|c∗i = `i] ·Pr[xj = aj |c∗j = `j ].

We now present the algorithm, using Lemma 14. The
idea is simple. First, we sample enough unlabeled ex-
amples. Next, examine each edge (i, j) of the ontology
graph. For each such edge, if two values that indi-
vidually have reasonably high probability mass never
co-occur, then this must be because they form the dis-
allowed labeling for that edge (e.g., both are positive
if it is a NAND edge or the first is positive and the
second is negative for a subset edge).

Algorithm LearnDiscrete:
Given error bound ε, confidence bound δ, values α, α2:

1. Let ε′ = min(ε, αL). Draw a sample S of m =
O(λ−2α−12 (NL/ε′)2 log(NL/δ)) examples.

2. Define p̂i(ai) to be the empirical frequency of ai ∈
Xi, i.e., 1

m

∑
x∈S I(xi = ai). Similarly, p̂ij(ai, aj)

is the empirical frequency of the pair (ai, aj) ∈
Xi ×Xj , i.e., 1

m

∑
x∈S I(xi = ai, xj = aj).

3. Let Ti include all values if Xi that have empirical
frequency at least 0.5ε′/(NL), i.e., Ti = {ai ∈
Xi|p̂i(ai) ≥ 0.5ε′/(NL)}.

4. For each NAND edge (i, j), for each ai ∈ Ti and
aj ∈ Tj , mark them as positive if they never
co-occur, i.e., p̂ij(ai, aj) = 0. For each “⊆” edge
(i, j), for each ai ∈ Ti and aj ∈ Tj , mark ai as
positive and aj as negative if they never co-
occur.

5. For each category i, for each value ai ∈ Xi

not marked in step 4: if category i is positive-
constrained (it is the endpoint of some NAND
edge or on the subset side of some “⊆” edge) then
mark ai as negative; else mark ai as positive.

The following theorem shows that the error rate of the
algorithm is low.

Theorem 15 Under assumptions (1-4) of Section
3.3, Algorithm LearnDiscrete produces a labeling of
the domain with error at most ε with probability 1− δ.

Proof: First, condition (1) implies that each category
must have at least one positive value ai of probability
at least α/N ≥ ε′/(NL) and at least one negative value
ai of probability at least α/N ≥ ε′/(NL). By Cher-
noff bounds, the sample size m is sufficient so that with
probability 1− δ/2, all values with probability at least
ε′/(NL) have p̂i(ai) >

1
2ε
′/(NL) and so will fall into

the sets Ti, and furthermore no values with probability
less than ε′/(4NL) will fall into the sets Ti. Assume
for the remainder of the argument that this indeed is
the case. This in turn implies that in step 4, in each
category i incident to a NAND edge or on the subset
side of a “⊆” edge, Algorithm LearnDiscrete cor-
rectly marks all positive values ai of probability mass
at least ε′/(NL) as positive, and in each category
i on the superset side of a “⊆” edge, the algorithm
correctly marks all negative values ai of probability at
least ε′/(NL) as negative.

Next, ignore all values not in sets Ti since together
they have probability at most ε. For the remain-
der, we need to show that with probability at least
1 − δ/2 we correctly mark the negative values ai in
positive-constrained categories and the positive val-
ues in negative-constrained categories. (We may ig-
nore categories that are both positive- and negative-
constrained since they are covered by the previous
analysis.) For this, we use Lemma 14. Specificially,
pick one such ai ∈ Ti. Consider any edge (i, j) and
any aj ∈ Tj . By definition, (ai, aj) is not disallowed
by the ontology, so, by condition (3), the probabil-
ity of the associated labeling is at least α2. There-
fore, the probability of observing the pair (ai, aj) is
at least α2λ

2(ε′/(4NL))2 by Lemma 14. The sample
size m is therefore sufficient so that with probability
at least 1−δ/(2N2L2), we indeed have p̂ij(ai, aj) > 0.
Applying the union bound, with high probability all
such pairwise events occur. Therefore, such values ai
are marked only in step 5 of the algorithm and so are
marked correctly.

6. Open Problems

It would be interesting to extend the results of Sec-
tion 3.4 to remove the assumption that extensions will
never be “barely safe”, as well as to extend these re-
sults (using perhaps a different idealized algorithm)
to the case where not all categories are incident to a
NAND edge. It would also be of interest to further
weaken the limited independence conditions used in
Section 3.3.
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