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1. Data set Description

1.1. CMU Multi-pie face recognition:

The face recognition experiment was conducted on the
CMU Multi-PIE dataset. The dataset is challenging
due to the large number of subjects and is one of the
standard data sets used for face recognition experi-
ments. The data set contains 337 subjects across si-
multaneous variations in pose, expression, and illumi-
nation. We ignore the 88 subjects that were considered
as outliers in (Yang et al., 2010) and used the rest of
the images for our face recognition experiments. We
follow (Yang et al., 2010) and use the 7 frontal ex-
treme illuminations from session one as train set and
use other 20 illuminations from Sessions 2-4 as test set.

1.2. 15 Scenes Categorization:

We also conducted scene classification experiments on
the 15-Scenes data set. This data set consist of 4485
images from 15 categories, with the number of images
each category ranging from 200 to 400. The cate-
gories corresponds to scenes from various settings like
kitchen, living room etc. Similar to the previous exper-
iment, we extracted patches from the images and com-
puted the SIFT features corresponding to the patches.
The categorization results are reported in Table 2. The
accuracy using smooth sparse codes is better than pre-
vious reported results on this data set using standard
sparse coding techniques for e.g., (Yang et al., 2009).

1.3. Caltech-101 Data set:

The Caltech-101 data set consists of images from 101
classes like animals, vehicles, flowers, etc. The num-
ber of images per category varies from 30 to 800. Most
images are of medium resolution (300× 300). All im-
ages are used a gray-scale images. Following previous
standard experimental settings for Caltech-101 data
set, we use 30 images per category and test on the
rest. Average classification accuracy normalized by
class frequency is used for evaluation. Similar to the
previous experiment, we extracted patches from the
images and computed the SIFT features correspond-
ing to the the patches. Table 2 shows the accuracy of
sparse coding and smooth sparse coding. Note that
sparse coding on SIFT achieves one of the best results
on the Caltech-101 data set. The proposed smoothing

approach further improves the accuracy and achieves
competitive results on this benchmark data set.

1.4. Activity recognition

The KTH action dataset consists of 6 human action
classes. Each action is performed several times by 25
subjects and is recorded in four different scenarios. In
total, the data consists of 2391 video samples. The
YouTube actions data set has 11 action categories and
is more complex and challenging (Liu et al., 2009). It
has 1168 video sequences of varied illumination, back-
ground, resolution etc. We randomly densely sample
blocks (400 cuboids) of video from the data sample and
extract HOG-3d features and constructed the video
features as described above. .

1.5. Youtube person data set

Similar to the experiments using the feature smoothing
kernel, in this section we report results on experiment
conducted using the time smoothed kernel. Specifi-
cally, we used the YouTube person data set (Kim et al.,
2008) in order to recognize people, based on time-
based kernel smooth sparse coding. The dataset con-
tains 1910 sequences of 47 subjects. The approach for
this experiment is similar to (Yang et al., 2009). We
extracted SIFT descriptors for every 16 × 16 patches
sampled on a grid of step size 8. Then we use smooth
sparse coding with time kernel to learn the codes and
max pooling to get the final representation of a video
sample. Pre-processing steps like face extraction or
face tracking was not used in this experiment. Fi-
nally, linear svm was used for classification of video
sequences based on person present in the video se-
quences.

2. Experiments using Temporal

Smoothing

In this section we describe an experiment conducted
using the temporal smoothing kernel on the Youtube
persons dataset. We extracted SIFT descriptors for ev-
ery 16×16 patches sampled on a grid of step size 8 and
used smooth sparse coding with time kernel to learn
the codes and max pooling to get the final video rep-
resentation. We avoided pre-processing steps such as
face extraction or face tracking. Note that in the previ-
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ous action recognition video experiment, video blocks
were densely sampled and used for extracting HoG-3d
features. In this experiment, on the other hand, we
extracted SIFT features from individual frames and
used the time kernels to incorporate the temporal in-
formation into the sparse coding process.

Method Fused Lasso SC SSC-tricube

Accuracy 68.59 65.53 71.21

Table 1. Linear SVM accuracy for person recognition task

from YouTube face video dataset.

For this case, we also compared to the more standard
fused-lasso based approach (Tibshirani et al., 2005).
Note that in fused Lasso based approach, in addition
to the standard L1 penalty, an additional L1 penalty
on the difference between the neighboring frames for
each dimensions is used. This tries to enforce the as-
sumption that in a video sequence, neighboring frames
are more related to one another as compared to frames
that are farther apart.

Table 1 shows that smooth sparse coding achieved
higher accuracy than fused lasso and standard sparse
coding. Smooth sparse coding has comparable accu-
racy on person recognition tasks to other methods that
use face-tracking, for example (Kim et al., 2008). An-
other advantage of smooth sparse coding is that it is
significantly faster than sparse coding and the used
lasso.

3. Generalization bounds for learning

problems

In this section, we provide two generalization bounds
for learning problems, corresponding to slow-rates and
fast rates, based on covering numbers. We first state
the following general lemma regarding generalization
error bounds with slow rates for a learning problem
with given covering number bounds.

Lemma 1 ((Vainsencher et al., 2011) ). Let Q be a

function class of [0, B] functions with covering number
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Next, we state general lemma regarding generalization
error bounds with fast rates

Lemma 2 ((Vainsencher et al., 2011) ). Let Q be a

function class of [0, 1] functions that can be covered for

any ǫ > 0 by at most (C/ǫ)d balls of radius ǫ in the |·|∞
metric, where C ≥ e and β > 0. Then with probability

at least 1− exp (−t) we have for all functions f ∈ Q,
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Note thatK(d,m, β) is non-increasing in d,m as a con-
sequence of which we immediately have the following
corollary, which we use in the statement of our main
theorem for fast rates.

Corollary 1. Let Q be as above. For d ≥ 20, m ≥
5000 and β = 0.1, we have with probability at least

1− exp (−t) for all functions f ∈ Q,

Ef ≤ (1.1)Enf + 9
d ln(Cm) + t

n
.

The proofs of Lemma 1 and Lemma 2 could be found
in (Vainsencher et al., 2011). Obtaining generalization
bounds for the problem under consideration follows
directly, given the above two general statements and
our theorem on covering numbers (Theorem 1).
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